top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Combinatorial optimization and theoretical computer science [[electronic resource] ] : interfaces and perspectives : 30th anniversary of the LAMSADE / / edited by Vangelis Th. Paschos
Combinatorial optimization and theoretical computer science [[electronic resource] ] : interfaces and perspectives : 30th anniversary of the LAMSADE / / edited by Vangelis Th. Paschos
Pubbl/distr/stampa London, : ISTE
Descrizione fisica 1 online resource (518 p.)
Disciplina 519.6/4
519.64
Altri autori (Persone) PaschosVangelis Th
Collana ISTE
Soggetto topico Combinatorial optimization - Computer programs
Computer science - Mathematics
Soggetto genere / forma Electronic books.
ISBN 1-282-16499-6
9786612164996
0-470-61109-X
0-470-39367-X
Classificazione SK 890
ST 130
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Combinatorial Optimization and Theoretical Computer Science; Contents; Preface; Chapter 1. The Complexity of Single Machine Scheduling Problems under Scenario-based Uncertainty; 1.1. Introduction; 1.2. Problem MinMax(1|prec|fmax, θ ); 1.2.1. Uncertainty on due dates; 1.2.2. Uncertainty on processing times and due dates; 1.3. Problem MinMax(1|| Σ wj Cj, Wj ); 1.4. Problem MinMax(1|| Σ Uj, θ ); 1.4.1. Uncertainty on due dates; 1.4.2. Uncertainty on processing times; 1.5. Bibliography; Chapter 2. Approximation of Multi-criteria Min and Max TSP(1, 2); 2.1. Introduction
2.1.1. The traveling salesman problem2.1.2. Multi-criteria optimization; 2.1.3. Organization of the chapter; 2.2. Overview; 2.3. The bicriteria TSP(1, 2); 2.3.1. Simple examples of the non-approximability; 2.3.2. A local search heuristic for the bicriteria TSP(1, 2); 2.3.3. A nearest neighbor heuristic for the bicriteria TSP(1, 2); 2.3.4. On the bicriteria Max TSP(1, 2); 2.4. k-criteria TSP(1, 2); 2.4.1. Non-approximability related to the number of generated solutions; 2.4.2. A nearest neighbor heuristic for the k-criteria TSP(1, 2); 2.5. Conclusion; 2.6. Bibliography
Chapter 3. Online Models for Set-covering: The Flaw of Greediness3.1. Introduction; 3.2. Description of the main results and related work; 3.3. The price of ignorance; 3.4. Competitiveness of TAKE-ALL and TAKE-AT-RANDOM; 3.4.1. TAKE-ALL algorithm; 3.4.2. TAKE-AT-RANDOM algorithm; 3.5. The nasty flaw of greediness; 3.6. The power of look-ahead; 3.7. The maximum budget saving problem; 3.8. Discussion; 3.9. Bibliography; Chapter 4. Comparison of Expressiveness for Timed Automata and Time Petri Nets; 4.1. Introduction; 4.2. Time Petri nets and timed automata
4.2.1. Timed transition systems and equivalence relations4.2.2. Time Petri nets; 4.2.3. Timed automata; 4.2.4. Expressiveness and equivalence problems; 4.3. Comparison of semantics I, A and PA; 4.3.1. A first comparison between the different semantics of TPNs; 4.3.2. A second comparison for standard bounded TPN; 4.4. Strict ordering results; 4.5. Equivalence with respect to timed language acceptance; 4.5.1. Encoding atomic constraints; 4.5.2. Resetting clocks; 4.5.3. The complete construction; 4.5.4. Δ (A) and A accept the same timed language; 4.5.5. Consequences of the previous results
4.6. Bisimulation of TA by TPNs4.6.1. Regions of a timed automaton; 4.6.2. From bisimulation to uniform bisimulation; 4.6.3. A characterization of bisimilarity; 4.6.4. Proof of necessity; 4.6.5. First construction; 4.6.6. Second construction; 4.6.7. Complexity results; 4.7. Conclusion; 4.8. Bibliography; Chapter 5. A "Maximum Node Clustering" Problem; 5.1. Introduction; 5.2. Approximation algorithm for the general problem; 5.3. The tree case; 5.3.1. Dynamic programming; 5.3.2. A fully polynomial time approximation scheme; 5.4. Exponential algorithms for special cases; 5.5. Bibliography
Chapter 6. The Patrolling Problem: Theoretical and Experimental Results
Record Nr. UNINA-9910139491403321
London, : ISTE
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Combinatorial optimization and theoretical computer science [[electronic resource] ] : interfaces and perspectives : 30th anniversary of the LAMSADE / / edited by Vangelis Th. Paschos
Combinatorial optimization and theoretical computer science [[electronic resource] ] : interfaces and perspectives : 30th anniversary of the LAMSADE / / edited by Vangelis Th. Paschos
Pubbl/distr/stampa London, : ISTE
Descrizione fisica 1 online resource (518 p.)
Disciplina 519.6/4
519.64
Altri autori (Persone) PaschosVangelis Th
Collana ISTE
Soggetto topico Combinatorial optimization - Computer programs
Computer science - Mathematics
ISBN 1-282-16499-6
9786612164996
0-470-61109-X
0-470-39367-X
Classificazione SK 890
ST 130
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Combinatorial Optimization and Theoretical Computer Science; Contents; Preface; Chapter 1. The Complexity of Single Machine Scheduling Problems under Scenario-based Uncertainty; 1.1. Introduction; 1.2. Problem MinMax(1|prec|fmax, θ ); 1.2.1. Uncertainty on due dates; 1.2.2. Uncertainty on processing times and due dates; 1.3. Problem MinMax(1|| Σ wj Cj, Wj ); 1.4. Problem MinMax(1|| Σ Uj, θ ); 1.4.1. Uncertainty on due dates; 1.4.2. Uncertainty on processing times; 1.5. Bibliography; Chapter 2. Approximation of Multi-criteria Min and Max TSP(1, 2); 2.1. Introduction
2.1.1. The traveling salesman problem2.1.2. Multi-criteria optimization; 2.1.3. Organization of the chapter; 2.2. Overview; 2.3. The bicriteria TSP(1, 2); 2.3.1. Simple examples of the non-approximability; 2.3.2. A local search heuristic for the bicriteria TSP(1, 2); 2.3.3. A nearest neighbor heuristic for the bicriteria TSP(1, 2); 2.3.4. On the bicriteria Max TSP(1, 2); 2.4. k-criteria TSP(1, 2); 2.4.1. Non-approximability related to the number of generated solutions; 2.4.2. A nearest neighbor heuristic for the k-criteria TSP(1, 2); 2.5. Conclusion; 2.6. Bibliography
Chapter 3. Online Models for Set-covering: The Flaw of Greediness3.1. Introduction; 3.2. Description of the main results and related work; 3.3. The price of ignorance; 3.4. Competitiveness of TAKE-ALL and TAKE-AT-RANDOM; 3.4.1. TAKE-ALL algorithm; 3.4.2. TAKE-AT-RANDOM algorithm; 3.5. The nasty flaw of greediness; 3.6. The power of look-ahead; 3.7. The maximum budget saving problem; 3.8. Discussion; 3.9. Bibliography; Chapter 4. Comparison of Expressiveness for Timed Automata and Time Petri Nets; 4.1. Introduction; 4.2. Time Petri nets and timed automata
4.2.1. Timed transition systems and equivalence relations4.2.2. Time Petri nets; 4.2.3. Timed automata; 4.2.4. Expressiveness and equivalence problems; 4.3. Comparison of semantics I, A and PA; 4.3.1. A first comparison between the different semantics of TPNs; 4.3.2. A second comparison for standard bounded TPN; 4.4. Strict ordering results; 4.5. Equivalence with respect to timed language acceptance; 4.5.1. Encoding atomic constraints; 4.5.2. Resetting clocks; 4.5.3. The complete construction; 4.5.4. Δ (A) and A accept the same timed language; 4.5.5. Consequences of the previous results
4.6. Bisimulation of TA by TPNs4.6.1. Regions of a timed automaton; 4.6.2. From bisimulation to uniform bisimulation; 4.6.3. A characterization of bisimilarity; 4.6.4. Proof of necessity; 4.6.5. First construction; 4.6.6. Second construction; 4.6.7. Complexity results; 4.7. Conclusion; 4.8. Bibliography; Chapter 5. A "Maximum Node Clustering" Problem; 5.1. Introduction; 5.2. Approximation algorithm for the general problem; 5.3. The tree case; 5.3.1. Dynamic programming; 5.3.2. A fully polynomial time approximation scheme; 5.4. Exponential algorithms for special cases; 5.5. Bibliography
Chapter 6. The Patrolling Problem: Theoretical and Experimental Results
Record Nr. UNINA-9910830062503321
London, : ISTE
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Combinatorial optimization and theoretical computer science : interfaces and perspectives : 30th anniversary of the LAMSADE / / edited by Vangelis Th. Paschos
Combinatorial optimization and theoretical computer science : interfaces and perspectives : 30th anniversary of the LAMSADE / / edited by Vangelis Th. Paschos
Pubbl/distr/stampa London, : ISTE
Descrizione fisica 1 online resource (518 p.)
Disciplina 519.6/4
Altri autori (Persone) PaschosVangelis Th
Collana ISTE
Soggetto topico Combinatorial optimization - Computer programs
Computer science - Mathematics
ISBN 1-282-16499-6
9786612164996
0-470-61109-X
0-470-39367-X
Classificazione SK 890
ST 130
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Combinatorial Optimization and Theoretical Computer Science; Contents; Preface; Chapter 1. The Complexity of Single Machine Scheduling Problems under Scenario-based Uncertainty; 1.1. Introduction; 1.2. Problem MinMax(1|prec|fmax, θ ); 1.2.1. Uncertainty on due dates; 1.2.2. Uncertainty on processing times and due dates; 1.3. Problem MinMax(1|| Σ wj Cj, Wj ); 1.4. Problem MinMax(1|| Σ Uj, θ ); 1.4.1. Uncertainty on due dates; 1.4.2. Uncertainty on processing times; 1.5. Bibliography; Chapter 2. Approximation of Multi-criteria Min and Max TSP(1, 2); 2.1. Introduction
2.1.1. The traveling salesman problem2.1.2. Multi-criteria optimization; 2.1.3. Organization of the chapter; 2.2. Overview; 2.3. The bicriteria TSP(1, 2); 2.3.1. Simple examples of the non-approximability; 2.3.2. A local search heuristic for the bicriteria TSP(1, 2); 2.3.3. A nearest neighbor heuristic for the bicriteria TSP(1, 2); 2.3.4. On the bicriteria Max TSP(1, 2); 2.4. k-criteria TSP(1, 2); 2.4.1. Non-approximability related to the number of generated solutions; 2.4.2. A nearest neighbor heuristic for the k-criteria TSP(1, 2); 2.5. Conclusion; 2.6. Bibliography
Chapter 3. Online Models for Set-covering: The Flaw of Greediness3.1. Introduction; 3.2. Description of the main results and related work; 3.3. The price of ignorance; 3.4. Competitiveness of TAKE-ALL and TAKE-AT-RANDOM; 3.4.1. TAKE-ALL algorithm; 3.4.2. TAKE-AT-RANDOM algorithm; 3.5. The nasty flaw of greediness; 3.6. The power of look-ahead; 3.7. The maximum budget saving problem; 3.8. Discussion; 3.9. Bibliography; Chapter 4. Comparison of Expressiveness for Timed Automata and Time Petri Nets; 4.1. Introduction; 4.2. Time Petri nets and timed automata
4.2.1. Timed transition systems and equivalence relations4.2.2. Time Petri nets; 4.2.3. Timed automata; 4.2.4. Expressiveness and equivalence problems; 4.3. Comparison of semantics I, A and PA; 4.3.1. A first comparison between the different semantics of TPNs; 4.3.2. A second comparison for standard bounded TPN; 4.4. Strict ordering results; 4.5. Equivalence with respect to timed language acceptance; 4.5.1. Encoding atomic constraints; 4.5.2. Resetting clocks; 4.5.3. The complete construction; 4.5.4. Δ (A) and A accept the same timed language; 4.5.5. Consequences of the previous results
4.6. Bisimulation of TA by TPNs4.6.1. Regions of a timed automaton; 4.6.2. From bisimulation to uniform bisimulation; 4.6.3. A characterization of bisimilarity; 4.6.4. Proof of necessity; 4.6.5. First construction; 4.6.6. Second construction; 4.6.7. Complexity results; 4.7. Conclusion; 4.8. Bibliography; Chapter 5. A "Maximum Node Clustering" Problem; 5.1. Introduction; 5.2. Approximation algorithm for the general problem; 5.3. The tree case; 5.3.1. Dynamic programming; 5.3.2. A fully polynomial time approximation scheme; 5.4. Exponential algorithms for special cases; 5.5. Bibliography
Chapter 6. The Patrolling Problem: Theoretical and Experimental Results
Record Nr. UNINA-9910876678703321
London, : ISTE
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui