top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
The dynamical system generated by the 3n + 1 function / / Günther J Wirsching
The dynamical system generated by the 3n + 1 function / / Günther J Wirsching
Autore Wirsching Günther J. <1960->
Edizione [1st ed. 1998.]
Pubbl/distr/stampa Berlin : , : Springer-Verlag, , [1998]
Descrizione fisica 1 online resource (VIII, 164 p.)
Disciplina 519.2
Collana Lecture notes in mathematics
Soggetto topico Combinatorial probabilities
ISBN 3-540-69677-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Some ideas around 3n+1 iterations -- Analysis of the Collatz graph -- 3-adic averages of counting functions -- An asymptotically homogeneous Markov chain -- Mixing and predecessor density.
Record Nr. UNISA-996466864403316
Wirsching Günther J. <1960->  
Berlin : , : Springer-Verlag, , [1998]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Improved Bonferroni inequalities via abstract tubes : inequalities and identities of inclusion-exclusion type / Klaus Dohmen
Improved Bonferroni inequalities via abstract tubes : inequalities and identities of inclusion-exclusion type / Klaus Dohmen
Autore Dohmen, Klaus
Pubbl/distr/stampa Berlin : Springer, 2003
Descrizione fisica viii, 109 p. : ill. ; 24 cm
Disciplina 512.97
Collana Lecture notes in mathematics, 0075-8434 ; 1826
Soggetto topico Inequalities (Mathematics)
Distribution (Probability theory)
Combinatorial analysis
Combinatorial probabilities
ISBN 3540200258
Classificazione AMS 05A19
AMS 05A20
AMS 60C05
AMS 60E15
LC QA3.L28
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISALENTO-991003329609707536
Dohmen, Klaus  
Berlin : Springer, 2003
Materiale a stampa
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui
Improved Bonferroni inequalities via abstract tubes [e-book] : inequalities and identities of inclusion-exclusion type / Klaus Dohmen
Improved Bonferroni inequalities via abstract tubes [e-book] : inequalities and identities of inclusion-exclusion type / Klaus Dohmen
Autore Dohmen, Klaus
Pubbl/distr/stampa Berlin ; New York : Springer, c2003
Descrizione fisica 1 online resource (viii, 109 p.) : ill.
Disciplina 512.97
Collana Lecture notes in mathematics, 0075-8434 ; 1826
Soggetto topico Inequalities (Mathematics)
Distribution (Probability theory)
Combinatorial analysis
Combinatorial probabilities
ISBN 9783540393993
Classificazione AMS 05A19
AMS 05A20
AMS 60C05
AMS 60E15
LC QA3.L28
Formato Risorse elettroniche
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISALENTO-991002847929707536
Dohmen, Klaus  
Berlin ; New York : Springer, c2003
Risorse elettroniche
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui
Logarithmic combinatorial structures : a probabilistic approach / Richard Arratia, A. D. Barbour, Simon Tavaré
Logarithmic combinatorial structures : a probabilistic approach / Richard Arratia, A. D. Barbour, Simon Tavaré
Autore Arratia, Richard
Pubbl/distr/stampa Zürich : European Mathematical Society, c2003
Descrizione fisica xi, 363 p. : ill. ; 24 cm
Disciplina 510
Altri autori (Persone) Barbour, A. D.
Tavaré, Simon
Collana EMS monographs in mathematics
Soggetto topico Combinatorics
Asymptotic distribution (Probability theory)
Combinatorial probabilities
Stochastic processes
Asymptotic expansions
ISBN 3037190000
Classificazione AMS 05-02
AMS 60-02
AMS 05A16
AMS 60C05
LC QA273.45.A77
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISALENTO-991000513889707536
Arratia, Richard  
Zürich : European Mathematical Society, c2003
Materiale a stampa
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui
Model theoretic methods in finite combinatorics : AMS-ASL Joint Special Session, January 5-8, 2009 Washington, DC / / Martin Grohe, Johann A. Makowsky, editors
Model theoretic methods in finite combinatorics : AMS-ASL Joint Special Session, January 5-8, 2009 Washington, DC / / Martin Grohe, Johann A. Makowsky, editors
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , [2011]
Descrizione fisica 1 online resource (529 p.)
Disciplina 519.2
Collana Contemporary mathematics
Soggetto topico Finite model theory
Combinatorial probabilities
Soggetto genere / forma Electronic books.
ISBN 0-8218-8237-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""Contents""; ""Preface""; ""Application of Logic to Combinatorial Sequences and Their Recurrence Relations""; ""Part 1. Introduction and Synopsis""; ""1. Sequences of integers and their combinatorial interpretations""; ""2. Linear recurrences""; ""3. Logical formalisms""; ""4. Finiteness conditions""; ""5. Logical interpretations of integer sequences""; ""Part 2. Guiding Examples""; ""6. The classical recurrence relations""; ""7. Functions, permutations and partitions""; ""8. Trees and forests""; ""9. Graph properties""; ""10. Latin squares""; ""Part 3. C-Finite and Holonomic Sequences""
""2.2. A length-depth relation""""2.3. Distinguishability vs. definability""; ""3. Ehrenfeucht games""; ""4. The Weisfeiler-Lehman algorithm""; ""5. Worst case bounds""; ""5.1. Classes of graphs""; ""5.2. General case""; ""6. Average case bounds""; ""Methods for Algorithmic Meta Theorems""; ""On Counting Generalized Colorings""; ""1. Introduction""; ""2. Prelude: two typical graph polynomials""; ""3. Counting generalized colorings""; ""4. SOL-polynomials and subset expansion""; ""5. Standard vs FF vs Newton SOL-polynomials""; ""6. Equivalence of counting Ï?-colorings and SOL-polynomials""
""7. MSOL-polynomials""""8. Enter categoricity""; ""9. Conclusions""; ""References""; ""Counting Homomorphisms and Partition Functions""; ""Some Examples of Universal and Generic Partial Orders""; ""Two Problems on Homogeneous Structures, Revisited""; ""On Symmetric Indivisibility of Countable Structures""; ""Partitions and Permutation Groups""; ""(Un)countable and (Non)effective Versions of Ramsey's Theorem""; ""Reducts of Ramsey Structures""; ""1. Introduction""; ""2. Reducts""; ""3. Ramsey Classes""; ""4. Topological Dynamics""; ""5. Minimal Functions""; ""6. Decidability of Definability""
""7. Interpretability""""8. Complexity of Constraint Satisfaction""; ""9. Concluding Remarks and Further Directions""; ""References""
Record Nr. UNINA-9910479936303321
Providence, Rhode Island : , : American Mathematical Society, , [2011]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Model theoretic methods in finite combinatorics : AMS-ASL Joint Special Session, January 5-8, 2009 Washington, DC / / Martin Grohe, Johann A. Makowsky, editors
Model theoretic methods in finite combinatorics : AMS-ASL Joint Special Session, January 5-8, 2009 Washington, DC / / Martin Grohe, Johann A. Makowsky, editors
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , [2011]
Descrizione fisica 1 online resource (529 p.)
Disciplina 519.2
Collana Contemporary mathematics
Soggetto topico Finite model theory
Combinatorial probabilities
ISBN 0-8218-8237-6
Classificazione 03-0203-0605-0205-0668-0268-06
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Contents -- Preface -- Application of Logic to Combinatorial Sequences and Their Recurrence Relations -- Part 1. Introduction and Synopsis -- 1. Sequences of integers and their combinatorial interpretations -- 2. Linear recurrences -- 3. Logical formalisms -- 4. Finiteness conditions -- 5. Logical interpretations of integer sequences -- Part 2. Guiding Examples -- 6. The classical recurrence relations -- 7. Functions, permutations and partitions -- 8. Trees and forests -- 9. Graph properties -- 10. Latin squares -- Part 3. C-Finite and Holonomic Sequences -- 2.2. A length-depth relation -- 2.3. Distinguishability vs. definability -- 3. Ehrenfeucht games -- 4. The Weisfeiler-Lehman algorithm -- 5. Worst case bounds -- 5.1. Classes of graphs -- 5.2. General case -- 6. Average case bounds -- Methods for Algorithmic Meta Theorems -- On Counting Generalized Colorings -- 1. Introduction -- 2. Prelude: two typical graph polynomials -- 3. Counting generalized colorings -- 4. SOL-polynomials and subset expansion -- 5. Standard vs FF vs Newton SOL-polynomials -- 6. Equivalence of counting Ï?-colorings and SOL-polynomials -- 7. MSOL-polynomials -- 8. Enter categoricity -- 9. Conclusions -- References -- Counting Homomorphisms and Partition Functions -- Some Examples of Universal and Generic Partial Orders -- Two Problems on Homogeneous Structures, Revisited -- On Symmetric Indivisibility of Countable Structures -- Partitions and Permutation Groups -- (Un)countable and (Non)effective Versions of Ramsey's Theorem -- Reducts of Ramsey Structures -- 1. Introduction -- 2. Reducts -- 3. Ramsey Classes -- 4. Topological Dynamics -- 5. Minimal Functions -- 6. Decidability of Definability -- 7. Interpretability -- 8. Complexity of Constraint Satisfaction -- 9. Concluding Remarks and Further Directions -- References.
Record Nr. UNINA-9910788636303321
Providence, Rhode Island : , : American Mathematical Society, , [2011]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Model theoretic methods in finite combinatorics : AMS-ASL Joint Special Session, January 5-8, 2009 Washington, DC / / Martin Grohe, Johann A. Makowsky, editors
Model theoretic methods in finite combinatorics : AMS-ASL Joint Special Session, January 5-8, 2009 Washington, DC / / Martin Grohe, Johann A. Makowsky, editors
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , [2011]
Descrizione fisica 1 online resource (529 p.)
Disciplina 519.2
Collana Contemporary mathematics
Soggetto topico Finite model theory
Combinatorial probabilities
ISBN 0-8218-8237-6
Classificazione 03-0203-0605-0205-0668-0268-06
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Contents -- Preface -- Application of Logic to Combinatorial Sequences and Their Recurrence Relations -- Part 1. Introduction and Synopsis -- 1. Sequences of integers and their combinatorial interpretations -- 2. Linear recurrences -- 3. Logical formalisms -- 4. Finiteness conditions -- 5. Logical interpretations of integer sequences -- Part 2. Guiding Examples -- 6. The classical recurrence relations -- 7. Functions, permutations and partitions -- 8. Trees and forests -- 9. Graph properties -- 10. Latin squares -- Part 3. C-Finite and Holonomic Sequences -- 2.2. A length-depth relation -- 2.3. Distinguishability vs. definability -- 3. Ehrenfeucht games -- 4. The Weisfeiler-Lehman algorithm -- 5. Worst case bounds -- 5.1. Classes of graphs -- 5.2. General case -- 6. Average case bounds -- Methods for Algorithmic Meta Theorems -- On Counting Generalized Colorings -- 1. Introduction -- 2. Prelude: two typical graph polynomials -- 3. Counting generalized colorings -- 4. SOL-polynomials and subset expansion -- 5. Standard vs FF vs Newton SOL-polynomials -- 6. Equivalence of counting Ï?-colorings and SOL-polynomials -- 7. MSOL-polynomials -- 8. Enter categoricity -- 9. Conclusions -- References -- Counting Homomorphisms and Partition Functions -- Some Examples of Universal and Generic Partial Orders -- Two Problems on Homogeneous Structures, Revisited -- On Symmetric Indivisibility of Countable Structures -- Partitions and Permutation Groups -- (Un)countable and (Non)effective Versions of Ramsey's Theorem -- Reducts of Ramsey Structures -- 1. Introduction -- 2. Reducts -- 3. Ramsey Classes -- 4. Topological Dynamics -- 5. Minimal Functions -- 6. Decidability of Definability -- 7. Interpretability -- 8. Complexity of Constraint Satisfaction -- 9. Concluding Remarks and Further Directions -- References.
Record Nr. UNINA-9910814068203321
Providence, Rhode Island : , : American Mathematical Society, , [2011]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Probabilistic combinatorial optimization on graphs [[electronic resource] /] / Cécile Murat and Vangelis Th. Paschos
Probabilistic combinatorial optimization on graphs [[electronic resource] /] / Cécile Murat and Vangelis Th. Paschos
Autore Murat Cecile
Pubbl/distr/stampa London ; ; Newport Beach, CA, : ISTE, 2006
Descrizione fisica 1 online resource (269 p.)
Disciplina 511.6
519.2
Altri autori (Persone) PaschosVangelis Th
Collana ISTE
Soggetto topico Combinatorial probabilities
Combinatorial optimization
Random graphs
Soggetto genere / forma Electronic books.
ISBN 1-280-51061-7
9786610510610
1-84704-483-2
0-470-39464-1
0-470-61250-9
1-84704-583-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Probabilistic Combinatorial Optimization on Graphs; Contents; Preface; Chapter 1. A Short Insight into Probabilistic Combinatorial Optimization; 1.1. Motivations and applications; 1.2. A formalism for probabilistic combinatorial optimization; 1.3. The main methodological issues dealing with probabilistic combinatorial optimization; 1.3.1. Complexity issues; 1.3.1.1. Membership in NPO is not always obvious; 1.3.1.2. Complexity of deterministic vs. complexity of probabilistic optimization problems; 1.3.2. Solution issues; 1.3.2.1. Characterization of optimal a priori solutions
1.3.2.2. Polynomial subcases1.3.2.3. Exact solutions and polynomial approximation issues; 1.4. Miscellaneous and bibliographic notes; First Part. Probabilistic Graph-Problems; Chapter 2. The Probabilistic Maximum Independent Set; 2.1. The modification strategies and a preliminary result; 2.1.1. Strategy M1; 2.1.2. Strategies M2 and M3; 2.1.3. Strategy M4; 2.1.4. Strategy M5; 2.1.5. A general mathematical formulation for the five functionals; 2.2. PROBABILISTIC MAX INDEPENDENT SET1; 2.2.1. Computing optimal a priori solutions; 2.2.2. Approximating optimal solutions
2.2.3. Dealing with bipartite graphs2.3. PROBABILISTIC MAX INDEPENDENT SET2 and 3; 2.3.1. Expressions for E(G, S, M2) and E(G, S, M3); 2.3.2. An upper bound for the complexity of E(G, S, M2); 2.3.3. Bounds for E(G, S, M2); 2.3.4. Approximating optimal solutions; 2.3.4.1. Using argmax {ΣviESpi} as an a priori solution; 2.3.4.2. Using approximations of MAX INDEPENDENT SET; 2.3.5. Dealing with bipartite graphs; 2.4. PROBABILISTIC MAX INDEPENDENT SET4; 2.4.1. An expression for E(G, S, M4); 2.4.2. Using S* or argmax{ΣviESpi} as an a priori solution; 2.4.3. Dealing with bipartite graphs
2.5. PROBABILISTIC MAX INDEPENDENT SET52.5.1. In general graphs; 2.5.2. In bipartite graphs; 2.6. Summary of the results; 2.7. Methodological questions; 2.7.1. Maximizing a criterion associated with gain; 2.7.1.1. The minimum gain criterion; 2.7.1.2. The maximum gain criterion; 2.7.2. Minimizing a criterion associated with regret; 2.7.2.1. The maximum regret criterion; 2.7.3. Optimizing expectation; 2.8. Proofs of the results; 2.8.1. Proof of Proposition 2.1; 2.8.2. Proof of Theorem 2.6; 2.8.3. Proof of Proposition 2.3; 2.8.4. Proof of Theorem 2.13
Chapter 3. The Probabilistic Minimum Vertex Cover3.1. The strategies M1, M2 and M3 and a general preliminary result; 3.1.1. Specification of M1, M2 and M3; 3.1.1.1. Strategy M1; 3.1.1.2. Strategy M2; 3.1.1.3. Strategy M3; 3.1.2. A first expression for the functionals; 3.2. PROBABILISTIC MIN VERTEX COVER1; 3.3. PROBABILISTIC MIN VERTEX COVER2; 3.4. PROBABILISTIC MIN VERTEX COVER3; 3.4.1. Building E(G, C, M3); 3.4.2. Bounds for E(G, C, M3); 3.5. Some methodological questions; 3.6. Proofs of the results; 3.6.1. Proof of Theorem 3.3; 3.6.2. On the the bounds obtained in Theorem 3.3
Chapter 4. The Probabilistic Longest Path
Record Nr. UNINA-9910143315903321
Murat Cecile  
London ; ; Newport Beach, CA, : ISTE, 2006
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Probabilistic combinatorial optimization on graphs [[electronic resource] /] / Cécile Murat and Vangelis Th. Paschos
Probabilistic combinatorial optimization on graphs [[electronic resource] /] / Cécile Murat and Vangelis Th. Paschos
Autore Murat Cecile
Pubbl/distr/stampa London ; ; Newport Beach, CA, : ISTE, 2006
Descrizione fisica 1 online resource (269 p.)
Disciplina 511.6
519.2
Altri autori (Persone) PaschosVangelis Th
Collana ISTE
Soggetto topico Combinatorial probabilities
Combinatorial optimization
Random graphs
ISBN 1-280-51061-7
9786610510610
1-84704-483-2
0-470-39464-1
0-470-61250-9
1-84704-583-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Probabilistic Combinatorial Optimization on Graphs; Contents; Preface; Chapter 1. A Short Insight into Probabilistic Combinatorial Optimization; 1.1. Motivations and applications; 1.2. A formalism for probabilistic combinatorial optimization; 1.3. The main methodological issues dealing with probabilistic combinatorial optimization; 1.3.1. Complexity issues; 1.3.1.1. Membership in NPO is not always obvious; 1.3.1.2. Complexity of deterministic vs. complexity of probabilistic optimization problems; 1.3.2. Solution issues; 1.3.2.1. Characterization of optimal a priori solutions
1.3.2.2. Polynomial subcases1.3.2.3. Exact solutions and polynomial approximation issues; 1.4. Miscellaneous and bibliographic notes; First Part. Probabilistic Graph-Problems; Chapter 2. The Probabilistic Maximum Independent Set; 2.1. The modification strategies and a preliminary result; 2.1.1. Strategy M1; 2.1.2. Strategies M2 and M3; 2.1.3. Strategy M4; 2.1.4. Strategy M5; 2.1.5. A general mathematical formulation for the five functionals; 2.2. PROBABILISTIC MAX INDEPENDENT SET1; 2.2.1. Computing optimal a priori solutions; 2.2.2. Approximating optimal solutions
2.2.3. Dealing with bipartite graphs2.3. PROBABILISTIC MAX INDEPENDENT SET2 and 3; 2.3.1. Expressions for E(G, S, M2) and E(G, S, M3); 2.3.2. An upper bound for the complexity of E(G, S, M2); 2.3.3. Bounds for E(G, S, M2); 2.3.4. Approximating optimal solutions; 2.3.4.1. Using argmax {ΣviESpi} as an a priori solution; 2.3.4.2. Using approximations of MAX INDEPENDENT SET; 2.3.5. Dealing with bipartite graphs; 2.4. PROBABILISTIC MAX INDEPENDENT SET4; 2.4.1. An expression for E(G, S, M4); 2.4.2. Using S* or argmax{ΣviESpi} as an a priori solution; 2.4.3. Dealing with bipartite graphs
2.5. PROBABILISTIC MAX INDEPENDENT SET52.5.1. In general graphs; 2.5.2. In bipartite graphs; 2.6. Summary of the results; 2.7. Methodological questions; 2.7.1. Maximizing a criterion associated with gain; 2.7.1.1. The minimum gain criterion; 2.7.1.2. The maximum gain criterion; 2.7.2. Minimizing a criterion associated with regret; 2.7.2.1. The maximum regret criterion; 2.7.3. Optimizing expectation; 2.8. Proofs of the results; 2.8.1. Proof of Proposition 2.1; 2.8.2. Proof of Theorem 2.6; 2.8.3. Proof of Proposition 2.3; 2.8.4. Proof of Theorem 2.13
Chapter 3. The Probabilistic Minimum Vertex Cover3.1. The strategies M1, M2 and M3 and a general preliminary result; 3.1.1. Specification of M1, M2 and M3; 3.1.1.1. Strategy M1; 3.1.1.2. Strategy M2; 3.1.1.3. Strategy M3; 3.1.2. A first expression for the functionals; 3.2. PROBABILISTIC MIN VERTEX COVER1; 3.3. PROBABILISTIC MIN VERTEX COVER2; 3.4. PROBABILISTIC MIN VERTEX COVER3; 3.4.1. Building E(G, C, M3); 3.4.2. Bounds for E(G, C, M3); 3.5. Some methodological questions; 3.6. Proofs of the results; 3.6.1. Proof of Theorem 3.3; 3.6.2. On the the bounds obtained in Theorem 3.3
Chapter 4. The Probabilistic Longest Path
Record Nr. UNISA-996216942703316
Murat Cecile  
London ; ; Newport Beach, CA, : ISTE, 2006
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Probabilistic combinatorial optimization on graphs [[electronic resource] /] / Cécile Murat and Vangelis Th. Paschos
Probabilistic combinatorial optimization on graphs [[electronic resource] /] / Cécile Murat and Vangelis Th. Paschos
Autore Murat Cecile
Pubbl/distr/stampa London ; ; Newport Beach, CA, : ISTE, 2006
Descrizione fisica 1 online resource (269 p.)
Disciplina 511.6
519.2
Altri autori (Persone) PaschosVangelis Th
Collana ISTE
Soggetto topico Combinatorial probabilities
Combinatorial optimization
Random graphs
ISBN 1-280-51061-7
9786610510610
1-84704-483-2
0-470-39464-1
0-470-61250-9
1-84704-583-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Probabilistic Combinatorial Optimization on Graphs; Contents; Preface; Chapter 1. A Short Insight into Probabilistic Combinatorial Optimization; 1.1. Motivations and applications; 1.2. A formalism for probabilistic combinatorial optimization; 1.3. The main methodological issues dealing with probabilistic combinatorial optimization; 1.3.1. Complexity issues; 1.3.1.1. Membership in NPO is not always obvious; 1.3.1.2. Complexity of deterministic vs. complexity of probabilistic optimization problems; 1.3.2. Solution issues; 1.3.2.1. Characterization of optimal a priori solutions
1.3.2.2. Polynomial subcases1.3.2.3. Exact solutions and polynomial approximation issues; 1.4. Miscellaneous and bibliographic notes; First Part. Probabilistic Graph-Problems; Chapter 2. The Probabilistic Maximum Independent Set; 2.1. The modification strategies and a preliminary result; 2.1.1. Strategy M1; 2.1.2. Strategies M2 and M3; 2.1.3. Strategy M4; 2.1.4. Strategy M5; 2.1.5. A general mathematical formulation for the five functionals; 2.2. PROBABILISTIC MAX INDEPENDENT SET1; 2.2.1. Computing optimal a priori solutions; 2.2.2. Approximating optimal solutions
2.2.3. Dealing with bipartite graphs2.3. PROBABILISTIC MAX INDEPENDENT SET2 and 3; 2.3.1. Expressions for E(G, S, M2) and E(G, S, M3); 2.3.2. An upper bound for the complexity of E(G, S, M2); 2.3.3. Bounds for E(G, S, M2); 2.3.4. Approximating optimal solutions; 2.3.4.1. Using argmax {ΣviESpi} as an a priori solution; 2.3.4.2. Using approximations of MAX INDEPENDENT SET; 2.3.5. Dealing with bipartite graphs; 2.4. PROBABILISTIC MAX INDEPENDENT SET4; 2.4.1. An expression for E(G, S, M4); 2.4.2. Using S* or argmax{ΣviESpi} as an a priori solution; 2.4.3. Dealing with bipartite graphs
2.5. PROBABILISTIC MAX INDEPENDENT SET52.5.1. In general graphs; 2.5.2. In bipartite graphs; 2.6. Summary of the results; 2.7. Methodological questions; 2.7.1. Maximizing a criterion associated with gain; 2.7.1.1. The minimum gain criterion; 2.7.1.2. The maximum gain criterion; 2.7.2. Minimizing a criterion associated with regret; 2.7.2.1. The maximum regret criterion; 2.7.3. Optimizing expectation; 2.8. Proofs of the results; 2.8.1. Proof of Proposition 2.1; 2.8.2. Proof of Theorem 2.6; 2.8.3. Proof of Proposition 2.3; 2.8.4. Proof of Theorem 2.13
Chapter 3. The Probabilistic Minimum Vertex Cover3.1. The strategies M1, M2 and M3 and a general preliminary result; 3.1.1. Specification of M1, M2 and M3; 3.1.1.1. Strategy M1; 3.1.1.2. Strategy M2; 3.1.1.3. Strategy M3; 3.1.2. A first expression for the functionals; 3.2. PROBABILISTIC MIN VERTEX COVER1; 3.3. PROBABILISTIC MIN VERTEX COVER2; 3.4. PROBABILISTIC MIN VERTEX COVER3; 3.4.1. Building E(G, C, M3); 3.4.2. Bounds for E(G, C, M3); 3.5. Some methodological questions; 3.6. Proofs of the results; 3.6.1. Proof of Theorem 3.3; 3.6.2. On the the bounds obtained in Theorem 3.3
Chapter 4. The Probabilistic Longest Path
Record Nr. UNINA-9910830041603321
Murat Cecile  
London ; ; Newport Beach, CA, : ISTE, 2006
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui