The BCS-BEC crossover and the unitary Fermi gas / / Wilhelm Zwerger, editor
| The BCS-BEC crossover and the unitary Fermi gas / / Wilhelm Zwerger, editor |
| Edizione | [1st ed. 2012.] |
| Pubbl/distr/stampa | Heidelberg ; ; New York, : Springer, 2012 |
| Descrizione fisica | 1 online resource (XVI, 532 p. 154 illus.) |
| Disciplina | 539 |
| Altri autori (Persone) | ZwergerWilhelm |
| Collana | Lecture notes in physics |
| Soggetto topico |
Cold gases
Electron gas |
| ISBN |
9783642219788
3642219780 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Preface -- The BCS-BEC Crossover and the Unitary Fermi Gas -- The BEC-BCS Crossover: Some History and Some General Observations -- Crossovers in Unitary Fermi Systems -- Pairing Fluctuations Approach to the BCS-BEC Crossover -- The Unitary Gas and its Symmetry Properties -- Universal Relations for Termions With Large Scattering Length -- Unitary Fermi Gas, E Expansion, and Nonrelativistic Conformal Field Theories -- Dilute Fermi and Bose Gases -- The Unitary Fermi Gas: From Monte Carlo to Density Functionals -- Scaling Flows and Dissipation in the Dilute Fermi Gas at Unitarity -- Thermodynamics of Fermi Gases -- Normal Phase of Polarised Strongly Interacting Fermi Gases -- Thermodynamics of Trapped Imbalanced Fermi Gases at Unitarity -- BCE-BEC Crossover and Unconventional Superfluid Order in one Dimension. |
| Record Nr. | UNINA-9910139570703321 |
| Heidelberg ; ; New York, : Springer, 2012 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Many-body physics with ultracold gases [[electronic resource] /] / edited by Christophe Salomon, Georgy V. Shlyapnikov and Leticia F. Cugliandolo
| Many-body physics with ultracold gases [[electronic resource] /] / edited by Christophe Salomon, Georgy V. Shlyapnikov and Leticia F. Cugliandolo |
| Pubbl/distr/stampa | Oxford, : Oxford University Press, 2013 |
| Descrizione fisica | 1 online resource (374 p.) |
| Disciplina | 530.43 |
| Altri autori (Persone) |
SalomonC (Christophe)
ShlyapnikovGeorgy V CugliandoloL. F (Leticia F.) |
| Collana | Lecture Notes of the Les Houches Summer School |
| Soggetto topico |
Cold gases
Nuclear physics Condensed matter |
| Soggetto genere / forma | Electronic books. |
| ISBN |
1-283-73307-2
0-19-163801-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover; Contents; List of participants; 1 Strongly correlated bosons and fermions in optical lattices; 1.1 Introduction; 1.2 Optical lattices; 1.3 The Bose-Hubbard model and the superfluid to Mott insulator transition; 1.4 One-dimensional bosons and bosonization; 1.5 From free fermions to Fermi liquids; 1.6 Mott transition of fermions: three dimensions; 1.7 One-dimensional fermions; 1.8 Conclusion; Acknowledgements; References; 2 Ultracold atoms in optical lattices; 2.1 Overview; 2.2 Introduction; 2.3 Basics of optical lattices; 2.4 Detection methods; 2.5 Bose- and Fermi-Hubbard models
2.6 Quantum magnetism with ultracold atoms in optical lattices2.7 Single-site and single-atom resolved imaging of quantum gases in optical lattices; References; 3 The few-atom problem; 3.1 Overview; 3.2 The two-body problem and resonance width; 3.3 Basics of the three-body problem with short-range interactions; 3.4 The method of Skorniakov and Ter-Martirosian (STM) for few-body problems with resonant short-range interactions; 3.5 Final remarks; Acknowledgements; References; 4 Entanglement in many-body quantum systems; 4.1 Introduction; 4.2 Entanglement in many-body systems: pure states 4.3 Entanglement in many-body systems: mixed states4.4 Entanglement and area laws; 4.5 Tensor network states; 4.6 Conclusions; References; 5 Quantum Hall states of ultracold atomic gases; 5.1 Introduction; 5.2 Rapid rotation; 5.3 Optically induced gauge fields; 5.4 Bose gases; 5.5 Fermi gases; 5.6 Summary; Acknowledgements; References; 6 Theory of dipolar gases; 6.1 The dipole-dipole interaction; 6.2 Dipolar Bose-Einstein condensates; 6.3 Dipolar gases in optical lattices; 6.4 Conclusions; References; 7 Ultracold polar molecules; 7.1 Motivation and challenges 7.2 Making ultracold polar molecules7.3 Characterizing the ultracold polar molecules; 7.4 Ultracold chemistry, dipolar interactions, and reduced dimensionality; Acknowledgements; References; 8 Ultracold Fermi gases as quantum simulators of condensed matter physics; 8.1 Introduction; 8.2 The non-interacting Fermi gas; 8.3 Fermionic super.uidity and the BEC-BCS crossover; 8.4 Probing the fermionic superfluid; 8.5 Conclusion; References; 9 Competing instabilities in quench experiments with ultracold Fermi gases near a Feshbach resonance; 9.1 Overview; 9.2 Introduction 9.3 Linear response and collective modes9.4 Feshbach resonance via pseudo-potentials; 9.5 Application to pairing susceptibility; 9.6 More on Stoner instability; 9.7 Discussion; 9.8 Concluding remarks; Acknowledgements; References; 10 Anderson localization of ultracold atoms in a laser speckle; 10.1 Anderson localization for the beginner; 10.2 Ultracold atoms in optical speckle: a good candidate for the observation of Anderson localization; 10.3 One-dimensional Anderson localization?; 10.4 Direct observation of Anderson localized 1D wavefunctions 10.5 What happens beyond the 1D effective mobility edge? |
| Record Nr. | UNINA-9910464686803321 |
| Oxford, : Oxford University Press, 2013 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Many-body physics with ultracold gases [[electronic resource] /] / edited by Christophe Salomon, Georgy V. Shlyapnikov and Leticia F. Cugliandolo
| Many-body physics with ultracold gases [[electronic resource] /] / edited by Christophe Salomon, Georgy V. Shlyapnikov and Leticia F. Cugliandolo |
| Pubbl/distr/stampa | Oxford, : Oxford University Press, 2013 |
| Descrizione fisica | 1 v. : ill |
| Disciplina | 530.43 |
| Altri autori (Persone) |
SalomonC (Christophe)
ShlyapnikovGeorgy V CugliandoloL. F (Leticia F.) |
| Soggetto topico |
Cold gases
Nuclear physics Condensed matter |
| ISBN |
1-283-73307-2
0-19-163801-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910795704003321 |
| Oxford, : Oxford University Press, 2013 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Many-body physics with ultracold gases / / edited by Christophe Salomon, Georgy V. Shlyapnikov and Leticia F. Cugliandolo
| Many-body physics with ultracold gases / / edited by Christophe Salomon, Georgy V. Shlyapnikov and Leticia F. Cugliandolo |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Oxford, : Oxford University Press, 2013 |
| Descrizione fisica | 1 v. : ill |
| Disciplina | 530.43 |
| Altri autori (Persone) |
SalomonC (Christophe)
ShlyapnikovGeorgy V CugliandoloL. F (Leticia F.) |
| Collana | Lecture Notes of the les Houches Summer School Ser. |
| Soggetto topico |
Cold gases
Nuclear physics Condensed matter |
| ISBN |
9781283733076
1283733072 9780191638015 0191638013 9780191748356 0191748358 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Contents -- List of participants -- 1 Strongly correlated bosons and fermions in optical lattices -- 1.1 Introduction -- 1.2 Optical lattices -- 1.3 The Bose-Hubbard model and the superfluid to Mott insulator transition -- 1.4 One-dimensional bosons and bosonization -- 1.5 From free fermions to Fermi liquids -- 1.6 Mott transition of fermions: three dimensions -- 1.7 One-dimensional fermions -- 1.8 Conclusion -- Acknowledgements -- References -- 2 Ultracold atoms in optical lattices -- 2.1 Overview -- 2.2 Introduction -- 2.3 Basics of optical lattices -- 2.4 Detection methods -- 2.5 Bose- and Fermi-Hubbard models -- 2.6 Quantum magnetism with ultracold atoms in optical lattices -- 2.7 Single-site and single-atom resolved imaging of quantum gases in optical lattices -- References -- 3 The few-atom problem -- 3.1 Overview -- 3.2 The two-body problem and resonance width -- 3.3 Basics of the three-body problem with short-range interactions -- 3.4 The method of Skorniakov and Ter-Martirosian (STM) for few-body problems with resonant short-range interactions -- 3.5 Final remarks -- Acknowledgements -- References -- 4 Entanglement in many-body quantum systems -- 4.1 Introduction -- 4.2 Entanglement in many-body systems: pure states -- 4.3 Entanglement in many-body systems: mixed states -- 4.4 Entanglement and area laws -- 4.5 Tensor network states -- 4.6 Conclusions -- References -- 5 Quantum Hall states of ultracold atomic gases -- 5.1 Introduction -- 5.2 Rapid rotation -- 5.3 Optically induced gauge fields -- 5.4 Bose gases -- 5.5 Fermi gases -- 5.6 Summary -- Acknowledgements -- References -- 6 Theory of dipolar gases -- 6.1 The dipole-dipole interaction -- 6.2 Dipolar Bose-Einstein condensates -- 6.3 Dipolar gases in optical lattices -- 6.4 Conclusions -- References -- 7 Ultracold polar molecules -- 7.1 Motivation and challenges.
7.2 Making ultracold polar molecules -- 7.3 Characterizing the ultracold polar molecules -- 7.4 Ultracold chemistry, dipolar interactions, and reduced dimensionality -- Acknowledgements -- References -- 8 Ultracold Fermi gases as quantum simulators of condensed matter physics -- 8.1 Introduction -- 8.2 The non-interacting Fermi gas -- 8.3 Fermionic super.uidity and the BEC-BCS crossover -- 8.4 Probing the fermionic superfluid -- 8.5 Conclusion -- References -- 9 Competing instabilities in quench experiments with ultracold Fermi gases near a Feshbach resonance -- 9.1 Overview -- 9.2 Introduction -- 9.3 Linear response and collective modes -- 9.4 Feshbach resonance via pseudo-potentials -- 9.5 Application to pairing susceptibility -- 9.6 More on Stoner instability -- 9.7 Discussion -- 9.8 Concluding remarks -- Acknowledgements -- References -- 10 Anderson localization of ultracold atoms in a laser speckle -- 10.1 Anderson localization for the beginner -- 10.2 Ultracold atoms in optical speckle: a good candidate for the observation of Anderson localization -- 10.3 One-dimensional Anderson localization? -- 10.4 Direct observation of Anderson localized 1D wavefunctions -- 10.5 What happens beyond the 1D effective mobility edge? -- 10.6 Towards 2D and 3D experimental studies of AL: a quantum simulator with cold atoms -- Acknowledgements -- References. |
| Record Nr. | UNINA-9910957625103321 |
| Oxford, : Oxford University Press, 2013 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Modeling impacts for cold-gas dynamic spray [[electronic resource] /] / William S. de Rosset
| Modeling impacts for cold-gas dynamic spray [[electronic resource] /] / William S. de Rosset |
| Autore | De Rosset William S |
| Pubbl/distr/stampa | Aberdeen Proving Ground, MD : , : Army Research Laboratory, , [2006] |
| Descrizione fisica | 1 online resource (vi, 24 pages) : illustrations |
| Collana | ARL-TR |
| Soggetto topico |
Fluid mechanics - Mathematical models
Adhesion Particles Cold gases |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910696986103321 |
De Rosset William S
|
||
| Aberdeen Proving Ground, MD : , : Army Research Laboratory, , [2006] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Physics of ultra-cold matter : atomic clouds, Bose Einstein condensates and Rydberg plasmas / / J.T. Mendonca, Hugo Tercas
| Physics of ultra-cold matter : atomic clouds, Bose Einstein condensates and Rydberg plasmas / / J.T. Mendonca, Hugo Tercas |
| Autore | Mendonca J. T |
| Edizione | [1st ed. 2013.] |
| Pubbl/distr/stampa | New York, : Springer, 2013 |
| Descrizione fisica | 1 online resource (410 p.) |
| Disciplina | 530.4 |
| Altri autori (Persone) | TercasHugo |
| Collana | Springer series on atomic, optical, and plasma physics |
| Soggetto topico |
Cold gases
Bose-Einstein condensation Rydberg states |
| ISBN |
1-283-91138-8
1-4614-5413-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | pt. I. Atomic clouds -- pt. II. The physics of Bose-Einstein condensates -- pt. III. The physics of ultracold plasmas. |
| Record Nr. | UNINA-9910438116503321 |
Mendonca J. T
|
||
| New York, : Springer, 2013 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Quantum gases [[electronic resource] ] : finite temperature and non-equilibrium dynamics / / editors, Nick Proukakis ... [et al.]
| Quantum gases [[electronic resource] ] : finite temperature and non-equilibrium dynamics / / editors, Nick Proukakis ... [et al.] |
| Pubbl/distr/stampa | London, : Imperial College Press |
| Descrizione fisica | 1 online resource (579 p.) |
| Disciplina |
530.4/74
539 |
| Altri autori (Persone) | ProukakisNick |
| Collana | Cold Atoms |
| Soggetto topico |
Cold gases
Quantum theory |
| Soggetto genere / forma | Electronic books. |
| ISBN |
1-299-46212-X
1-84816-812-8 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Preface; Foreword; Participants of FINESS 2009 (Durham); Contents; Common Symbols/Expressions and their Meanings; Part I. Introductory Material; Editorial Notes; I.A. Quantum Gases: The Background; 1. Quantum Gases: Setting the Scene N.P. Proukakis & K. Burnett; 1.1. Introduction: Background to Quantum Fluids and Gases; 1.2. History of Non-Equilibrium and Finite-Temperature Pure BEC Experiments; 1.2.1. The Search for Idealised Systems: Spin-Polarised Hydrogen; 1.2.2. The Twist to an Unlikely Candidate: The Scene Opens up for Alkali Atoms; 1.2.3. Rival Candidates Gaining Ground?
1.3. Modelling Quantum Degenerate Gases1.3.1. The Success of Phenomenology; 1.3.2. Ab Initio Modelling; 1.3.2.1. The Gross-Pitaevskii Equation; 1.3.2.2. Generalised Kinetic Theories; 1.3.3. Classical-Field and Stochastic Approaches; 1.3.4. Modelling Related Systems; 1.4. Unified Features of Quantum Gases; 1.4.1. Non-Equilibrium BECs and the Thermal Phase Transition; 1.4.2. Thermal and Quantum Fluctuations; 1.4.3. Quantum Phase Transitions and Disorder; 1.4.4. The Superfluid Fraction, its Relation to the Condensate and the Issue of Fragmentation; 1.4.5. Strongly Correlated Physics 1.4.6. Ultracold Fermions1.4.7. Potential Applications; 1.4.8. Other Systems Exhibiting Condensation; Acknowledgements; I.B. Quantum Gases: Experimental Considerations; 2. Ultracold Quantum Gases: Experiments with Many-Body Systems in Controlled Environments P. Kruger; 2.1. Introduction; 2.2. Condensate Formation and Growth; 2.3. Excitations of Bose-Einstein Condensates; 2.4. Strongly Correlated and Phase-Fluctuating Systems; 2.4.1. Feshbach Resonances; 2.4.2. Optical Lattices; 2.4.3. Low-Dimensional Systems; Acknowledgements 3. Ultracold Quantum Gases: Key Experimental Techniques S.A. Hopkins & S.L. Cornish3.1. Introduction; 3.2. Basic Experimental Techniques; 3.2.1. Overview; 3.2.2. Laser Cooling and Trapping of Atoms; 3.2.3. Magnetic Traps; 3.2.4. Dipole Traps; 3.2.5. Evaporative (and Sympathetic) Cooling; 3.2.6. Feshbach Resonances; 3.2.7. Manipulation and Visualisation; 3.2.8. Cold Molecules; 3.3. High-Level Techniques; 3.3.1. Interferometry; 3.3.2. Optical Lattices; 3.3.3. Rotation, Vortices, and Phase Imprinting; 3.3.4. Microtraps (or 'Atom Chips'); 3.3.5. Matter-Wave Lasers (or 'Atom Lasers') 3.4. New Tools and Topical Areas3.5. Summary and Outlook; Acknowledgements; I.C. Quantum Gases: Background Key Theoretical Notions; 4. Introduction to Theoretical Modelling M.J. Davis, S.A. Gardiner, T.M. Hanna, N. Nygaard, N.P. Proukakis & M.H. Szymanska; 4.1. Introduction; 4.2. Second Quantisation; 4.3. Effective Interactions; 4.4. Broken Symmetry Versus Number Conservation; 4.5. Fluctuations and Degeneracy in Low Dimensions; 4.6. Periodic Potentials ('Optical Lattices'); 4.7. Fermionic Issues; 4.8. Feshbach Resonances; 4.9. Summary; Acknowledgements Part II. Ultracold Bosonic Gases: Theoretical Modelling |
| Record Nr. | UNINA-9910452301103321 |
| London, : Imperial College Press | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Quantum gases : finite temperatures and non-equilibrium dynamics / / editors, Nick Proukakis, Newcastle University, UK [and others]
| Quantum gases : finite temperatures and non-equilibrium dynamics / / editors, Nick Proukakis, Newcastle University, UK [and others] |
| Pubbl/distr/stampa | London, : Imperial College Press |
| Descrizione fisica | 1 online resource (xxiv, 554 pages) : illustrations |
| Disciplina |
530.4/74
539 |
| Collana | Cold Atoms |
| Soggetto topico |
Cold gases
Quantum theory Gases - Thermal properties Phase transformations (Statistical physics) |
| ISBN |
1-299-46212-X
1-84816-812-8 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Preface; Foreword; Participants of FINESS 2009 (Durham); Contents; Common Symbols/Expressions and their Meanings; Part I. Introductory Material; Editorial Notes; I.A. Quantum Gases: The Background; 1. Quantum Gases: Setting the Scene N.P. Proukakis & K. Burnett; 1.1. Introduction: Background to Quantum Fluids and Gases; 1.2. History of Non-Equilibrium and Finite-Temperature Pure BEC Experiments; 1.2.1. The Search for Idealised Systems: Spin-Polarised Hydrogen; 1.2.2. The Twist to an Unlikely Candidate: The Scene Opens up for Alkali Atoms; 1.2.3. Rival Candidates Gaining Ground?
1.3. Modelling Quantum Degenerate Gases1.3.1. The Success of Phenomenology; 1.3.2. Ab Initio Modelling; 1.3.2.1. The Gross-Pitaevskii Equation; 1.3.2.2. Generalised Kinetic Theories; 1.3.3. Classical-Field and Stochastic Approaches; 1.3.4. Modelling Related Systems; 1.4. Unified Features of Quantum Gases; 1.4.1. Non-Equilibrium BECs and the Thermal Phase Transition; 1.4.2. Thermal and Quantum Fluctuations; 1.4.3. Quantum Phase Transitions and Disorder; 1.4.4. The Superfluid Fraction, its Relation to the Condensate and the Issue of Fragmentation; 1.4.5. Strongly Correlated Physics 1.4.6. Ultracold Fermions1.4.7. Potential Applications; 1.4.8. Other Systems Exhibiting Condensation; Acknowledgements; I.B. Quantum Gases: Experimental Considerations; 2. Ultracold Quantum Gases: Experiments with Many-Body Systems in Controlled Environments P. Kruger; 2.1. Introduction; 2.2. Condensate Formation and Growth; 2.3. Excitations of Bose-Einstein Condensates; 2.4. Strongly Correlated and Phase-Fluctuating Systems; 2.4.1. Feshbach Resonances; 2.4.2. Optical Lattices; 2.4.3. Low-Dimensional Systems; Acknowledgements 3. Ultracold Quantum Gases: Key Experimental Techniques S.A. Hopkins & S.L. Cornish3.1. Introduction; 3.2. Basic Experimental Techniques; 3.2.1. Overview; 3.2.2. Laser Cooling and Trapping of Atoms; 3.2.3. Magnetic Traps; 3.2.4. Dipole Traps; 3.2.5. Evaporative (and Sympathetic) Cooling; 3.2.6. Feshbach Resonances; 3.2.7. Manipulation and Visualisation; 3.2.8. Cold Molecules; 3.3. High-Level Techniques; 3.3.1. Interferometry; 3.3.2. Optical Lattices; 3.3.3. Rotation, Vortices, and Phase Imprinting; 3.3.4. Microtraps (or 'Atom Chips'); 3.3.5. Matter-Wave Lasers (or 'Atom Lasers') 3.4. New Tools and Topical Areas3.5. Summary and Outlook; Acknowledgements; I.C. Quantum Gases: Background Key Theoretical Notions; 4. Introduction to Theoretical Modelling M.J. Davis, S.A. Gardiner, T.M. Hanna, N. Nygaard, N.P. Proukakis & M.H. Szymanska; 4.1. Introduction; 4.2. Second Quantisation; 4.3. Effective Interactions; 4.4. Broken Symmetry Versus Number Conservation; 4.5. Fluctuations and Degeneracy in Low Dimensions; 4.6. Periodic Potentials ('Optical Lattices'); 4.7. Fermionic Issues; 4.8. Feshbach Resonances; 4.9. Summary; Acknowledgements Part II. Ultracold Bosonic Gases: Theoretical Modelling |
| Record Nr. | UNINA-9910779690503321 |
| London, : Imperial College Press | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Quantum gases : finite temperatures and non-equilibrium dynamics / / editors, Nick Proukakis, Newcastle University, UK [and others]
| Quantum gases : finite temperatures and non-equilibrium dynamics / / editors, Nick Proukakis, Newcastle University, UK [and others] |
| Pubbl/distr/stampa | London, : Imperial College Press |
| Descrizione fisica | 1 online resource (xxiv, 554 pages) : illustrations |
| Disciplina |
530.4/74
539 |
| Collana | Cold Atoms |
| Soggetto topico |
Cold gases
Quantum theory Gases - Thermal properties Phase transformations (Statistical physics) |
| ISBN |
1-299-46212-X
1-84816-812-8 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Preface; Foreword; Participants of FINESS 2009 (Durham); Contents; Common Symbols/Expressions and their Meanings; Part I. Introductory Material; Editorial Notes; I.A. Quantum Gases: The Background; 1. Quantum Gases: Setting the Scene N.P. Proukakis & K. Burnett; 1.1. Introduction: Background to Quantum Fluids and Gases; 1.2. History of Non-Equilibrium and Finite-Temperature Pure BEC Experiments; 1.2.1. The Search for Idealised Systems: Spin-Polarised Hydrogen; 1.2.2. The Twist to an Unlikely Candidate: The Scene Opens up for Alkali Atoms; 1.2.3. Rival Candidates Gaining Ground?
1.3. Modelling Quantum Degenerate Gases1.3.1. The Success of Phenomenology; 1.3.2. Ab Initio Modelling; 1.3.2.1. The Gross-Pitaevskii Equation; 1.3.2.2. Generalised Kinetic Theories; 1.3.3. Classical-Field and Stochastic Approaches; 1.3.4. Modelling Related Systems; 1.4. Unified Features of Quantum Gases; 1.4.1. Non-Equilibrium BECs and the Thermal Phase Transition; 1.4.2. Thermal and Quantum Fluctuations; 1.4.3. Quantum Phase Transitions and Disorder; 1.4.4. The Superfluid Fraction, its Relation to the Condensate and the Issue of Fragmentation; 1.4.5. Strongly Correlated Physics 1.4.6. Ultracold Fermions1.4.7. Potential Applications; 1.4.8. Other Systems Exhibiting Condensation; Acknowledgements; I.B. Quantum Gases: Experimental Considerations; 2. Ultracold Quantum Gases: Experiments with Many-Body Systems in Controlled Environments P. Kruger; 2.1. Introduction; 2.2. Condensate Formation and Growth; 2.3. Excitations of Bose-Einstein Condensates; 2.4. Strongly Correlated and Phase-Fluctuating Systems; 2.4.1. Feshbach Resonances; 2.4.2. Optical Lattices; 2.4.3. Low-Dimensional Systems; Acknowledgements 3. Ultracold Quantum Gases: Key Experimental Techniques S.A. Hopkins & S.L. Cornish3.1. Introduction; 3.2. Basic Experimental Techniques; 3.2.1. Overview; 3.2.2. Laser Cooling and Trapping of Atoms; 3.2.3. Magnetic Traps; 3.2.4. Dipole Traps; 3.2.5. Evaporative (and Sympathetic) Cooling; 3.2.6. Feshbach Resonances; 3.2.7. Manipulation and Visualisation; 3.2.8. Cold Molecules; 3.3. High-Level Techniques; 3.3.1. Interferometry; 3.3.2. Optical Lattices; 3.3.3. Rotation, Vortices, and Phase Imprinting; 3.3.4. Microtraps (or 'Atom Chips'); 3.3.5. Matter-Wave Lasers (or 'Atom Lasers') 3.4. New Tools and Topical Areas3.5. Summary and Outlook; Acknowledgements; I.C. Quantum Gases: Background Key Theoretical Notions; 4. Introduction to Theoretical Modelling M.J. Davis, S.A. Gardiner, T.M. Hanna, N. Nygaard, N.P. Proukakis & M.H. Szymanska; 4.1. Introduction; 4.2. Second Quantisation; 4.3. Effective Interactions; 4.4. Broken Symmetry Versus Number Conservation; 4.5. Fluctuations and Degeneracy in Low Dimensions; 4.6. Periodic Potentials ('Optical Lattices'); 4.7. Fermionic Issues; 4.8. Feshbach Resonances; 4.9. Summary; Acknowledgements Part II. Ultracold Bosonic Gases: Theoretical Modelling |
| Record Nr. | UNINA-9910822478503321 |
| London, : Imperial College Press | ||
| Lo trovi qui: Univ. Federico II | ||
| ||