Advances in bio-inspired computing for combinatorial optimization problems / / Camelia-Mihaela Pintea |
Autore | Pintea Camelia-Mihaela |
Edizione | [1st ed. 2014.] |
Pubbl/distr/stampa | Berlin ; ; Heidleberg, : Springer-Verlag, 2014 |
Descrizione fisica | 1 online resource (x, 188 pages) : illustrations (some color) |
Disciplina | 006.3 |
Collana | Intelligent systems reference library |
Soggetto topico |
Biologically-inspired computing
Combinatorial optimization |
ISBN | 3-642-40179-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Part I Biological Computing and Optimization -- Part II Ant Algorithms -- Part III Bio-inspired Multi-Agent Systems -- Part IV Applications with Bio-inspired Algorithms -- Part V Conclusions and Remarks. |
Record Nr. | UNINA-9910299735003321 |
Pintea Camelia-Mihaela | ||
Berlin ; ; Heidleberg, : Springer-Verlag, 2014 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Algoritmi di computazione per matching perfetti di costo minimo. Tesi di laurea in ottimizzazione combinatoria / laureanda Aiello Lorena Giorgia ; relatore Paolo Nobili |
Autore | Aiello, Lorena Giorgia |
Pubbl/distr/stampa | Lecce : Università del Salento. Facoltà di Scienze MM. FF. NN. Corso di Laurea Specialistica in Matematica, a.a. 2011-12 |
Descrizione fisica | 99 p. ; 30 cm |
Disciplina | 519 |
Altri autori (Persone) | Nobili, Paolo |
Soggetto topico | Combinatorial optimization |
Classificazione |
AMS 90C27
AMS 90C35 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | ita |
Record Nr. | UNISALENTO-991001803029707536 |
Aiello, Lorena Giorgia | ||
Lecce : Università del Salento. Facoltà di Scienze MM. FF. NN. Corso di Laurea Specialistica in Matematica, a.a. 2011-12 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. del Salento | ||
|
Algoritmi efficienti per il problema del matching pesato. Tesi di laurea / laureando Alessandro Melissano ; relatore Paolo Nobili |
Autore | Melissano, Alessandro |
Pubbl/distr/stampa | Lecce : Università del Salento. Facoltà di Scienze MM. FF. NN. Corso di Laurea Magistrale in Matematica, a.a. 2012-13 |
Descrizione fisica | 80 p. ; 30 cm |
Altri autori (Persone) | Siciliano, Salvatore |
Soggetto topico |
Mathematical programming
Combinatorial optimization |
Classificazione |
AMS 90C27
AMS 90C35 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | ita |
Record Nr. | UNISALENTO-991002537339707536 |
Melissano, Alessandro | ||
Lecce : Università del Salento. Facoltà di Scienze MM. FF. NN. Corso di Laurea Magistrale in Matematica, a.a. 2012-13 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. del Salento | ||
|
Algoritmo di ricerca locale per il problema di Set Covering. Tesi di laurea / laureando Giuseppe Reho ; relat. Paolo Nobili |
Autore | Reho, Giuseppe |
Pubbl/distr/stampa | Lecce : Università degli Studi. Facoltà di Scienze. Corso di laurea in Matematica, a.a. 2001-02 |
Descrizione fisica | 86 p. ; 30 cm |
Altri autori (Persone) | Nobili, Paolo |
Soggetto topico |
Combinatorial optimization
Approximation methods and heuristics |
Classificazione |
AMS 90C27
AMS 90C59 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | ita |
Record Nr. | UNISALENTO-991001721439707536 |
Reho, Giuseppe | ||
Lecce : Università degli Studi. Facoltà di Scienze. Corso di laurea in Matematica, a.a. 2001-02 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. del Salento | ||
|
Algoritmo per il massimo stabile pesato in un grafo claw-free. Tesi di laurea / laureanda Ilaria De Pascalis ; relat. Paolo Nobili |
Autore | De Pascalis, Ilaria |
Pubbl/distr/stampa | Lecce : Università del Salento. Dipartimento di Matematica e Fisica "Ennio De Giorgi". Corso di laurea magistrale in Matematica, a.a. 2016-17 |
Descrizione fisica | 56 p. : ill. (some col.) ; 30 cm |
Disciplina | 510 |
Altri autori (Persone) | Nobili, Paolo |
Soggetto topico |
Mathematical programming
Combinatorial optimization Graph theory |
Classificazione |
AMS 90C27
AMS 90C35 AMS 05C22 AMS 05C85 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | ita |
Record Nr. | UNISALENTO-991003567419707536 |
De Pascalis, Ilaria | ||
Lecce : Università del Salento. Dipartimento di Matematica e Fisica "Ennio De Giorgi". Corso di laurea magistrale in Matematica, a.a. 2016-17 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. del Salento | ||
|
Analisi logica dei dati: classificazione con giustifiazione. Tesi di laurea / laureanda Erika Limosani ; relat. Paolo Nobili |
Autore | Limosani, Erika |
Pubbl/distr/stampa | Lecce : Università del Salento. Dipartimento di Matematica e Fisica "E. De Giorgi". Corso di laurea in Matematica, a.a. 2017-18 |
Descrizione fisica | 56 p. ; 30 cm |
Disciplina | 519 |
Altri autori (Persone) | Nobili, Paolo |
Soggetto topico | Combinatorial optimization |
Classificazione | AMS 90C27 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | ita |
Record Nr. | UNISALENTO-991003638959707536 |
Limosani, Erika | ||
Lecce : Università del Salento. Dipartimento di Matematica e Fisica "E. De Giorgi". Corso di laurea in Matematica, a.a. 2017-18 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. del Salento | ||
|
Applications of combinatorial optimization / / edited by Vangelis Th. Paschos |
Edizione | [Revised and updated second edition.] |
Pubbl/distr/stampa | London, [England] ; ; Hoboken, New Jersey : , : ISTE : , : Wiley, , 2014 |
Descrizione fisica | 1 online resource (449 p.) |
Disciplina | 519.64 |
Collana | Mathematics and Statistics Series |
Soggetto topico | Combinatorial optimization |
ISBN |
1-119-00538-8
1-119-01522-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover; Title Page; Copyright; Contents; Preface; Chapter 1: Airline Crew Pairing Optimization; 1.1. Introduction; 1.2. Definition of the problem; 1.2.1. Constructing subnetworks; 1.2.2. Pairing costs; 1.2.3. Model; 1.2.4. Case without resource constraints; 1.3. Solution approaches; 1.3.1. Decomposition principles; 1.3.2. Column generation, master problem and subproblem; 1.3.3. Branching methods for finding integer solutions; 1.4. Solving the subproblem for column generation; 1.4.1. Mathematical formulation; 1.4.2. General principle of effective label generation
1.4.3. Case of one single resource: the bucket method1.4.4. Case of many resources: reduction of the resource space; 1.4.4.1. Reduction principle; 1.4.4.2. Approach based on the Lagrangian relaxation; 1.4.4.3. Approach based on the surrogate relaxation; 1.5. Conclusion; 1.6. Bibliography; Chapter 2: The Task Allocation Problem; 2.1. Presentation; 2.2. Definitions and modeling; 2.2.1. Definitions; 2.2.2. The processors; 2.2.3. Communications; 2.2.4. Tasks; 2.2.5. Allocation types; 2.2.5.1. Static allocation; 2.2.5.2. Dynamic allocation; 2.2.5.3. With or without pre-emption 2.2.5.4. Task duplication2.2.6. Allocation/scheduling; 2.2.7. Modeling; 2.2.7.1. Modeling costs; 2.2.7.2. Constraints; 2.2.7.3. Objectives of the allocation; 2.2.7.3.1. Minimizing the execution duration; 2.2.7.3.2. Minimizing the global execution and communication cost; 2.2.7.3.3. Load balancing; 2.3. Review of the main works; 2.3.1. Polynomial cases; 2.3.1.1. Two-processor cases; 2.3.1.2. Tree case; 2.3.1.3. Other structures; 2.3.1.4. Restrictions on the processors or the tasks; 2.3.1.5. Minmax objective; 2.3.2. Approximability; 2.3.3. Approximate solution; 2.3.3.1. Heterogenous processors 2.3.3.2. Homogenous processors2.3.4. Exact solution; 2.3.5. Independent tasks case; 2.4. A little-studied model; 2.4.1. Model; 2.4.2. A heuristic based on graphs; 2.4.2.1. Transformation of the problem; 2.4.2.2. Modeling; 2.4.2.3. Description of the heuristic; 2.5. Conclusion; 2.6. Bibliography; Chapter 3: A Comparison of Some Valid Inequality Generation Methods for General 0-1 