top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
[Alfa Beta Gamma Delta] - Compact spaces / Akos Csaszar
[Alfa Beta Gamma Delta] - Compact spaces / Akos Csaszar
Autore Csaszar, Akos
Pubbl/distr/stampa Torino : Ist. Geometria Univ. Torino, 1979
Descrizione fisica 152 p. ; 25 cm.
Disciplina 514.32
Collana Quaderni dei Gruppi di ricerca matematica del Consiglio Nazionale delle Ricerche
Soggetto topico Compact spaces
Special constructions of spaces
Classificazione AMS 54D80
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISALENTO-991000651329707536
Csaszar, Akos  
Torino : Ist. Geometria Univ. Torino, 1979
Materiale a stampa
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui
Connettificazione di spazi topologici. Tesi di laurea / laureando Leonardo Bulso ; relat. C. Guido
Connettificazione di spazi topologici. Tesi di laurea / laureando Leonardo Bulso ; relat. C. Guido
Autore Bulso, Leonardo
Pubbl/distr/stampa Lecce : Università degli studi. Facoltà di Scienze. Corso di laurea in Matematica, a.a. 1988-89
Disciplina 514.322
Altri autori (Persone) Guido, Cosimo
Soggetto topico Compact spaces
Connected spaces
Extension
Maps
Classificazione AMS 54C
AMS 54C20
AMS 54D05
AMS 54D10
AMS 54D15
AMS 54D18 (1985)
AMS 54D30
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione ita
Record Nr. UNISALENTO-991000783029707536
Bulso, Leonardo  
Lecce : Università degli studi. Facoltà di Scienze. Corso di laurea in Matematica, a.a. 1988-89
Materiale a stampa
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui
Ergodic theory on compact spaces / Manfred Denker, Christian Grillenberg, Karl Sigmund
Ergodic theory on compact spaces / Manfred Denker, Christian Grillenberg, Karl Sigmund
Autore Denker, Manfred
Pubbl/distr/stampa Berlin : Springer-Verlag, 1976
Descrizione fisica iv, 360 p. ; 24 cm
Disciplina 515.42
Altri autori (Persone) Grillenberger, Christian
Sigmund, Karlauthor
Collana Lecture notes in mathematics, 0075-8434 ; 527
Soggetto topico Compact spaces
Ergodic theory
Metric spaces
Topological dynamics
ISBN 3540077979
Classificazione AMS 28D
AMS 54H20
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISALENTO-991000869199707536
Denker, Manfred  
Berlin : Springer-Verlag, 1976
Materiale a stampa
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui
Medial-skeletal linking structures for multi-region configurations / / James Damon, Ellen Gasparovic
Medial-skeletal linking structures for multi-region configurations / / James Damon, Ellen Gasparovic
Autore Damon James <1945->
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , 2017
Descrizione fisica 1 online resource (180 pages)
Disciplina 516.36
Collana Memoirs of the American Mathematical Society
Soggetto topico Geometry, Differential
Generalized spaces
Compact spaces
Configurations
Soggetto genere / forma Electronic books.
ISBN 1-4704-4210-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910480875703321
Damon James <1945->  
Providence, Rhode Island : , : American Mathematical Society, , 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Medial-skeletal linking structures for multi-region configurations / / James Damon, Ellen Gasparovic
Medial-skeletal linking structures for multi-region configurations / / James Damon, Ellen Gasparovic
Autore Damon James <1945->
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , 2017
Descrizione fisica 1 online resource (180 pages)
Disciplina 516.36
Collana Memoirs of the American Mathematical Society
Soggetto topico Geometry, Differential
Generalized spaces
Compact spaces
Configurations
ISBN 1-4704-4210-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- Multi-Region Configurations in R[superscript n+1] -- Skeletal Linking Structures for Multi-Region Configurations in R[superscript n+1] -- Blum Medial Linking Structure for a Generic Multi-Region Configuration -- Retracting the Full Blum Medial Structure to a Skeletal Linking Structure -- Questions Involving Positional Geometry of a Multi-Region Configuration -- Shape Operators and Radial Flow for a Skeletal Structure -- Linking Flow and Curvature Conditions -- Properties of Regions Defined Using the Linking Flow -- Global Geometry via Medial and Skeletal Linking Integrals -- Positional Geometric Properties of Multi-Region Configurations -- Multi-Distance and Height-Distance Functions and Partial Multi-Jet Spaces -- Generic Blum Linking Properties via Transversality Theorems -- Generic Properties of Blum Linking Structures -- Concluding Generic Properties of Blum Linking Structures -- Reductions of the Proofs of the Transversality Theorems -- Families of Perturbations and their Infinitesimal Properties -- Completing the Proofs of the Transversality Theorems -- Appendix A: List of Frequently Used Notation -- Bibliography.
Altri titoli varianti Medial, skeletal linking structures for multi-region configurations
Record Nr. UNINA-9910795440603321
Damon James <1945->  
Providence, Rhode Island : , : American Mathematical Society, , 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Medial-skeletal linking structures for multi-region configurations / / James Damon, Ellen Gasparovic
Medial-skeletal linking structures for multi-region configurations / / James Damon, Ellen Gasparovic
Autore Damon James <1945->
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , 2017
Descrizione fisica 1 online resource (180 pages)
Disciplina 516.36
Collana Memoirs of the American Mathematical Society
Soggetto topico Geometry, Differential
Generalized spaces
Compact spaces
Configurations
ISBN 1-4704-4210-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- Multi-Region Configurations in R[superscript n+1] -- Skeletal Linking Structures for Multi-Region Configurations in R[superscript n+1] -- Blum Medial Linking Structure for a Generic Multi-Region Configuration -- Retracting the Full Blum Medial Structure to a Skeletal Linking Structure -- Questions Involving Positional Geometry of a Multi-Region Configuration -- Shape Operators and Radial Flow for a Skeletal Structure -- Linking Flow and Curvature Conditions -- Properties of Regions Defined Using the Linking Flow -- Global Geometry via Medial and Skeletal Linking Integrals -- Positional Geometric Properties of Multi-Region Configurations -- Multi-Distance and Height-Distance Functions and Partial Multi-Jet Spaces -- Generic Blum Linking Properties via Transversality Theorems -- Generic Properties of Blum Linking Structures -- Concluding Generic Properties of Blum Linking Structures -- Reductions of the Proofs of the Transversality Theorems -- Families of Perturbations and their Infinitesimal Properties -- Completing the Proofs of the Transversality Theorems -- Appendix A: List of Frequently Used Notation -- Bibliography.
Altri titoli varianti Medial, skeletal linking structures for multi-region configurations
Record Nr. UNINA-9910809888103321
Damon James <1945->  
Providence, Rhode Island : , : American Mathematical Society, , 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Nonlinear waves and solitons on contours and closed surfaces / / Andrei Ludu
Nonlinear waves and solitons on contours and closed surfaces / / Andrei Ludu
Autore Ludu Andrei
Edizione [Third edition.]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (583 pages)
Disciplina 514.32
Collana Springer Series in Synergetics
Soggetto topico Compact spaces
ISBN 9783031146411
9783031146404
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Foreword -- Preface to the Third Edition -- Preface to the Second Edition -- Preface to the First Edition -- Contents -- Symbols -- 1 Introduction -- 1.1 Intuitive Introduction to Nonlinear Waves and Solitons -- 1.2 Integrability -- 1.3 Algebraic and Geometric Approaches -- 1.4 A List of Useful Derivatives in Finite Dimensional Spaces -- References -- Part I Mathematical Prerequisites -- 2 Topology and Algebra -- 2.1 What Is Topology -- 2.1.1 Topological Spaces and Separation -- 2.1.2 Compactness and Weierstrass-Stone Theorem -- 2.1.3 Connectedness and Homotopy -- 2.1.4 Separability and Metric Spaces -- 2.2 Elements of Homology -- 2.3 Group Action -- References -- 3 Vector Fields, Differential Forms, and Derivatives -- 3.1 Manifolds and Maps -- 3.2 Differential and Vector Fields -- 3.3 Existence and Uniqueness Theorems: Differential Equation Approach -- 3.4 Existence and Uniqueness Theorems: Flow Box Approach -- 3.5 Compact Supported Vector Fields -- 3.6 Differential Forms and the Lie Derivative -- 3.7 Differential Systems, Integrability and Invariants -- 3.8 Poincaré Lemma -- 3.9 Fiber Bundles and Covariant Derivative -- 3.9.1 Principal Bundle and Frames -- 3.9.2 Connection Form and Covariant Derivative -- 3.10 Tensor Analysis -- 3.11 The Mixed Covariant Derivative -- 3.12 Curvilinear Orthogonal Coordinates -- 3.13 Special Two-Dimensional Nonlinear Orthogonal Coordinates -- 3.14 Problems -- References -- 4 The Importance of the Boundary -- 4.1 The Power of Compact Boundaries: Representation Formulas -- 4.1.1 Representation Formula for n=1: Taylor Series -- 4.1.2 Representation Formula for n=2: Cauchy Formula -- 4.1.3 Representation Formula for n=3: Green Formula -- 4.1.4 Representation Formula in General: Stokes Theorem -- 4.2 Comments and Examples -- References -- Part II Curves and Surfaces -- 5 Geometry of Curves.
5.1 Elements of Differential Geometry of Curves -- 5.2 Closed Curves -- 5.3 Curves Lying on a Surface -- 5.4 Problems -- References -- 6 Geometry of Surfaces -- 6.1 Elements of Differential Geometry of Surfaces -- 6.2 Covariant Derivative and Connections -- 6.3 Geometry of Parameterized Surfaces Embedded in mathbbR3 -- 6.3.1 Christoffel Symbols and Covariant Differentiation for Hybrid Tensors -- 6.4 Compact Surfaces -- 6.5 Surface Differential Operators -- 6.5.1 Surface Gradient -- 6.5.2 Surface Divergence -- 6.5.3 Surface Laplacian -- 6.5.4 Surface Curl -- 6.5.5 Integral Relations for Surface Differential Operators -- 6.5.6 Applications -- 6.6 Problems -- References -- 7 Motion of Curves and Solitons -- 7.1 Kinematics of Two-Dimensional Curves -- 7.2 Mapping Two-Dimensional Curve Motion into Nonlinear Integrable Systems -- 7.3 The Time Evolution of Length and Area -- 7.4 Cartan Theory of Three-Dimensional Curve Motion -- 7.5 Kinematics of Three-Dimensional Curves -- 7.6 Mapping Three-Dimensional Curve Motion into Nonlinear Integrable Systems -- 7.7 Problems -- References -- 8 Theory of Motion of Surfaces -- 8.1 Differential Geometry of Surface Motion -- 8.2 Coordinates and Velocities on a Fluid Surface -- 8.3 Kinematics of Moving Surfaces -- 8.4 Dynamics of Moving Surfaces -- 8.5 Boundary Conditions for Moving Fluid Interfaces -- 8.6 Dynamics of the Fluid Interfaces -- 8.7 Problems -- References -- Part III Solitons and Nonlinear Waves on Closed Curves and Surfaces -- 9 Kinematics of Fluids -- 9.1 Lagrangian Verses Eulerian Frames -- 9.1.1 Introduction -- 9.1.2 Geometrical Picture for Lagrangian Verses Eulerian -- 9.2 Fluid Fiber Bundle -- 9.2.1 Introduction -- 9.2.2 Motivation for a Geometrical Approach -- 9.2.3 The Fiber Bundle -- 9.2.4 Fixed Fluid Container -- 9.2.5 Free Surface Fiber Bundle.
9.2.6 How Does the Time Derivative of Tensors Transform from Euler to Lagrange Frame? -- 9.3 Path Lines, Stream Lines, and Particle Contours -- 9.4 Eulerian-Lagrangian Description for Moving Curves -- 9.5 The Free Surface -- 9.6 Equation of Continuity -- 9.6.1 Introduction -- 9.6.2 Solutions of the Continuity Equation on Compact Intervals -- 9.7 Problems -- References -- 10 Hydrodynamics -- 10.1 Momentum Conservation: Euler and Navier-Stokes Equations -- 10.2 Boundary Conditions -- 10.3 Circulation Theorem -- 10.4 Surface Tension -- 10.4.1 Physical Problem -- 10.4.2 Minimal Surfaces -- 10.4.3 Application -- 10.4.4 Isothermal Parametrization -- 10.4.5 Topological Properties of Minimal Surfaces -- 10.4.6 General Condition for Minimal Surfaces -- 10.4.7 Surface Tension for Almost Isothermal Parametrization -- 10.5 Special Fluids -- 10.6 Representation Theorems in Fluid Dynamics -- 10.6.1 Helmholtz Decomposition Theorem in mathbbR3 -- 10.6.2 Decomposition Formula for Transversal Isotropic Vector Fields -- 10.6.3 Solenoidal-Toroidal Decomposition Formulas -- 10.7 Problems -- References -- 11 Nonlinear Surface Waves in One Dimension -- 11.1 KdV Equation Deduction for Shallow Waters -- 11.2 Smooth Transitions Between Periodic and Aperiodic Solutions -- 11.3 Modified KdV Equation and Generalizations -- 11.4 Hydrodynamic Equations Involving Higher-Order Nonlinearities -- 11.4.1 A Compact Version for KdV -- 11.4.2 Small Amplitude Approximation -- 11.4.3 Dispersion Relations -- 11.4.4 The Full Equation -- 11.4.5 Reduction of GKdV to Other Equations and Solutions -- 11.4.6 The Finite Difference Form -- 11.5 Boussinesq Equations on a Circle -- References -- 12 Nonlinear Surface Waves in Two Dimensions -- 12.1 Geometry of Two-Dimensional Flow -- 12.2 Two-Dimensional Nonlinear Equations -- 12.3 Two-Dimensional Fluid Systems with Moving Boundary.
12.4 Oscillations in Two-Dimensional Liquid Drops -- 12.5 Contours Described by Quartic Closed Curves -- 12.6 Nonlinear Waves in Rotating Leidenfrost Drops -- References -- 13 Dynamics of Two-Dimensional Fluid in Bounded Domain via Conformal Variables (A. Chernyavsky and S. Dyachenko) -- 13.1 Introduction -- 13.2 Mechanics of Droplet and the Conformal Map -- 13.2.1 The Hamiltonian, Momentum and Angular Momentum -- 13.2.2 The Center of Mass -- 13.3 The Complex Equations of Motion -- 13.3.1 Kinematic Equation -- 13.3.2 Dynamic Condition -- 13.4 Traveling Waves Around a Disk -- 13.5 Linear Waves -- 13.6 Numerical Simulation -- 13.7 Series Solution -- 13.8 Nonlinear Waves -- 13.9 Conclusion -- References -- 14 Nonlinear Surface Waves in Three Dimensions -- 14.1 Oscillations of Inviscid Drops: The Linear Model -- 14.1.1 Drop Immersed in Another Fluid -- 14.1.2 Drop with Rigid Core -- 14.1.3 Moving Core -- 14.1.4 Drop Volume -- 14.2 Oscillations of Viscous Drops: The Linear Model -- 14.2.1 Model 1 -- 14.3 Nonlinear Three-Dimensional Oscillations of Axisymmetric Drops -- 14.3.1 Nonlinear Resonances in Drop Oscillation -- 14.4 Other Nonlinear Effects in Drop Oscillations -- 14.5 Solitons on the Surface of Liquid Drops -- 14.6 Problems -- References -- 15 Other Special Nonlinear Compact Systems -- 15.1 Solitons on Interfaces of Layered Fluid Droplet (Written by A. S. Carstea) -- 15.2 Nonlinear Compact Shapes and Collective Motion -- 15.3 The Hamiltonian Structure for Free Boundary Problems on Compact Surfaces -- References -- Part IV Physical Nonlinear Systems at Different Scales -- 16 Filaments, Chains, and Solitons -- 16.1 Vortex Filaments -- 16.1.1 Gas Dynamics Filament Model and Solitons -- 16.1.2 Special Solutions -- 16.1.3 Integration of Serret-Frenet Equations for Filaments -- 16.1.4 The Riccati Form of the Serret-Frenet Equations.
16.2 Soliton Solutions on the Vortex Filament -- 16.2.1 Constant Torsion Vortex Filaments -- 16.2.2 Vortex Filaments and the Nonlinear Schrödinger Equation -- 16.3 Closed Curves Solitons -- 16.4 Nonlinear Dynamics of Stiff Chains -- 16.5 Problems -- References -- 17 Solitons on the Boundaries of Microscopic Systems -- 17.1 Solitons as Elementary Particles -- 17.2 Quantization of Solitons on a Closed Contour and Instantons -- 17.3 Clusters as Solitary Waves on the Nuclear Surface -- 17.4 Nonlinear Schrödinger Equation Solitons on Quantum … -- 17.5 Solitons and Quasimolecular Structure -- 17.6 Soliton Model for Heavy Emitted Nuclear Clusters -- 17.7 Quintic Nonlinear Schrödinger Equation for Nuclear Cluster Decay -- 17.8 Contour Solitons in the Quantum Hall Liquid -- References -- 18 Nonlinear Contour Dynamics in Macroscopic Systems -- 18.1 Plasma Vortex -- 18.1.1 Effective Surface Tension in Magnetohydrodynamics and Plasma Systems -- 18.1.2 Trajectories in Magnetic Field Configurations -- 18.1.3 Magnetic Surfaces in Static Equilibrium -- 18.2 Elastic Spheres -- 18.3 Curvature Dependent Nonlinear Diffusion on Closed Surfaces -- 18.4 Nonlinear Evolution of Oscillation Modes in Neutron Stars -- References -- 19 Mathematical Appendix -- 19.1 Differentiable Manifolds -- 19.2 Riccati Equation -- 19.3 Special Functions -- 19.4 One-Soliton Solutions for the KdV, MKdV, and Their Combination -- 19.5 Scaling and Nonlinear Dispersion Relations1 -- References -- Index.
Record Nr. UNISA-996499864303316
Ludu Andrei  
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Nonlinear waves and solitons on contours and closed surfaces / / Andrei Ludu
Nonlinear waves and solitons on contours and closed surfaces / / Andrei Ludu
Autore Ludu Andrei
Edizione [Third edition.]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (583 pages)
Disciplina 514.32
Collana Springer Series in Synergetics
Soggetto topico Compact spaces
ISBN 9783031146411
9783031146404
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Foreword -- Preface to the Third Edition -- Preface to the Second Edition -- Preface to the First Edition -- Contents -- Symbols -- 1 Introduction -- 1.1 Intuitive Introduction to Nonlinear Waves and Solitons -- 1.2 Integrability -- 1.3 Algebraic and Geometric Approaches -- 1.4 A List of Useful Derivatives in Finite Dimensional Spaces -- References -- Part I Mathematical Prerequisites -- 2 Topology and Algebra -- 2.1 What Is Topology -- 2.1.1 Topological Spaces and Separation -- 2.1.2 Compactness and Weierstrass-Stone Theorem -- 2.1.3 Connectedness and Homotopy -- 2.1.4 Separability and Metric Spaces -- 2.2 Elements of Homology -- 2.3 Group Action -- References -- 3 Vector Fields, Differential Forms, and Derivatives -- 3.1 Manifolds and Maps -- 3.2 Differential and Vector Fields -- 3.3 Existence and Uniqueness Theorems: Differential Equation Approach -- 3.4 Existence and Uniqueness Theorems: Flow Box Approach -- 3.5 Compact Supported Vector Fields -- 3.6 Differential Forms and the Lie Derivative -- 3.7 Differential Systems, Integrability and Invariants -- 3.8 Poincaré Lemma -- 3.9 Fiber Bundles and Covariant Derivative -- 3.9.1 Principal Bundle and Frames -- 3.9.2 Connection Form and Covariant Derivative -- 3.10 Tensor Analysis -- 3.11 The Mixed Covariant Derivative -- 3.12 Curvilinear Orthogonal Coordinates -- 3.13 Special Two-Dimensional Nonlinear Orthogonal Coordinates -- 3.14 Problems -- References -- 4 The Importance of the Boundary -- 4.1 The Power of Compact Boundaries: Representation Formulas -- 4.1.1 Representation Formula for n=1: Taylor Series -- 4.1.2 Representation Formula for n=2: Cauchy Formula -- 4.1.3 Representation Formula for n=3: Green Formula -- 4.1.4 Representation Formula in General: Stokes Theorem -- 4.2 Comments and Examples -- References -- Part II Curves and Surfaces -- 5 Geometry of Curves.
5.1 Elements of Differential Geometry of Curves -- 5.2 Closed Curves -- 5.3 Curves Lying on a Surface -- 5.4 Problems -- References -- 6 Geometry of Surfaces -- 6.1 Elements of Differential Geometry of Surfaces -- 6.2 Covariant Derivative and Connections -- 6.3 Geometry of Parameterized Surfaces Embedded in mathbbR3 -- 6.3.1 Christoffel Symbols and Covariant Differentiation for Hybrid Tensors -- 6.4 Compact Surfaces -- 6.5 Surface Differential Operators -- 6.5.1 Surface Gradient -- 6.5.2 Surface Divergence -- 6.5.3 Surface Laplacian -- 6.5.4 Surface Curl -- 6.5.5 Integral Relations for Surface Differential Operators -- 6.5.6 Applications -- 6.6 Problems -- References -- 7 Motion of Curves and Solitons -- 7.1 Kinematics of Two-Dimensional Curves -- 7.2 Mapping Two-Dimensional Curve Motion into Nonlinear Integrable Systems -- 7.3 The Time Evolution of Length and Area -- 7.4 Cartan Theory of Three-Dimensional Curve Motion -- 7.5 Kinematics of Three-Dimensional Curves -- 7.6 Mapping Three-Dimensional Curve Motion into Nonlinear Integrable Systems -- 7.7 Problems -- References -- 8 Theory of Motion of Surfaces -- 8.1 Differential Geometry of Surface Motion -- 8.2 Coordinates and Velocities on a Fluid Surface -- 8.3 Kinematics of Moving Surfaces -- 8.4 Dynamics of Moving Surfaces -- 8.5 Boundary Conditions for Moving Fluid Interfaces -- 8.6 Dynamics of the Fluid Interfaces -- 8.7 Problems -- References -- Part III Solitons and Nonlinear Waves on Closed Curves and Surfaces -- 9 Kinematics of Fluids -- 9.1 Lagrangian Verses Eulerian Frames -- 9.1.1 Introduction -- 9.1.2 Geometrical Picture for Lagrangian Verses Eulerian -- 9.2 Fluid Fiber Bundle -- 9.2.1 Introduction -- 9.2.2 Motivation for a Geometrical Approach -- 9.2.3 The Fiber Bundle -- 9.2.4 Fixed Fluid Container -- 9.2.5 Free Surface Fiber Bundle.
9.2.6 How Does the Time Derivative of Tensors Transform from Euler to Lagrange Frame? -- 9.3 Path Lines, Stream Lines, and Particle Contours -- 9.4 Eulerian-Lagrangian Description for Moving Curves -- 9.5 The Free Surface -- 9.6 Equation of Continuity -- 9.6.1 Introduction -- 9.6.2 Solutions of the Continuity Equation on Compact Intervals -- 9.7 Problems -- References -- 10 Hydrodynamics -- 10.1 Momentum Conservation: Euler and Navier-Stokes Equations -- 10.2 Boundary Conditions -- 10.3 Circulation Theorem -- 10.4 Surface Tension -- 10.4.1 Physical Problem -- 10.4.2 Minimal Surfaces -- 10.4.3 Application -- 10.4.4 Isothermal Parametrization -- 10.4.5 Topological Properties of Minimal Surfaces -- 10.4.6 General Condition for Minimal Surfaces -- 10.4.7 Surface Tension for Almost Isothermal Parametrization -- 10.5 Special Fluids -- 10.6 Representation Theorems in Fluid Dynamics -- 10.6.1 Helmholtz Decomposition Theorem in mathbbR3 -- 10.6.2 Decomposition Formula for Transversal Isotropic Vector Fields -- 10.6.3 Solenoidal-Toroidal Decomposition Formulas -- 10.7 Problems -- References -- 11 Nonlinear Surface Waves in One Dimension -- 11.1 KdV Equation Deduction for Shallow Waters -- 11.2 Smooth Transitions Between Periodic and Aperiodic Solutions -- 11.3 Modified KdV Equation and Generalizations -- 11.4 Hydrodynamic Equations Involving Higher-Order Nonlinearities -- 11.4.1 A Compact Version for KdV -- 11.4.2 Small Amplitude Approximation -- 11.4.3 Dispersion Relations -- 11.4.4 The Full Equation -- 11.4.5 Reduction of GKdV to Other Equations and Solutions -- 11.4.6 The Finite Difference Form -- 11.5 Boussinesq Equations on a Circle -- References -- 12 Nonlinear Surface Waves in Two Dimensions -- 12.1 Geometry of Two-Dimensional Flow -- 12.2 Two-Dimensional Nonlinear Equations -- 12.3 Two-Dimensional Fluid Systems with Moving Boundary.
12.4 Oscillations in Two-Dimensional Liquid Drops -- 12.5 Contours Described by Quartic Closed Curves -- 12.6 Nonlinear Waves in Rotating Leidenfrost Drops -- References -- 13 Dynamics of Two-Dimensional Fluid in Bounded Domain via Conformal Variables (A. Chernyavsky and S. Dyachenko) -- 13.1 Introduction -- 13.2 Mechanics of Droplet and the Conformal Map -- 13.2.1 The Hamiltonian, Momentum and Angular Momentum -- 13.2.2 The Center of Mass -- 13.3 The Complex Equations of Motion -- 13.3.1 Kinematic Equation -- 13.3.2 Dynamic Condition -- 13.4 Traveling Waves Around a Disk -- 13.5 Linear Waves -- 13.6 Numerical Simulation -- 13.7 Series Solution -- 13.8 Nonlinear Waves -- 13.9 Conclusion -- References -- 14 Nonlinear Surface Waves in Three Dimensions -- 14.1 Oscillations of Inviscid Drops: The Linear Model -- 14.1.1 Drop Immersed in Another Fluid -- 14.1.2 Drop with Rigid Core -- 14.1.3 Moving Core -- 14.1.4 Drop Volume -- 14.2 Oscillations of Viscous Drops: The Linear Model -- 14.2.1 Model 1 -- 14.3 Nonlinear Three-Dimensional Oscillations of Axisymmetric Drops -- 14.3.1 Nonlinear Resonances in Drop Oscillation -- 14.4 Other Nonlinear Effects in Drop Oscillations -- 14.5 Solitons on the Surface of Liquid Drops -- 14.6 Problems -- References -- 15 Other Special Nonlinear Compact Systems -- 15.1 Solitons on Interfaces of Layered Fluid Droplet (Written by A. S. Carstea) -- 15.2 Nonlinear Compact Shapes and Collective Motion -- 15.3 The Hamiltonian Structure for Free Boundary Problems on Compact Surfaces -- References -- Part IV Physical Nonlinear Systems at Different Scales -- 16 Filaments, Chains, and Solitons -- 16.1 Vortex Filaments -- 16.1.1 Gas Dynamics Filament Model and Solitons -- 16.1.2 Special Solutions -- 16.1.3 Integration of Serret-Frenet Equations for Filaments -- 16.1.4 The Riccati Form of the Serret-Frenet Equations.
16.2 Soliton Solutions on the Vortex Filament -- 16.2.1 Constant Torsion Vortex Filaments -- 16.2.2 Vortex Filaments and the Nonlinear Schrödinger Equation -- 16.3 Closed Curves Solitons -- 16.4 Nonlinear Dynamics of Stiff Chains -- 16.5 Problems -- References -- 17 Solitons on the Boundaries of Microscopic Systems -- 17.1 Solitons as Elementary Particles -- 17.2 Quantization of Solitons on a Closed Contour and Instantons -- 17.3 Clusters as Solitary Waves on the Nuclear Surface -- 17.4 Nonlinear Schrödinger Equation Solitons on Quantum … -- 17.5 Solitons and Quasimolecular Structure -- 17.6 Soliton Model for Heavy Emitted Nuclear Clusters -- 17.7 Quintic Nonlinear Schrödinger Equation for Nuclear Cluster Decay -- 17.8 Contour Solitons in the Quantum Hall Liquid -- References -- 18 Nonlinear Contour Dynamics in Macroscopic Systems -- 18.1 Plasma Vortex -- 18.1.1 Effective Surface Tension in Magnetohydrodynamics and Plasma Systems -- 18.1.2 Trajectories in Magnetic Field Configurations -- 18.1.3 Magnetic Surfaces in Static Equilibrium -- 18.2 Elastic Spheres -- 18.3 Curvature Dependent Nonlinear Diffusion on Closed Surfaces -- 18.4 Nonlinear Evolution of Oscillation Modes in Neutron Stars -- References -- 19 Mathematical Appendix -- 19.1 Differentiable Manifolds -- 19.2 Riccati Equation -- 19.3 Special Functions -- 19.4 One-Soliton Solutions for the KdV, MKdV, and Their Combination -- 19.5 Scaling and Nonlinear Dispersion Relations1 -- References -- Index.
Record Nr. UNINA-9910624313903321
Ludu Andrei  
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Pseudodifferential analysis on conformally compact spaces / / [Robert Lauter]
Pseudodifferential analysis on conformally compact spaces / / [Robert Lauter]
Autore Lauter Robert <1967->
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , [2003]
Descrizione fisica 1 online resource (114 p.)
Disciplina 510 s
515/.7242
Collana Memoirs of the American Mathematical Society
Soggetto topico Pseudodifferential operators
Compact spaces
Manifolds (Mathematics)
Soggetto genere / forma Electronic books.
ISBN 1-4704-0375-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""Contents""; ""Introduction""; ""Acknowledgments:""; ""Part 1. Predholm theory for 0-pseudodifferential operators""; ""Chapter 1. Review on basic objects of 0-geometry""; ""1.1. The 0-structure algebra""; ""1.2. The extended 0-blow up""; ""1.3. Relation to the 0-double space X[sup(2)][sub(0)]""; ""1.4. The extended 0-triple space X[sup(3)][sub(0,e)]""; ""1.5. 0-densities""; ""Chapter 2. The small 0-calculus and the 0-calculus with bounds""; ""2.1. The Schwartz kernel theorem revisited""; ""2.2. The small 0-calculus""; ""2.3. Basic properties of the small 0-calculus""
""2.4. The 0-calculus with bounds""""2.5. Basic properties of the 0-calculus with bounds""; ""2.6. The indicial function""; ""2.7. General bundles""; ""Chapter 3. The b-c-calculus on an interval""; ""3.1. The b-c-structure algebra""; ""3.2. The b-c-double space""; ""3.3. b-c-densities""; ""3.4. The b-c calculus with bounds""; ""3.5. Basic properties of the b-c-calculus""; ""3.6. Fredholm theory for the b-c-calculus""; ""3.7. Invariance of the b-c-calculus under the R[sub(+)]-action""; ""3.8. C*-algebras of b-c-operators""; ""3.9. General bundles""; ""Chapter 4. The reduced normal operator""
""4.1. Definition of the reduced normal operator""""4.2. Coordinate invariance of the reduced normal operator""; ""4.3. Scale invariance of the reduced normal operator""; ""4.4. Characterization of the reduced normal operator""; ""4.5. Basic properties of the reduced normal operator""; ""4.6. The case of 0-differential operators""; ""4.7. General bundles""; ""Chapter 5. Weighted 0-Sobolev spaces""; ""5.1. Boundedness of 0-operators of order 0 on L[sup(2)]-spaces""; ""5.2. Weighted 0-Sobolev spaces""; ""5.3. General bundles""; ""Chapter 6. Fredholm theory for 0-pseudodifferential operators""
""6.1. Symbol reproducing families""""6.2. Characterization of Fredholm operators in Î?[sup(0)][sub(0)](X; [sup(0)]Ω[sup(1/2)])""; ""6.3. Characterization of Fredholm operators inÎ?[sup(m,k)][sub(0)](X; [sup(0)]Ω[sup(1/2)])""; ""6.4. General bundles""; ""Part 2. Algebras of 0-pseudodifferential operators of order 0""; ""Chapter 7. C*-algebras of 0-pseudodifferential operators""; ""7.1. Solvable C*-algebras""; ""7.2. The reduced normal operator on S*â??X""; ""7.3. Extension of the symbolic structure""; ""7.4. The C*-algebra generated by the reduced normal operator""
""7.5. The C*-algebra B[sup((a))][sub(0)](X,[sup(0)]Ω[sup(1/2)])""""7.6. The spectrum of the C*-algebra B[sup((a))][sub(0)](X,[sup(0)]Ω[sup(1/2)])""; ""Chapter 8. Î?*-algebras of 0-pseudodifferential operators""; ""8.1. Submultiplicative Î?*-algebras""; ""8.2. Î?*-completions of b-c-and 0-calculus""; ""Appendix A. Spaces of conormal functions""; ""Bibliography""; ""Notations""; ""Index""; ""A""; ""B""; ""C""; ""D""; ""E""; ""F""; ""G""; ""H""; ""I""; ""J""; ""L""; ""M""; ""N""; ""O""; ""P""; ""R""; ""S""; ""T""; ""V""; ""W""
Record Nr. UNINA-9910478893403321
Lauter Robert <1967->  
Providence, Rhode Island : , : American Mathematical Society, , [2003]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Pseudodifferential analysis on conformally compact spaces / / [Robert Lauter]
Pseudodifferential analysis on conformally compact spaces / / [Robert Lauter]
Autore Lauter Robert <1967->
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , [2003]
Descrizione fisica 1 online resource (114 p.)
Disciplina 510 s
515/.7242
Collana Memoirs of the American Mathematical Society
Soggetto topico Pseudodifferential operators
Compact spaces
Manifolds (Mathematics)
ISBN 1-4704-0375-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""Contents""; ""Introduction""; ""Acknowledgments:""; ""Part 1. Predholm theory for 0-pseudodifferential operators""; ""Chapter 1. Review on basic objects of 0-geometry""; ""1.1. The 0-structure algebra""; ""1.2. The extended 0-blow up""; ""1.3. Relation to the 0-double space X[sup(2)][sub(0)]""; ""1.4. The extended 0-triple space X[sup(3)][sub(0,e)]""; ""1.5. 0-densities""; ""Chapter 2. The small 0-calculus and the 0-calculus with bounds""; ""2.1. The Schwartz kernel theorem revisited""; ""2.2. The small 0-calculus""; ""2.3. Basic properties of the small 0-calculus""
""2.4. The 0-calculus with bounds""""2.5. Basic properties of the 0-calculus with bounds""; ""2.6. The indicial function""; ""2.7. General bundles""; ""Chapter 3. The b-c-calculus on an interval""; ""3.1. The b-c-structure algebra""; ""3.2. The b-c-double space""; ""3.3. b-c-densities""; ""3.4. The b-c calculus with bounds""; ""3.5. Basic properties of the b-c-calculus""; ""3.6. Fredholm theory for the b-c-calculus""; ""3.7. Invariance of the b-c-calculus under the R[sub(+)]-action""; ""3.8. C*-algebras of b-c-operators""; ""3.9. General bundles""; ""Chapter 4. The reduced normal operator""
""4.1. Definition of the reduced normal operator""""4.2. Coordinate invariance of the reduced normal operator""; ""4.3. Scale invariance of the reduced normal operator""; ""4.4. Characterization of the reduced normal operator""; ""4.5. Basic properties of the reduced normal operator""; ""4.6. The case of 0-differential operators""; ""4.7. General bundles""; ""Chapter 5. Weighted 0-Sobolev spaces""; ""5.1. Boundedness of 0-operators of order 0 on L[sup(2)]-spaces""; ""5.2. Weighted 0-Sobolev spaces""; ""5.3. General bundles""; ""Chapter 6. Fredholm theory for 0-pseudodifferential operators""
""6.1. Symbol reproducing families""""6.2. Characterization of Fredholm operators in Î?[sup(0)][sub(0)](X; [sup(0)]Ω[sup(1/2)])""; ""6.3. Characterization of Fredholm operators inÎ?[sup(m,k)][sub(0)](X; [sup(0)]Ω[sup(1/2)])""; ""6.4. General bundles""; ""Part 2. Algebras of 0-pseudodifferential operators of order 0""; ""Chapter 7. C*-algebras of 0-pseudodifferential operators""; ""7.1. Solvable C*-algebras""; ""7.2. The reduced normal operator on S*â??X""; ""7.3. Extension of the symbolic structure""; ""7.4. The C*-algebra generated by the reduced normal operator""
""7.5. The C*-algebra B[sup((a))][sub(0)](X,[sup(0)]Ω[sup(1/2)])""""7.6. The spectrum of the C*-algebra B[sup((a))][sub(0)](X,[sup(0)]Ω[sup(1/2)])""; ""Chapter 8. Î?*-algebras of 0-pseudodifferential operators""; ""8.1. Submultiplicative Î?*-algebras""; ""8.2. Î?*-completions of b-c-and 0-calculus""; ""Appendix A. Spaces of conormal functions""; ""Bibliography""; ""Notations""; ""Index""; ""A""; ""B""; ""C""; ""D""; ""E""; ""F""; ""G""; ""H""; ""I""; ""J""; ""L""; ""M""; ""N""; ""O""; ""P""; ""R""; ""S""; ""T""; ""V""; ""W""
Record Nr. UNINA-9910788849603321
Lauter Robert <1967->  
Providence, Rhode Island : , : American Mathematical Society, , [2003]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui