The dynamical system generated by the 3n + 1 function / / Günther J Wirsching
| The dynamical system generated by the 3n + 1 function / / Günther J Wirsching |
| Autore | Wirsching Günther J. <1960-> |
| Edizione | [1st ed. 1998.] |
| Pubbl/distr/stampa | Berlin : , : Springer-Verlag, , [1998] |
| Descrizione fisica | 1 online resource (VIII, 164 p.) |
| Disciplina | 519.2 |
| Collana | Lecture notes in mathematics |
| Soggetto topico | Combinatorial probabilities |
| ISBN | 3-540-69677-6 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Some ideas around 3n+1 iterations -- Analysis of the Collatz graph -- 3-adic averages of counting functions -- An asymptotically homogeneous Markov chain -- Mixing and predecessor density. |
| Record Nr. | UNISA-996466864403316 |
Wirsching Günther J. <1960->
|
||
| Berlin : , : Springer-Verlag, , [1998] | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Improved Bonferroni inequalities via abstract tubes : inequalities and identities of inclusion-exclusion type / Klaus Dohmen
| Improved Bonferroni inequalities via abstract tubes : inequalities and identities of inclusion-exclusion type / Klaus Dohmen |
| Autore | Dohmen, Klaus |
| Pubbl/distr/stampa | Berlin : Springer, 2003 |
| Descrizione fisica | viii, 109 p. : ill. ; 24 cm |
| Disciplina | 512.97 |
| Collana | Lecture notes in mathematics, 0075-8434 ; 1826 |
| Soggetto topico |
Inequalities (Mathematics)
Distribution (Probability theory) Combinatorial analysis Combinatorial probabilities |
| ISBN | 3540200258 |
| Classificazione |
AMS 05A19
AMS 05A20 AMS 60C05 AMS 60E15 LC QA3.L28 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNISALENTO-991003329609707536 |
Dohmen, Klaus
|
||
| Berlin : Springer, 2003 | ||
| Lo trovi qui: Univ. del Salento | ||
| ||
Improved Bonferroni inequalities via abstract tubes [e-book] : inequalities and identities of inclusion-exclusion type / Klaus Dohmen
| Improved Bonferroni inequalities via abstract tubes [e-book] : inequalities and identities of inclusion-exclusion type / Klaus Dohmen |
| Autore | Dohmen, Klaus |
| Pubbl/distr/stampa | Berlin ; New York : Springer, c2003 |
| Descrizione fisica | 1 online resource (viii, 109 p.) : ill. |
| Disciplina | 512.97 |
| Collana | Lecture notes in mathematics, 0075-8434 ; 1826 |
| Soggetto topico |
Inequalities (Mathematics)
Distribution (Probability theory) Combinatorial analysis Combinatorial probabilities |
| ISBN | 9783540393993 |
| Classificazione |
AMS 05A19
AMS 05A20 AMS 60C05 AMS 60E15 LC QA3.L28 |
| Formato | Risorse elettroniche |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNISALENTO-991002847929707536 |
Dohmen, Klaus
|
||
| Berlin ; New York : Springer, c2003 | ||
| Lo trovi qui: Univ. del Salento | ||
| ||
Logarithmic combinatorial structures : a probabilistic approach / Richard Arratia, A. D. Barbour, Simon Tavaré
| Logarithmic combinatorial structures : a probabilistic approach / Richard Arratia, A. D. Barbour, Simon Tavaré |
| Autore | Arratia, Richard |
| Pubbl/distr/stampa | Zürich : European Mathematical Society, c2003 |
| Descrizione fisica | xi, 363 p. : ill. ; 24 cm |
| Disciplina | 510 |
| Altri autori (Persone) |
Barbour, A. D.
Tavaré, Simon |
| Collana | EMS monographs in mathematics |
| Soggetto topico |
Combinatorics
Asymptotic distribution (Probability theory) Combinatorial probabilities Stochastic processes Asymptotic expansions |
| ISBN | 3037190000 |
| Classificazione |
AMS 05-02
AMS 60-02 AMS 05A16 AMS 60C05 LC QA273.45.A77 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNISALENTO-991000513889707536 |
Arratia, Richard
|
||
| Zürich : European Mathematical Society, c2003 | ||
| Lo trovi qui: Univ. del Salento | ||
| ||
Model theoretic methods in finite combinatorics : AMS-ASL Joint Special Session, January 5-8, 2009 Washington, DC / / Martin Grohe, Johann A. Makowsky, editors
| Model theoretic methods in finite combinatorics : AMS-ASL Joint Special Session, January 5-8, 2009 Washington, DC / / Martin Grohe, Johann A. Makowsky, editors |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [2011] |
| Descrizione fisica | 1 online resource (529 p.) |
| Disciplina | 519.2 |
| Collana | Contemporary mathematics |
| Soggetto topico |
Finite model theory
Combinatorial probabilities |
| Soggetto genere / forma | Electronic books. |
| ISBN | 0-8218-8237-6 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
""Contents""; ""Preface""; ""Application of Logic to Combinatorial Sequences and Their Recurrence Relations""; ""Part 1. Introduction and Synopsis""; ""1. Sequences of integers and their combinatorial interpretations""; ""2. Linear recurrences""; ""3. Logical formalisms""; ""4. Finiteness conditions""; ""5. Logical interpretations of integer sequences""; ""Part 2. Guiding Examples""; ""6. The classical recurrence relations""; ""7. Functions, permutations and partitions""; ""8. Trees and forests""; ""9. Graph properties""; ""10. Latin squares""; ""Part 3. C-Finite and Holonomic Sequences""
""2.2. A length-depth relation""""2.3. Distinguishability vs. definability""; ""3. Ehrenfeucht games""; ""4. The Weisfeiler-Lehman algorithm""; ""5. Worst case bounds""; ""5.1. Classes of graphs""; ""5.2. General case""; ""6. Average case bounds""; ""Methods for Algorithmic Meta Theorems""; ""On Counting Generalized Colorings""; ""1. Introduction""; ""2. Prelude: two typical graph polynomials""; ""3. Counting generalized colorings""; ""4. SOL-polynomials and subset expansion""; ""5. Standard vs FF vs Newton SOL-polynomials""; ""6. Equivalence of counting Ï?-colorings and SOL-polynomials"" ""7. MSOL-polynomials""""8. Enter categoricity""; ""9. Conclusions""; ""References""; ""Counting Homomorphisms and Partition Functions""; ""Some Examples of Universal and Generic Partial Orders""; ""Two Problems on Homogeneous Structures, Revisited""; ""On Symmetric Indivisibility of Countable Structures""; ""Partitions and Permutation Groups""; ""(Un)countable and (Non)effective Versions of Ramsey's Theorem""; ""Reducts of Ramsey Structures""; ""1. Introduction""; ""2. Reducts""; ""3. Ramsey Classes""; ""4. Topological Dynamics""; ""5. Minimal Functions""; ""6. Decidability of Definability"" ""7. Interpretability""""8. Complexity of Constraint Satisfaction""; ""9. Concluding Remarks and Further Directions""; ""References"" |
| Record Nr. | UNINA-9910479936303321 |
| Providence, Rhode Island : , : American Mathematical Society, , [2011] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Model theoretic methods in finite combinatorics : AMS-ASL Joint Special Session, January 5-8, 2009 Washington, DC / / Martin Grohe, Johann A. Makowsky, editors
| Model theoretic methods in finite combinatorics : AMS-ASL Joint Special Session, January 5-8, 2009 Washington, DC / / Martin Grohe, Johann A. Makowsky, editors |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [2011] |
| Descrizione fisica | 1 online resource (529 p.) |
| Disciplina | 519.2 |
| Collana | Contemporary mathematics |
| Soggetto topico |
Finite model theory
Combinatorial probabilities |
| ISBN | 0-8218-8237-6 |
| Classificazione | 03-0203-0605-0205-0668-0268-06 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Contents -- Preface -- Application of Logic to Combinatorial Sequences and Their Recurrence Relations -- Part 1. Introduction and Synopsis -- 1. Sequences of integers and their combinatorial interpretations -- 2. Linear recurrences -- 3. Logical formalisms -- 4. Finiteness conditions -- 5. Logical interpretations of integer sequences -- Part 2. Guiding Examples -- 6. The classical recurrence relations -- 7. Functions, permutations and partitions -- 8. Trees and forests -- 9. Graph properties -- 10. Latin squares -- Part 3. C-Finite and Holonomic Sequences -- 2.2. A length-depth relation -- 2.3. Distinguishability vs. definability -- 3. Ehrenfeucht games -- 4. The Weisfeiler-Lehman algorithm -- 5. Worst case bounds -- 5.1. Classes of graphs -- 5.2. General case -- 6. Average case bounds -- Methods for Algorithmic Meta Theorems -- On Counting Generalized Colorings -- 1. Introduction -- 2. Prelude: two typical graph polynomials -- 3. Counting generalized colorings -- 4. SOL-polynomials and subset expansion -- 5. Standard vs FF vs Newton SOL-polynomials -- 6. Equivalence of counting Ï?-colorings and SOL-polynomials -- 7. MSOL-polynomials -- 8. Enter categoricity -- 9. Conclusions -- References -- Counting Homomorphisms and Partition Functions -- Some Examples of Universal and Generic Partial Orders -- Two Problems on Homogeneous Structures, Revisited -- On Symmetric Indivisibility of Countable Structures -- Partitions and Permutation Groups -- (Un)countable and (Non)effective Versions of Ramsey's Theorem -- Reducts of Ramsey Structures -- 1. Introduction -- 2. Reducts -- 3. Ramsey Classes -- 4. Topological Dynamics -- 5. Minimal Functions -- 6. Decidability of Definability -- 7. Interpretability -- 8. Complexity of Constraint Satisfaction -- 9. Concluding Remarks and Further Directions -- References. |
| Record Nr. | UNINA-9910788636303321 |
| Providence, Rhode Island : , : American Mathematical Society, , [2011] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Model theoretic methods in finite combinatorics : AMS-ASL Joint Special Session, January 5-8, 2009 Washington, DC / / Martin Grohe, Johann A. Makowsky, editors
| Model theoretic methods in finite combinatorics : AMS-ASL Joint Special Session, January 5-8, 2009 Washington, DC / / Martin Grohe, Johann A. Makowsky, editors |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [2011] |
| Descrizione fisica | 1 online resource (529 p.) |
| Disciplina | 519.2 |
| Collana | Contemporary mathematics |
| Soggetto topico |
Finite model theory
Combinatorial probabilities |
| ISBN | 0-8218-8237-6 |
| Classificazione | 03-0203-0605-0205-0668-0268-06 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Contents -- Preface -- Application of Logic to Combinatorial Sequences and Their Recurrence Relations -- Part 1. Introduction and Synopsis -- 1. Sequences of integers and their combinatorial interpretations -- 2. Linear recurrences -- 3. Logical formalisms -- 4. Finiteness conditions -- 5. Logical interpretations of integer sequences -- Part 2. Guiding Examples -- 6. The classical recurrence relations -- 7. Functions, permutations and partitions -- 8. Trees and forests -- 9. Graph properties -- 10. Latin squares -- Part 3. C-Finite and Holonomic Sequences -- 2.2. A length-depth relation -- 2.3. Distinguishability vs. definability -- 3. Ehrenfeucht games -- 4. The Weisfeiler-Lehman algorithm -- 5. Worst case bounds -- 5.1. Classes of graphs -- 5.2. General case -- 6. Average case bounds -- Methods for Algorithmic Meta Theorems -- On Counting Generalized Colorings -- 1. Introduction -- 2. Prelude: two typical graph polynomials -- 3. Counting generalized colorings -- 4. SOL-polynomials and subset expansion -- 5. Standard vs FF vs Newton SOL-polynomials -- 6. Equivalence of counting Ï?-colorings and SOL-polynomials -- 7. MSOL-polynomials -- 8. Enter categoricity -- 9. Conclusions -- References -- Counting Homomorphisms and Partition Functions -- Some Examples of Universal and Generic Partial Orders -- Two Problems on Homogeneous Structures, Revisited -- On Symmetric Indivisibility of Countable Structures -- Partitions and Permutation Groups -- (Un)countable and (Non)effective Versions of Ramsey's Theorem -- Reducts of Ramsey Structures -- 1. Introduction -- 2. Reducts -- 3. Ramsey Classes -- 4. Topological Dynamics -- 5. Minimal Functions -- 6. Decidability of Definability -- 7. Interpretability -- 8. Complexity of Constraint Satisfaction -- 9. Concluding Remarks and Further Directions -- References. |
| Record Nr. | UNINA-9910814068203321 |
| Providence, Rhode Island : , : American Mathematical Society, , [2011] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Probabilistic combinatorial optimization on graphs [[electronic resource] /] / Cécile Murat and Vangelis Th. Paschos
| Probabilistic combinatorial optimization on graphs [[electronic resource] /] / Cécile Murat and Vangelis Th. Paschos |
| Autore | Murat Cecile |
| Pubbl/distr/stampa | London ; ; Newport Beach, CA, : ISTE, 2006 |
| Descrizione fisica | 1 online resource (269 p.) |
| Disciplina |
511.6
519.2 |
| Altri autori (Persone) | PaschosVangelis Th |
| Collana | ISTE |
| Soggetto topico |
Combinatorial probabilities
Combinatorial optimization Random graphs |
| Soggetto genere / forma | Electronic books. |
| ISBN |
1-280-51061-7
9786610510610 1-84704-483-2 0-470-39464-1 0-470-61250-9 1-84704-583-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Probabilistic Combinatorial Optimization on Graphs; Contents; Preface; Chapter 1. A Short Insight into Probabilistic Combinatorial Optimization; 1.1. Motivations and applications; 1.2. A formalism for probabilistic combinatorial optimization; 1.3. The main methodological issues dealing with probabilistic combinatorial optimization; 1.3.1. Complexity issues; 1.3.1.1. Membership in NPO is not always obvious; 1.3.1.2. Complexity of deterministic vs. complexity of probabilistic optimization problems; 1.3.2. Solution issues; 1.3.2.1. Characterization of optimal a priori solutions
1.3.2.2. Polynomial subcases1.3.2.3. Exact solutions and polynomial approximation issues; 1.4. Miscellaneous and bibliographic notes; First Part. Probabilistic Graph-Problems; Chapter 2. The Probabilistic Maximum Independent Set; 2.1. The modification strategies and a preliminary result; 2.1.1. Strategy M1; 2.1.2. Strategies M2 and M3; 2.1.3. Strategy M4; 2.1.4. Strategy M5; 2.1.5. A general mathematical formulation for the five functionals; 2.2. PROBABILISTIC MAX INDEPENDENT SET1; 2.2.1. Computing optimal a priori solutions; 2.2.2. Approximating optimal solutions 2.2.3. Dealing with bipartite graphs2.3. PROBABILISTIC MAX INDEPENDENT SET2 and 3; 2.3.1. Expressions for E(G, S, M2) and E(G, S, M3); 2.3.2. An upper bound for the complexity of E(G, S, M2); 2.3.3. Bounds for E(G, S, M2); 2.3.4. Approximating optimal solutions; 2.3.4.1. Using argmax {ΣviESpi} as an a priori solution; 2.3.4.2. Using approximations of MAX INDEPENDENT SET; 2.3.5. Dealing with bipartite graphs; 2.4. PROBABILISTIC MAX INDEPENDENT SET4; 2.4.1. An expression for E(G, S, M4); 2.4.2. Using S* or argmax{ΣviESpi} as an a priori solution; 2.4.3. Dealing with bipartite graphs 2.5. PROBABILISTIC MAX INDEPENDENT SET52.5.1. In general graphs; 2.5.2. In bipartite graphs; 2.6. Summary of the results; 2.7. Methodological questions; 2.7.1. Maximizing a criterion associated with gain; 2.7.1.1. The minimum gain criterion; 2.7.1.2. The maximum gain criterion; 2.7.2. Minimizing a criterion associated with regret; 2.7.2.1. The maximum regret criterion; 2.7.3. Optimizing expectation; 2.8. Proofs of the results; 2.8.1. Proof of Proposition 2.1; 2.8.2. Proof of Theorem 2.6; 2.8.3. Proof of Proposition 2.3; 2.8.4. Proof of Theorem 2.13 Chapter 3. The Probabilistic Minimum Vertex Cover3.1. The strategies M1, M2 and M3 and a general preliminary result; 3.1.1. Specification of M1, M2 and M3; 3.1.1.1. Strategy M1; 3.1.1.2. Strategy M2; 3.1.1.3. Strategy M3; 3.1.2. A first expression for the functionals; 3.2. PROBABILISTIC MIN VERTEX COVER1; 3.3. PROBABILISTIC MIN VERTEX COVER2; 3.4. PROBABILISTIC MIN VERTEX COVER3; 3.4.1. Building E(G, C, M3); 3.4.2. Bounds for E(G, C, M3); 3.5. Some methodological questions; 3.6. Proofs of the results; 3.6.1. Proof of Theorem 3.3; 3.6.2. On the the bounds obtained in Theorem 3.3 Chapter 4. The Probabilistic Longest Path |
| Record Nr. | UNINA-9910143315903321 |
Murat Cecile
|
||
| London ; ; Newport Beach, CA, : ISTE, 2006 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Probabilistic combinatorial optimization on graphs [[electronic resource] /] / Cécile Murat and Vangelis Th. Paschos
| Probabilistic combinatorial optimization on graphs [[electronic resource] /] / Cécile Murat and Vangelis Th. Paschos |
| Autore | Murat Cecile |
| Pubbl/distr/stampa | London ; ; Newport Beach, CA, : ISTE, 2006 |
| Descrizione fisica | 1 online resource (269 p.) |
| Disciplina |
511.6
519.2 |
| Altri autori (Persone) | PaschosVangelis Th |
| Collana | ISTE |
| Soggetto topico |
Combinatorial probabilities
Combinatorial optimization Random graphs |
| ISBN |
1-280-51061-7
9786610510610 1-84704-483-2 0-470-39464-1 0-470-61250-9 1-84704-583-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Probabilistic Combinatorial Optimization on Graphs; Contents; Preface; Chapter 1. A Short Insight into Probabilistic Combinatorial Optimization; 1.1. Motivations and applications; 1.2. A formalism for probabilistic combinatorial optimization; 1.3. The main methodological issues dealing with probabilistic combinatorial optimization; 1.3.1. Complexity issues; 1.3.1.1. Membership in NPO is not always obvious; 1.3.1.2. Complexity of deterministic vs. complexity of probabilistic optimization problems; 1.3.2. Solution issues; 1.3.2.1. Characterization of optimal a priori solutions
1.3.2.2. Polynomial subcases1.3.2.3. Exact solutions and polynomial approximation issues; 1.4. Miscellaneous and bibliographic notes; First Part. Probabilistic Graph-Problems; Chapter 2. The Probabilistic Maximum Independent Set; 2.1. The modification strategies and a preliminary result; 2.1.1. Strategy M1; 2.1.2. Strategies M2 and M3; 2.1.3. Strategy M4; 2.1.4. Strategy M5; 2.1.5. A general mathematical formulation for the five functionals; 2.2. PROBABILISTIC MAX INDEPENDENT SET1; 2.2.1. Computing optimal a priori solutions; 2.2.2. Approximating optimal solutions 2.2.3. Dealing with bipartite graphs2.3. PROBABILISTIC MAX INDEPENDENT SET2 and 3; 2.3.1. Expressions for E(G, S, M2) and E(G, S, M3); 2.3.2. An upper bound for the complexity of E(G, S, M2); 2.3.3. Bounds for E(G, S, M2); 2.3.4. Approximating optimal solutions; 2.3.4.1. Using argmax {ΣviESpi} as an a priori solution; 2.3.4.2. Using approximations of MAX INDEPENDENT SET; 2.3.5. Dealing with bipartite graphs; 2.4. PROBABILISTIC MAX INDEPENDENT SET4; 2.4.1. An expression for E(G, S, M4); 2.4.2. Using S* or argmax{ΣviESpi} as an a priori solution; 2.4.3. Dealing with bipartite graphs 2.5. PROBABILISTIC MAX INDEPENDENT SET52.5.1. In general graphs; 2.5.2. In bipartite graphs; 2.6. Summary of the results; 2.7. Methodological questions; 2.7.1. Maximizing a criterion associated with gain; 2.7.1.1. The minimum gain criterion; 2.7.1.2. The maximum gain criterion; 2.7.2. Minimizing a criterion associated with regret; 2.7.2.1. The maximum regret criterion; 2.7.3. Optimizing expectation; 2.8. Proofs of the results; 2.8.1. Proof of Proposition 2.1; 2.8.2. Proof of Theorem 2.6; 2.8.3. Proof of Proposition 2.3; 2.8.4. Proof of Theorem 2.13 Chapter 3. The Probabilistic Minimum Vertex Cover3.1. The strategies M1, M2 and M3 and a general preliminary result; 3.1.1. Specification of M1, M2 and M3; 3.1.1.1. Strategy M1; 3.1.1.2. Strategy M2; 3.1.1.3. Strategy M3; 3.1.2. A first expression for the functionals; 3.2. PROBABILISTIC MIN VERTEX COVER1; 3.3. PROBABILISTIC MIN VERTEX COVER2; 3.4. PROBABILISTIC MIN VERTEX COVER3; 3.4.1. Building E(G, C, M3); 3.4.2. Bounds for E(G, C, M3); 3.5. Some methodological questions; 3.6. Proofs of the results; 3.6.1. Proof of Theorem 3.3; 3.6.2. On the the bounds obtained in Theorem 3.3 Chapter 4. The Probabilistic Longest Path |
| Record Nr. | UNISA-996216942703316 |
Murat Cecile
|
||
| London ; ; Newport Beach, CA, : ISTE, 2006 | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Probabilistic combinatorial optimization on graphs [[electronic resource] /] / Cécile Murat and Vangelis Th. Paschos
| Probabilistic combinatorial optimization on graphs [[electronic resource] /] / Cécile Murat and Vangelis Th. Paschos |
| Autore | Murat Cecile |
| Pubbl/distr/stampa | London ; ; Newport Beach, CA, : ISTE, 2006 |
| Descrizione fisica | 1 online resource (269 p.) |
| Disciplina |
511.6
519.2 |
| Altri autori (Persone) | PaschosVangelis Th |
| Collana | ISTE |
| Soggetto topico |
Combinatorial probabilities
Combinatorial optimization Random graphs |
| ISBN |
1-280-51061-7
9786610510610 1-84704-483-2 0-470-39464-1 0-470-61250-9 1-84704-583-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Probabilistic Combinatorial Optimization on Graphs; Contents; Preface; Chapter 1. A Short Insight into Probabilistic Combinatorial Optimization; 1.1. Motivations and applications; 1.2. A formalism for probabilistic combinatorial optimization; 1.3. The main methodological issues dealing with probabilistic combinatorial optimization; 1.3.1. Complexity issues; 1.3.1.1. Membership in NPO is not always obvious; 1.3.1.2. Complexity of deterministic vs. complexity of probabilistic optimization problems; 1.3.2. Solution issues; 1.3.2.1. Characterization of optimal a priori solutions
1.3.2.2. Polynomial subcases1.3.2.3. Exact solutions and polynomial approximation issues; 1.4. Miscellaneous and bibliographic notes; First Part. Probabilistic Graph-Problems; Chapter 2. The Probabilistic Maximum Independent Set; 2.1. The modification strategies and a preliminary result; 2.1.1. Strategy M1; 2.1.2. Strategies M2 and M3; 2.1.3. Strategy M4; 2.1.4. Strategy M5; 2.1.5. A general mathematical formulation for the five functionals; 2.2. PROBABILISTIC MAX INDEPENDENT SET1; 2.2.1. Computing optimal a priori solutions; 2.2.2. Approximating optimal solutions 2.2.3. Dealing with bipartite graphs2.3. PROBABILISTIC MAX INDEPENDENT SET2 and 3; 2.3.1. Expressions for E(G, S, M2) and E(G, S, M3); 2.3.2. An upper bound for the complexity of E(G, S, M2); 2.3.3. Bounds for E(G, S, M2); 2.3.4. Approximating optimal solutions; 2.3.4.1. Using argmax {ΣviESpi} as an a priori solution; 2.3.4.2. Using approximations of MAX INDEPENDENT SET; 2.3.5. Dealing with bipartite graphs; 2.4. PROBABILISTIC MAX INDEPENDENT SET4; 2.4.1. An expression for E(G, S, M4); 2.4.2. Using S* or argmax{ΣviESpi} as an a priori solution; 2.4.3. Dealing with bipartite graphs 2.5. PROBABILISTIC MAX INDEPENDENT SET52.5.1. In general graphs; 2.5.2. In bipartite graphs; 2.6. Summary of the results; 2.7. Methodological questions; 2.7.1. Maximizing a criterion associated with gain; 2.7.1.1. The minimum gain criterion; 2.7.1.2. The maximum gain criterion; 2.7.2. Minimizing a criterion associated with regret; 2.7.2.1. The maximum regret criterion; 2.7.3. Optimizing expectation; 2.8. Proofs of the results; 2.8.1. Proof of Proposition 2.1; 2.8.2. Proof of Theorem 2.6; 2.8.3. Proof of Proposition 2.3; 2.8.4. Proof of Theorem 2.13 Chapter 3. The Probabilistic Minimum Vertex Cover3.1. The strategies M1, M2 and M3 and a general preliminary result; 3.1.1. Specification of M1, M2 and M3; 3.1.1.1. Strategy M1; 3.1.1.2. Strategy M2; 3.1.1.3. Strategy M3; 3.1.2. A first expression for the functionals; 3.2. PROBABILISTIC MIN VERTEX COVER1; 3.3. PROBABILISTIC MIN VERTEX COVER2; 3.4. PROBABILISTIC MIN VERTEX COVER3; 3.4.1. Building E(G, C, M3); 3.4.2. Bounds for E(G, C, M3); 3.5. Some methodological questions; 3.6. Proofs of the results; 3.6.1. Proof of Theorem 3.3; 3.6.2. On the the bounds obtained in Theorem 3.3 Chapter 4. The Probabilistic Longest Path |
| Record Nr. | UNINA-9910830041603321 |
Murat Cecile
|
||
| London ; ; Newport Beach, CA, : ISTE, 2006 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||