top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Many-body physics with ultracold gases [[electronic resource] /] / edited by Christophe Salomon, Georgy V. Shlyapnikov and Leticia F. Cugliandolo
Many-body physics with ultracold gases [[electronic resource] /] / edited by Christophe Salomon, Georgy V. Shlyapnikov and Leticia F. Cugliandolo
Pubbl/distr/stampa Oxford, : Oxford University Press, 2013
Descrizione fisica 1 online resource (374 p.)
Disciplina 530.43
Altri autori (Persone) SalomonC (Christophe)
ShlyapnikovGeorgy V
CugliandoloL. F (Leticia F.)
Collana Lecture Notes of the Les Houches Summer School
Soggetto topico Cold gases
Nuclear physics
Condensed matter
Soggetto genere / forma Electronic books.
ISBN 1-283-73307-2
0-19-163801-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Contents; List of participants; 1 Strongly correlated bosons and fermions in optical lattices; 1.1 Introduction; 1.2 Optical lattices; 1.3 The Bose-Hubbard model and the superfluid to Mott insulator transition; 1.4 One-dimensional bosons and bosonization; 1.5 From free fermions to Fermi liquids; 1.6 Mott transition of fermions: three dimensions; 1.7 One-dimensional fermions; 1.8 Conclusion; Acknowledgements; References; 2 Ultracold atoms in optical lattices; 2.1 Overview; 2.2 Introduction; 2.3 Basics of optical lattices; 2.4 Detection methods; 2.5 Bose- and Fermi-Hubbard models
2.6 Quantum magnetism with ultracold atoms in optical lattices2.7 Single-site and single-atom resolved imaging of quantum gases in optical lattices; References; 3 The few-atom problem; 3.1 Overview; 3.2 The two-body problem and resonance width; 3.3 Basics of the three-body problem with short-range interactions; 3.4 The method of Skorniakov and Ter-Martirosian (STM) for few-body problems with resonant short-range interactions; 3.5 Final remarks; Acknowledgements; References; 4 Entanglement in many-body quantum systems; 4.1 Introduction; 4.2 Entanglement in many-body systems: pure states
4.3 Entanglement in many-body systems: mixed states4.4 Entanglement and area laws; 4.5 Tensor network states; 4.6 Conclusions; References; 5 Quantum Hall states of ultracold atomic gases; 5.1 Introduction; 5.2 Rapid rotation; 5.3 Optically induced gauge fields; 5.4 Bose gases; 5.5 Fermi gases; 5.6 Summary; Acknowledgements; References; 6 Theory of dipolar gases; 6.1 The dipole-dipole interaction; 6.2 Dipolar Bose-Einstein condensates; 6.3 Dipolar gases in optical lattices; 6.4 Conclusions; References; 7 Ultracold polar molecules; 7.1 Motivation and challenges
7.2 Making ultracold polar molecules7.3 Characterizing the ultracold polar molecules; 7.4 Ultracold chemistry, dipolar interactions, and reduced dimensionality; Acknowledgements; References; 8 Ultracold Fermi gases as quantum simulators of condensed matter physics; 8.1 Introduction; 8.2 The non-interacting Fermi gas; 8.3 Fermionic super.uidity and the BEC-BCS crossover; 8.4 Probing the fermionic superfluid; 8.5 Conclusion; References; 9 Competing instabilities in quench experiments with ultracold Fermi gases near a Feshbach resonance; 9.1 Overview; 9.2 Introduction
9.3 Linear response and collective modes9.4 Feshbach resonance via pseudo-potentials; 9.5 Application to pairing susceptibility; 9.6 More on Stoner instability; 9.7 Discussion; 9.8 Concluding remarks; Acknowledgements; References; 10 Anderson localization of ultracold atoms in a laser speckle; 10.1 Anderson localization for the beginner; 10.2 Ultracold atoms in optical speckle: a good candidate for the observation of Anderson localization; 10.3 One-dimensional Anderson localization?; 10.4 Direct observation of Anderson localized 1D wavefunctions