Problems; 3.1. Introduction; 3.2. Presentation of the various techniques tested; 3.2.1. Exact separation with respect to a mixed relaxation; 3.2.2. Approximate separation using a heuristic 3.2.3. Restriction + separation + relaxed lifting (RSRL)3.2.4. Disjunctive programming and the lift and project procedure; 3.2.5. Reformulation-linearization technique (RLT); 3.3. Computational results; 3.3.1. Presentation of test problems; 3.3.2. Presentation of the results; 3.3.3. Discussion of the computational results; 3.4. Bibliography; Chapter 4: Production Planning; 4.1. Introduction; 4.2. Hierarchical planning; 4.3. Strategic planning and productive system design; 4.3.1. Group technology; 4.3.2. Locating equipment; 4.4. Tactical planning and inventory management 4.4.1. A linear programming model for medium-term planning |
Record Nr. | UNINA-9910132155703321 |
London, [England] ; ; Hoboken, New Jersey : , : ISTE : , : Wiley, , 2014 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Applications of combinatorial optimization / / edited by Vangelis Th. Paschos |
Edizione | [Revised and updated second edition.] |
Pubbl/distr/stampa | London, [England] ; ; Hoboken, New Jersey : , : ISTE : , : Wiley, , 2014 |
Descrizione fisica | 1 online resource (449 p.) |
Disciplina | 519.64 |
Collana | Mathematics and Statistics Series |
Soggetto topico | Combinatorial optimization |
ISBN |
1-119-00538-8
1-119-01522-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover; Title Page; Copyright; Contents; Preface; Chapter 1: Airline Crew Pairing Optimization; 1.1. Introduction; 1.2. Definition of the problem; 1.2.1. Constructing subnetworks; 1.2.2. Pairing costs; 1.2.3. Model; 1.2.4. Case without resource constraints; 1.3. Solution approaches; 1.3.1. Decomposition principles; 1.3.2. Column generation, master problem and subproblem; 1.3.3. Branching methods for finding integer solutions; 1.4. Solving the subproblem for column generation; 1.4.1. Mathematical formulation; 1.4.2. General principle of effective label generation
1.4.3. Case of one single resource: the bucket method1.4.4. Case of many resources: reduction of the resource space; 1.4.4.1. Reduction principle; 1.4.4.2. Approach based on the Lagrangian relaxation; 1.4.4.3. Approach based on the surrogate relaxation; 1.5. Conclusion; 1.6. Bibliography; Chapter 2: The Task Allocation Problem; 2.1. Presentation; 2.2. Definitions and modeling; 2.2.1. Definitions; 2.2.2. The processors; 2.2.3. Communications; 2.2.4. Tasks; 2.2.5. Allocation types; 2.2.5.1. Static allocation; 2.2.5.2. Dynamic allocation; 2.2.5.3. With or without pre-emption 2.2.5.4. Task duplication2.2.6. Allocation/scheduling; 2.2.7. Modeling; 2.2.7.1. Modeling costs; 2.2.7.2. Constraints; 2.2.7.3. Objectives of the allocation; 2.2.7.3.1. Minimizing the execution duration; 2.2.7.3.2. Minimizing the global execution and communication cost; 2.2.7.3.3. Load balancing; 2.3. Review of the main works; 2.3.1. Polynomial cases; 2.3.1.1. Two-processor cases; 2.3.1.2. Tree case; 2.3.1.3. Other structures; 2.3.1.4. Restrictions on the processors or the tasks; 2.3.1.5. Minmax objective; 2.3.2. Approximability; 2.3.3. Approximate solution; 2.3.3.1. Heterogenous processors 2.3.3.2. Homogenous processors2.3.4. Exact solution; 2.3.5. Independent tasks case; 2.4. A little-studied model; 2.4.1. Model; 2.4.2. A heuristic based on graphs; 2.4.2.1. Transformation of the problem; 2.4.2.2. Modeling; 2.4.2.3. Description of the heuristic; 2.5. Conclusion; 2.6. Bibliography; Chapter 3: A Comparison of Some Valid Inequality Generation Methods for General 0-1 Problems; 3.1. Introduction; 3.2. Presentation of the various techniques tested; 3.2.1. Exact separation with respect to a mixed relaxation; 3.2.2. Approximate separation using a heuristic 3.2.3. Restriction + separation + relaxed lifting (RSRL)3.2.4. Disjunctive programming and the lift and project procedure; 3.2.5. Reformulation-linearization technique (RLT); 3.3. Computational results; 3.3.1. Presentation of test problems; 3.3.2. Presentation of the results; 3.3.3. Discussion of the computational results; 3.4. Bibliography; Chapter 4: Production Planning; 4.1. Introduction; 4.2. Hierarchical planning; 4.3. Strategic planning and productive system design; 4.3.1. Group technology; 4.3.2. Locating equipment; 4.4. Tactical planning and inventory management 4.4.1. A linear programming model for medium-term planning |
Record Nr. | UNINA-9910808645303321 |
London, [England] ; ; Hoboken, New Jersey : , : ISTE : , : Wiley, , 2014 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Applications of combinatorial optimization [[electronic resource] /] / edited by Vangelis Th. Paschos |
Pubbl/distr/stampa | London, : ISTE |
Descrizione fisica | 1 online resource (409 p.) |
Disciplina | 519.64 |
Altri autori (Persone) | PaschosVangelis Th |
Collana | Combinatorial optimization |
Soggetto topico | Combinatorial optimization |
ISBN |
1-118-60028-2
1-118-60034-7 1-118-60011-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover; Applications of Combinatorial Optimization; Title Page; Copyright Page; Table of Contents; Preface; Chapter 1. Airline Crew Pairing Optimization; 1.1. Introduction; 1.2. Definition of the problem; 1.2.1. Constructing subnetworks; 1.2.2. Pairing costs; 1.2.3. Model; 1.2.4. Case without resource constraints; 1.3. Solution approaches; 1.3.1. Decomposition principles; 1.3.2. Column generation, master problem and subproblem; 1.3.3. Branching methods for finding integer solutions; 1.4. Solving the subproblem for column generation; 1.4.1. Mathematical formulation
1.4.2. General principle of effective label generation1.4.3. Case of one single resource: the bucket method; 1.4.4. Case of many resources: reduction of the resource space; 1.5. Conclusion; 1.6. Bibliography; Chapter 2. The Task Allocation Problem; 2.1. Presentation; 2.2. Definitions and modeling; 2.2.1. Definitions; 2.2.2. The processors; 2.2.3. Communications; 2.2.4. Tasks; 2.2.5. Allocation types; 2.2.6. Allocation/scheduling; 2.2.7. Modeling; 2.3. Review of the main works; 2.3.1. Polynomial cases; 2.3.2. Approximability; 2.3.3. Approximate solution; 2.3.4. Exact solution 2.3.5. Independent tasks case2.4. A little-studied model; 2.4.1. Model; 2.4.2. A heuristic based on graphs; 2.5. Conclusion; 2.6. Bibliography; Chapter 3. A Comparison of Some Valid Inequality Generation Methods for General 0-1 Problems; 3.1. Introduction; 3.2. Presentation of the various techniques tested; 3.2.1. Exact separation with respect to a mixed relaxation; 3.2.2. Approximate separation using a heuristic; 3.2.3. Restriction + separation + relaxed lifting (RSRL); 3.2.4. Disjunctive programming and the lift and project procedure; 3.2.5. Reformulation-linearization technique (RLT) 3.3. Computational results3.3.1. Presentation of test problems; 3.3.2. Presentation of the results; 3.3.3. Discussion of the computational results; 3.4. Bibliography; Chapter 4. Production Planning; 4.1. Introduction; 4.2. Hierarchical planning; 4.3. Strategic planning and productive system design; 4.3.1. Group technology; 4.3.2. Locating equipment; 4.4. Tactical planning and inventory management; 4.4.1. A linear programming model for medium-term planning; 4.4.2. Inventory management; 4.4.3. Wagner and Whitin model; 4.4.4. The economic order quantity model (EOQ) 4.4.5. The EOQ model with joint replenishments4.5. Operations planning and scheduling; 4.5.1. Tooling; 4.5.2. Robotic cells; 4.6. Conclusion and perspectives; 4.7. Bibliography; Chapter 5. Operations Research and Goods Transportation; 5.1. Introduction; 5.2. Goods transport systems; 5.3. Systems design; 5.3.1. Location with balancing requirements; 5.3.2. Multiproduct production-distribution; 5.3.3. Hub location; 5.4. Long-distance transport; 5.4.1. Service network design; 5.4.2. Static formulations; 5.4.3. Dynamic formulations; 5.4.4. Fleet management; 5.5. Vehicle routing problems 5.5.1. Definitions and complexity |
Record Nr. | UNINA-9910141601303321 |
London, : ISTE | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Applications of combinatorial optimization / / edited by Vangelis Th. Paschos |
Edizione | [1st ed.] |
Pubbl/distr/stampa | London, : ISTE |
Descrizione fisica | 1 online resource (409 p.) |
Disciplina | 519.64 |
Altri autori (Persone) | PaschosVangelis Th |
Collana | Combinatorial optimization |
Soggetto topico | Combinatorial optimization |
ISBN |
1-118-60028-2
1-118-60034-7 1-118-60011-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover; Applications of Combinatorial Optimization; Title Page; Copyright Page; Table of Contents; Preface; Chapter 1. Airline Crew Pairing Optimization; 1.1. Introduction; 1.2. Definition of the problem; 1.2.1. Constructing subnetworks; 1.2.2. Pairing costs; 1.2.3. Model; 1.2.4. Case without resource constraints; 1.3. Solution approaches; 1.3.1. Decomposition principles; 1.3.2. Column generation, master problem and subproblem; 1.3.3. Branching methods for finding integer solutions; 1.4. Solving the subproblem for column generation; 1.4.1. Mathematical formulation
1.4.2. General principle of effective label generation1.4.3. Case of one single resource: the bucket method; 1.4.4. Case of many resources: reduction of the resource space; 1.5. Conclusion; 1.6. Bibliography; Chapter 2. The Task Allocation Problem; 2.1. Presentation; 2.2. Definitions and modeling; 2.2.1. Definitions; 2.2.2. The processors; 2.2.3. Communications; 2.2.4. Tasks; 2.2.5. Allocation types; 2.2.6. Allocation/scheduling; 2.2.7. Modeling; 2.3. Review of the main works; 2.3.1. Polynomial cases; 2.3.2. Approximability; 2.3.3. Approximate solution; 2.3.4. Exact solution 2.3.5. Independent tasks case2.4. A little-studied model; 2.4.1. Model; 2.4.2. A heuristic based on graphs; 2.5. Conclusion; 2.6. Bibliography; Chapter 3. A Comparison of Some Valid Inequality Generation Methods for General 0-1 Problems; 3.1. Introduction; 3.2. Presentation of the various techniques tested; 3.2.1. Exact separation with respect to a mixed relaxation; 3.2.2. Approximate separation using a heuristic; 3.2.3. Restriction + separation + relaxed lifting (RSRL); 3.2.4. Disjunctive programming and the lift and project procedure; 3.2.5. Reformulation-linearization technique (RLT) 3.3. Computational results3.3.1. Presentation of test problems; 3.3.2. Presentation of the results; 3.3.3. Discussion of the computational results; 3.4. Bibliography; Chapter 4. Production Planning; 4.1. Introduction; 4.2. Hierarchical planning; 4.3. Strategic planning and productive system design; 4.3.1. Group technology; 4.3.2. Locating equipment; 4.4. Tactical planning and inventory management; 4.4.1. A linear programming model for medium-term planning; 4.4.2. Inventory management; 4.4.3. Wagner and Whitin model; 4.4.4. The economic order quantity model (EOQ) 4.4.5. The EOQ model with joint replenishments4.5. Operations planning and scheduling; 4.5.1. Tooling; 4.5.2. Robotic cells; 4.6. Conclusion and perspectives; 4.7. Bibliography; Chapter 5. Operations Research and Goods Transportation; 5.1. Introduction; 5.2. Goods transport systems; 5.3. Systems design; 5.3.1. Location with balancing requirements; 5.3.2. Multiproduct production-distribution; 5.3.3. Hub location; 5.4. Long-distance transport; 5.4.1. Service network design; 5.4.2. Static formulations; 5.4.3. Dynamic formulations; 5.4.4. Fleet management; 5.5. Vehicle routing problems 5.5.1. Definitions and complexity |
Record Nr. | UNINA-9910809344503321 |
London, : ISTE | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|