10.5 What happens beyond the 1D effective mobility edge?
Record Nr. UNINA-9910464686803321
Oxford, : Oxford University Press, 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Many-body physics with ultracold gases [[electronic resource] /] / edited by Christophe Salomon, Georgy V. Shlyapnikov and Leticia F. Cugliandolo
Many-body physics with ultracold gases [[electronic resource] /] / edited by Christophe Salomon, Georgy V. Shlyapnikov and Leticia F. Cugliandolo
Pubbl/distr/stampa Oxford, : Oxford University Press, 2013
Descrizione fisica 1 v. : ill
Disciplina 530.43
Altri autori (Persone) SalomonC (Christophe)
ShlyapnikovGeorgy V
CugliandoloL. F (Leticia F.)
Soggetto topico Cold gases
Nuclear physics
Condensed matter
ISBN 1-283-73307-2
0-19-163801-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910795704003321
Oxford, : Oxford University Press, 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Many-body physics with ultracold gases [[electronic resource] /] / edited by Christophe Salomon, Georgy V. Shlyapnikov and Leticia F. Cugliandolo
Many-body physics with ultracold gases [[electronic resource] /] / edited by Christophe Salomon, Georgy V. Shlyapnikov and Leticia F. Cugliandolo
Pubbl/distr/stampa Oxford, : Oxford University Press, 2013
Descrizione fisica 1 v. : ill
Disciplina 530.43
Altri autori (Persone) SalomonC (Christophe)
ShlyapnikovGeorgy V
CugliandoloL. F (Leticia F.)
Soggetto topico Cold gases
Nuclear physics
Condensed matter
ISBN 1-283-73307-2
0-19-163801-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910807107603321
Oxford, : Oxford University Press, 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Modeling impacts for cold-gas dynamic spray [[electronic resource] /] / William S. de Rosset
Modeling impacts for cold-gas dynamic spray [[electronic resource] /] / William S. de Rosset
Autore De Rosset William S
Pubbl/distr/stampa Aberdeen Proving Ground, MD : , : Army Research Laboratory, , [2006]
Descrizione fisica 1 online resource (vi, 24 pages) : illustrations
Collana ARL-TR
Soggetto topico Fluid mechanics - Mathematical models
Adhesion
Particles
Cold gases
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910696986103321
De Rosset William S  
Aberdeen Proving Ground, MD : , : Army Research Laboratory, , [2006]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Quantum gases [[electronic resource] ] : finite temperature and non-equilibrium dynamics / / editors, Nick Proukakis ... [et al.]
Quantum gases [[electronic resource] ] : finite temperature and non-equilibrium dynamics / / editors, Nick Proukakis ... [et al.]
Pubbl/distr/stampa London, : Imperial College Press
Descrizione fisica 1 online resource (579 p.)
Disciplina 530.4/74
539
Altri autori (Persone) ProukakisNick
Collana Cold Atoms
Soggetto topico Cold gases
Quantum theory
Soggetto genere / forma Electronic books.
ISBN 1-299-46212-X
1-84816-812-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface; Foreword; Participants of FINESS 2009 (Durham); Contents; Common Symbols/Expressions and their Meanings; Part I. Introductory Material; Editorial Notes; I.A. Quantum Gases: The Background; 1. Quantum Gases: Setting the Scene N.P. Proukakis & K. Burnett; 1.1. Introduction: Background to Quantum Fluids and Gases; 1.2. History of Non-Equilibrium and Finite-Temperature Pure BEC Experiments; 1.2.1. The Search for Idealised Systems: Spin-Polarised Hydrogen; 1.2.2. The Twist to an Unlikely Candidate: The Scene Opens up for Alkali Atoms; 1.2.3. Rival Candidates Gaining Ground?
1.3. Modelling Quantum Degenerate Gases1.3.1. The Success of Phenomenology; 1.3.2. Ab Initio Modelling; 1.3.2.1. The Gross-Pitaevskii Equation; 1.3.2.2. Generalised Kinetic Theories; 1.3.3. Classical-Field and Stochastic Approaches; 1.3.4. Modelling Related Systems; 1.4. Unified Features of Quantum Gases; 1.4.1. Non-Equilibrium BECs and the Thermal Phase Transition; 1.4.2. Thermal and Quantum Fluctuations; 1.4.3. Quantum Phase Transitions and Disorder; 1.4.4. The Superfluid Fraction, its Relation to the Condensate and the Issue of Fragmentation; 1.4.5. Strongly Correlated Physics
1.4.6. Ultracold Fermions1.4.7. Potential Applications; 1.4.8. Other Systems Exhibiting Condensation; Acknowledgements; I.B. Quantum Gases: Experimental Considerations; 2. Ultracold Quantum Gases: Experiments with Many-Body Systems in Controlled Environments P. Kruger; 2.1. Introduction; 2.2. Condensate Formation and Growth; 2.3. Excitations of Bose-Einstein Condensates; 2.4. Strongly Correlated and Phase-Fluctuating Systems; 2.4.1. Feshbach Resonances; 2.4.2. Optical Lattices; 2.4.3. Low-Dimensional Systems; Acknowledgements
3. Ultracold Quantum Gases: Key Experimental Techniques S.A. Hopkins & S.L. Cornish3.1. Introduction; 3.2. Basic Experimental Techniques; 3.2.1. Overview; 3.2.2. Laser Cooling and Trapping of Atoms; 3.2.3. Magnetic Traps; 3.2.4. Dipole Traps; 3.2.5. Evaporative (and Sympathetic) Cooling; 3.2.6. Feshbach Resonances; 3.2.7. Manipulation and Visualisation; 3.2.8. Cold Molecules; 3.3. High-Level Techniques; 3.3.1. Interferometry; 3.3.2. Optical Lattices; 3.3.3. Rotation, Vortices, and Phase Imprinting; 3.3.4. Microtraps (or 'Atom Chips'); 3.3.5. Matter-Wave Lasers (or 'Atom Lasers')
3.4. New Tools and Topical Areas3.5. Summary and Outlook; Acknowledgements; I.C. Quantum Gases: Background Key Theoretical Notions; 4. Introduction to Theoretical Modelling M.J. Davis, S.A. Gardiner, T.M. Hanna, N. Nygaard, N.P. Proukakis & M.H. Szymanska; 4.1. Introduction; 4.2. Second Quantisation; 4.3. Effective Interactions; 4.4. Broken Symmetry Versus Number Conservation; 4.5. Fluctuations and Degeneracy in Low Dimensions; 4.6. Periodic Potentials ('Optical Lattices'); 4.7. Fermionic Issues; 4.8. Feshbach Resonances; 4.9. Summary; Acknowledgements
Part II. Ultracold Bosonic Gases: Theoretical Modelling
Record Nr. UNINA-9910452301103321
London, : Imperial College Press
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Quantum gases : finite temperatures and non-equilibrium dynamics / / editors, Nick Proukakis, Newcastle University, UK [and others]
Quantum gases : finite temperatures and non-equilibrium dynamics / / editors, Nick Proukakis, Newcastle University, UK [and others]
Pubbl/distr/stampa London, : Imperial College Press
Descrizione fisica 1 online resource (xxiv, 554 pages) : illustrations
Disciplina 530.4/74
539
Collana Cold Atoms
Soggetto topico Cold gases
Quantum theory
Gases - Thermal properties
Phase transformations (Statistical physics)
ISBN 1-299-46212-X
1-84816-812-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface; Foreword; Participants of FINESS 2009 (Durham); Contents; Common Symbols/Expressions and their Meanings; Part I. Introductory Material; Editorial Notes; I.A. Quantum Gases: The Background; 1. Quantum Gases: Setting the Scene N.P. Proukakis & K. Burnett; 1.1. Introduction: Background to Quantum Fluids and Gases; 1.2. History of Non-Equilibrium and Finite-Temperature Pure BEC Experiments; 1.2.1. The Search for Idealised Systems: Spin-Polarised Hydrogen; 1.2.2. The Twist to an Unlikely Candidate: The Scene Opens up for Alkali Atoms; 1.2.3. Rival Candidates Gaining Ground?
1.3. Modelling Quantum Degenerate Gases1.3.1. The Success of Phenomenology; 1.3.2. Ab Initio Modelling; 1.3.2.1. The Gross-Pitaevskii Equation; 1.3.2.2. Generalised Kinetic Theories; 1.3.3. Classical-Field and Stochastic Approaches; 1.3.4. Modelling Related Systems; 1.4. Unified Features of Quantum Gases; 1.4.1. Non-Equilibrium BECs and the Thermal Phase Transition; 1.4.2. Thermal and Quantum Fluctuations; 1.4.3. Quantum Phase Transitions and Disorder; 1.4.4. The Superfluid Fraction, its Relation to the Condensate and the Issue of Fragmentation; 1.4.5. Strongly Correlated Physics
1.4.6. Ultracold Fermions1.4.7. Potential Applications; 1.4.8. Other Systems Exhibiting Condensation; Acknowledgements; I.B. Quantum Gases: Experimental Considerations; 2. Ultracold Quantum Gases: Experiments with Many-Body Systems in Controlled Environments P. Kruger; 2.1. Introduction; 2.2. Condensate Formation and Growth; 2.3. Excitations of Bose-Einstein Condensates; 2.4. Strongly Correlated and Phase-Fluctuating Systems; 2.4.1. Feshbach Resonances; 2.4.2. Optical Lattices; 2.4.3. Low-Dimensional Systems; Acknowledgements
3. Ultracold Quantum Gases: Key Experimental Techniques S.A. Hopkins & S.L. Cornish3.1. Introduction; 3.2. Basic Experimental Techniques; 3.2.1. Overview; 3.2.2. Laser Cooling and Trapping of Atoms; 3.2.3. Magnetic Traps; 3.2.4. Dipole Traps; 3.2.5. Evaporative (and Sympathetic) Cooling; 3.2.6. Feshbach Resonances; 3.2.7. Manipulation and Visualisation; 3.2.8. Cold Molecules; 3.3. High-Level Techniques; 3.3.1. Interferometry; 3.3.2. Optical Lattices; 3.3.3. Rotation, Vortices, and Phase Imprinting; 3.3.4. Microtraps (or 'Atom Chips'); 3.3.5. Matter-Wave Lasers (or 'Atom Lasers')
3.4. New Tools and Topical Areas3.5. Summary and Outlook; Acknowledgements; I.C. Quantum Gases: Background Key Theoretical Notions; 4. Introduction to Theoretical Modelling M.J. Davis, S.A. Gardiner, T.M. Hanna, N. Nygaard, N.P. Proukakis & M.H. Szymanska; 4.1. Introduction; 4.2. Second Quantisation; 4.3. Effective Interactions; 4.4. Broken Symmetry Versus Number Conservation; 4.5. Fluctuations and Degeneracy in Low Dimensions; 4.6. Periodic Potentials ('Optical Lattices'); 4.7. Fermionic Issues; 4.8. Feshbach Resonances; 4.9. Summary; Acknowledgements
Part II. Ultracold Bosonic Gases: Theoretical Modelling
Record Nr. UNINA-9910779690503321
London, : Imperial College Press
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Quantum gases : finite temperatures and non-equilibrium dynamics / / editors, Nick Proukakis, Newcastle University, UK [and others]
Quantum gases : finite temperatures and non-equilibrium dynamics / / editors, Nick Proukakis, Newcastle University, UK [and others]
Pubbl/distr/stampa London, : Imperial College Press
Descrizione fisica 1 online resource (xxiv, 554 pages) : illustrations
Disciplina 530.4/74
539
Collana Cold Atoms
Soggetto topico Cold gases
Quantum theory
Gases - Thermal properties
Phase transformations (Statistical physics)
ISBN 1-299-46212-X
1-84816-812-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface; Foreword; Participants of FINESS 2009 (Durham); Contents; Common Symbols/Expressions and their Meanings; Part I. Introductory Material; Editorial Notes; I.A. Quantum Gases: The Background; 1. Quantum Gases: Setting the Scene N.P. Proukakis & K. Burnett; 1.1. Introduction: Background to Quantum Fluids and Gases; 1.2. History of Non-Equilibrium and Finite-Temperature Pure BEC Experiments; 1.2.1. The Search for Idealised Systems: Spin-Polarised Hydrogen; 1.2.2. The Twist to an Unlikely Candidate: The Scene Opens up for Alkali Atoms; 1.2.3. Rival Candidates Gaining Ground?
1.3. Modelling Quantum Degenerate Gases1.3.1. The Success of Phenomenology; 1.3.2. Ab Initio Modelling; 1.3.2.1. The Gross-Pitaevskii Equation; 1.3.2.2. Generalised Kinetic Theories; 1.3.3. Classical-Field and Stochastic Approaches; 1.3.4. Modelling Related Systems; 1.4. Unified Features of Quantum Gases; 1.4.1. Non-Equilibrium BECs and the Thermal Phase Transition; 1.4.2. Thermal and Quantum Fluctuations; 1.4.3. Quantum Phase Transitions and Disorder; 1.4.4. The Superfluid Fraction, its Relation to the Condensate and the Issue of Fragmentation; 1.4.5. Strongly Correlated Physics
1.4.6. Ultracold Fermions1.4.7. Potential Applications; 1.4.8. Other Systems Exhibiting Condensation; Acknowledgements; I.B. Quantum Gases: Experimental Considerations; 2. Ultracold Quantum Gases: Experiments with Many-Body Systems in Controlled Environments P. Kruger; 2.1. Introduction; 2.2. Condensate Formation and Growth; 2.3. Excitations of Bose-Einstein Condensates; 2.4. Strongly Correlated and Phase-Fluctuating Systems; 2.4.1. Feshbach Resonances; 2.4.2. Optical Lattices; 2.4.3. Low-Dimensional Systems; Acknowledgements
3. Ultracold Quantum Gases: Key Experimental Techniques S.A. Hopkins & S.L. Cornish3.1. Introduction; 3.2. Basic Experimental Techniques; 3.2.1. Overview; 3.2.2. Laser Cooling and Trapping of Atoms; 3.2.3. Magnetic Traps; 3.2.4. Dipole Traps; 3.2.5. Evaporative (and Sympathetic) Cooling; 3.2.6. Feshbach Resonances; 3.2.7. Manipulation and Visualisation; 3.2.8. Cold Molecules; 3.3. High-Level Techniques; 3.3.1. Interferometry; 3.3.2. Optical Lattices; 3.3.3. Rotation, Vortices, and Phase Imprinting; 3.3.4. Microtraps (or 'Atom Chips'); 3.3.5. Matter-Wave Lasers (or 'Atom Lasers')
3.4. New Tools and Topical Areas3.5. Summary and Outlook; Acknowledgements; I.C. Quantum Gases: Background Key Theoretical Notions; 4. Introduction to Theoretical Modelling M.J. Davis, S.A. Gardiner, T.M. Hanna, N. Nygaard, N.P. Proukakis & M.H. Szymanska; 4.1. Introduction; 4.2. Second Quantisation; 4.3. Effective Interactions; 4.4. Broken Symmetry Versus Number Conservation; 4.5. Fluctuations and Degeneracy in Low Dimensions; 4.6. Periodic Potentials ('Optical Lattices'); 4.7. Fermionic Issues; 4.8. Feshbach Resonances; 4.9. Summary; Acknowledgements
Part II. Ultracold Bosonic Gases: Theoretical Modelling
Record Nr. UNINA-9910822478503321
London, : Imperial College Press
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui