Connes-Chern character for manifolds with boundary and eta cochains / / Matthias Lesch, Henri Moscovici, Markus J. Pflaum |
Autore | Lesch Matthias <1961-> |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2012 |
Descrizione fisica | 1 online resource (92 p.) |
Disciplina | 516/.07 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Chern classes
Boundary value problems Manifolds (Mathematics) |
Soggetto genere / forma | Electronic books. |
ISBN | 0-8218-9209-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | ""Contents""; ""List of Figures""; ""Introduction""; ""Chapter 1. Preliminaries""; ""1.1. The general setup""; ""1.2. Relative cyclic cohomology""; ""1.3. The Chern character""; ""1.4. Dirac operators and -graded Clifford modules""; ""1.5. The relative Connes�Chern character of a Dirac operator over a manifold with boundary""; ""1.6. Exact b-metrics and b-functions on cylinders""; ""1.7. Global symbol calculus for pseudodifferential operators""; ""1.8. Classical b-pseudodifferential operators""; ""1.9. Indicial family""; ""Chapter 2. The b-Analogue of the Entire Chern Character"" |
Record Nr. | UNINA-9910480154103321 |
Lesch Matthias <1961-> | ||
Providence, Rhode Island : , : American Mathematical Society, , 2012 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Connes-Chern character for manifolds with boundary and eta cochains / / Matthias Lesch, Henri Moscovici, Markus J. Pflaum |
Autore | Lesch Matthias <1961-> |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2012 |
Descrizione fisica | 1 online resource (92 p.) |
Disciplina | 516/.07 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Chern classes
Boundary value problems Manifolds (Mathematics) |
ISBN | 0-8218-9209-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | ""Contents""; ""List of Figures""; ""Introduction""; ""Chapter 1. Preliminaries""; ""1.1. The general setup""; ""1.2. Relative cyclic cohomology""; ""1.3. The Chern character""; ""1.4. Dirac operators and -graded Clifford modules""; ""1.5. The relative Connes�Chern character of a Dirac operator over a manifold with boundary""; ""1.6. Exact b-metrics and b-functions on cylinders""; ""1.7. Global symbol calculus for pseudodifferential operators""; ""1.8. Classical b-pseudodifferential operators""; ""1.9. Indicial family""; ""Chapter 2. The b-Analogue of the Entire Chern Character"" |
Record Nr. | UNINA-9910788608003321 |
Lesch Matthias <1961-> | ||
Providence, Rhode Island : , : American Mathematical Society, , 2012 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Connes-Chern character for manifolds with boundary and eta cochains / / Matthias Lesch, Henri Moscovici, Markus J. Pflaum |
Autore | Lesch Matthias <1961-> |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2012 |
Descrizione fisica | 1 online resource (92 p.) |
Disciplina | 516/.07 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Chern classes
Boundary value problems Manifolds (Mathematics) |
ISBN | 0-8218-9209-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | ""Contents""; ""List of Figures""; ""Introduction""; ""Chapter 1. Preliminaries""; ""1.1. The general setup""; ""1.2. Relative cyclic cohomology""; ""1.3. The Chern character""; ""1.4. Dirac operators and -graded Clifford modules""; ""1.5. The relative Connes�Chern character of a Dirac operator over a manifold with boundary""; ""1.6. Exact b-metrics and b-functions on cylinders""; ""1.7. Global symbol calculus for pseudodifferential operators""; ""1.8. Classical b-pseudodifferential operators""; ""1.9. Indicial family""; ""Chapter 2. The b-Analogue of the Entire Chern Character"" |
Record Nr. | UNINA-9910818811003321 |
Lesch Matthias <1961-> | ||
Providence, Rhode Island : , : American Mathematical Society, , 2012 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Globally generated vector bundles with small c1 on projective spaces / / Cristian Anghel, Iustin Coanda, Nicolae Manolache |
Autore | Anghel Cristian <1966-> |
Pubbl/distr/stampa | Providence, RI : , : American Mathematical Society, , [2018] |
Descrizione fisica | 1 online resource (120 pages) |
Disciplina | 514/.224 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Vector bundles
Geometry, Projective Projective spaces Chern classes |
Soggetto genere / forma | Electronic books. |
ISBN | 1-4704-4413-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910480569403321 |
Anghel Cristian <1966-> | ||
Providence, RI : , : American Mathematical Society, , [2018] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Globally generated vector bundles with small c1 on projective spaces / / Cristian Anghel, Iustin Coanda, Nicolae Manolache |
Autore | Anghel Cristian <1966-> |
Pubbl/distr/stampa | Providence, RI : , : American Mathematical Society, , [2018] |
Descrizione fisica | 1 online resource (120 pages) |
Disciplina | 514/.224 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Vector bundles
Geometry, Projective Projective spaces Chern classes |
ISBN | 1-4704-4413-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910796842103321 |
Anghel Cristian <1966-> | ||
Providence, RI : , : American Mathematical Society, , [2018] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Globally generated vector bundles with small c1 on projective spaces / / Cristian Anghel, Iustin Coanda, Nicolae Manolache |
Autore | Anghel Cristian <1966-> |
Pubbl/distr/stampa | Providence, RI : , : American Mathematical Society, , [2018] |
Descrizione fisica | 1 online resource (120 pages) |
Disciplina | 514/.224 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Vector bundles
Geometry, Projective Projective spaces Chern classes |
ISBN | 1-4704-4413-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910826665803321 |
Anghel Cristian <1966-> | ||
Providence, RI : , : American Mathematical Society, , [2018] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Lectures on Chern-Weil theory and Witten deformations [[electronic resource] /] / Weiping Zhang |
Autore | Zhang Weiping |
Pubbl/distr/stampa | River Edge, N.J., : World Scientific, c2001 |
Descrizione fisica | 1 online resource (131 p.) |
Disciplina |
514.72
516.36 |
Collana | Nankai tracts in mathematics |
Soggetto topico |
Chern classes
Index theorems Complexes |
Soggetto genere / forma | Electronic books. |
ISBN | 981-238-658-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Contents; Preface; Chapter 1 Chern-Weil Theory for Characteristic Classes; 1.1 Review of the de Rham Cohomology Theory; 1.2 Connections on Vector Bundles; 1.3 The Curvature of a Connection; 1.4 Chern-Weil Theorem; 1.5 Characteristic Forms, Classes and Numbers; 1.6 Some Examples; 1.6.1 Chern Forms and Classes; 1.6.2 Pontrjagin Classes for Real Vector Bundles; 1.6.3 Hirzebruch's L-class and A-class; 1.6.4 K-groups and the Chern Character; 1.6.5 The Chern-Simons Transgressed Form; 1.7 Bott Vanishing Theorem for Foliations; 1.7.1 Foliations and the Bott Vanishing Theorem
1.7.2 Adiabatic Limit and the Bott Connection1.8 Chern-Weil Theory in Odd Dimension; 1.9 References; Chapter 2 Bott and Duistermaat-Heckman Formulas; 2.1 Berline-Vergne Localization Formula; 2.2 Bott Residue Formula; 2.3 Duistermaat-Heckman Formula; 2.4 Bott's Original Idea; 2.5 References; Chapter 3 Gauss-Bonnet-Chern Theorem; 3.1 A Toy Model and the Berezin Integral; 3.2 Mathai-Quillen's Thom Form; 3.3 A Transgression Formula; 3.4 Proof of the Gauss-Bonnet-Chern Theorem; 3.5 Some Remarks; 3.6 Chern's Original Proof; 3.7 References; Chapter 4 Poincare-Hopf Index Formula: an Analytic Proof 4.1 Review of Hodge Theorem4.2 Poincare-Hopf Index Formula; 4.3 Clifford Actions and the Witten Deformation; 4.4 An Estimate Outside of Up zero(V) Up; 4.5 Harmonic Oscillators on Euclidean Spaces; 4.6 A Proof of the Poincare-Hopf Index Formula; 4.7 Some Estimates for DT,i's, 2 i 4; 4.8 An Alternate Analytic Proof; 4.9 References; Chapter 5 Morse Inequalities: an Analytic Proof; 5.1 Review of Morse Inequalities; 5.2 Witten Deformation; 5.3 Hodge Theorem for ( * (M), dTf; 5.4 Behaviour of rf Near the Critical Points of f; 5.5 Proof of Morse Inequalities; 5.6 Proof of Proposition 5.5 5.7 Some Remarks and Comments5.8 References; Chapter 6 Thom-Smale and Witten Complexes; 6.1 The Thom-Smale Complex; 6.2 The de Rham Map for Thom-Smale Complexes; 6.3 Witten's Instanton Complex and the Map eT; 6.4 The Map P, TeT; 6.5 An Analytic Proof of Theorem 6.4; 6.6 References; Chapter 7 Atiyah Theorem on Kervaire Semi-characteristic; 7.1 Kervaire Semi-characteristic; 7.2 Atiyah's Original Proof; 7.3 A proof via Witten Deformation; 7.4 A Generic Counting Formula for k(M ); 7.5 Non-multiplicativity of k(M); 7.6 References; Index |
Record Nr. | UNINA-9910456151603321 |
Zhang Weiping | ||
River Edge, N.J., : World Scientific, c2001 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Lectures on Chern-Weil theory and Witten deformations [[electronic resource] /] / Weiping Zhang |
Autore | Zhang Weiping |
Pubbl/distr/stampa | River Edge, N.J., : World Scientific, c2001 |
Descrizione fisica | 1 online resource (131 p.) |
Disciplina |
514.72
516.36 |
Collana | Nankai tracts in mathematics |
Soggetto topico |
Chern classes
Index theorems Complexes |
ISBN | 981-238-658-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Contents; Preface; Chapter 1 Chern-Weil Theory for Characteristic Classes; 1.1 Review of the de Rham Cohomology Theory; 1.2 Connections on Vector Bundles; 1.3 The Curvature of a Connection; 1.4 Chern-Weil Theorem; 1.5 Characteristic Forms, Classes and Numbers; 1.6 Some Examples; 1.6.1 Chern Forms and Classes; 1.6.2 Pontrjagin Classes for Real Vector Bundles; 1.6.3 Hirzebruch's L-class and A-class; 1.6.4 K-groups and the Chern Character; 1.6.5 The Chern-Simons Transgressed Form; 1.7 Bott Vanishing Theorem for Foliations; 1.7.1 Foliations and the Bott Vanishing Theorem
1.7.2 Adiabatic Limit and the Bott Connection1.8 Chern-Weil Theory in Odd Dimension; 1.9 References; Chapter 2 Bott and Duistermaat-Heckman Formulas; 2.1 Berline-Vergne Localization Formula; 2.2 Bott Residue Formula; 2.3 Duistermaat-Heckman Formula; 2.4 Bott's Original Idea; 2.5 References; Chapter 3 Gauss-Bonnet-Chern Theorem; 3.1 A Toy Model and the Berezin Integral; 3.2 Mathai-Quillen's Thom Form; 3.3 A Transgression Formula; 3.4 Proof of the Gauss-Bonnet-Chern Theorem; 3.5 Some Remarks; 3.6 Chern's Original Proof; 3.7 References; Chapter 4 Poincare-Hopf Index Formula: an Analytic Proof 4.1 Review of Hodge Theorem4.2 Poincare-Hopf Index Formula; 4.3 Clifford Actions and the Witten Deformation; 4.4 An Estimate Outside of Up zero(V) Up; 4.5 Harmonic Oscillators on Euclidean Spaces; 4.6 A Proof of the Poincare-Hopf Index Formula; 4.7 Some Estimates for DT,i's, 2 i 4; 4.8 An Alternate Analytic Proof; 4.9 References; Chapter 5 Morse Inequalities: an Analytic Proof; 5.1 Review of Morse Inequalities; 5.2 Witten Deformation; 5.3 Hodge Theorem for ( * (M), dTf; 5.4 Behaviour of rf Near the Critical Points of f; 5.5 Proof of Morse Inequalities; 5.6 Proof of Proposition 5.5 5.7 Some Remarks and Comments5.8 References; Chapter 6 Thom-Smale and Witten Complexes; 6.1 The Thom-Smale Complex; 6.2 The de Rham Map for Thom-Smale Complexes; 6.3 Witten's Instanton Complex and the Map eT; 6.4 The Map P, TeT; 6.5 An Analytic Proof of Theorem 6.4; 6.6 References; Chapter 7 Atiyah Theorem on Kervaire Semi-characteristic; 7.1 Kervaire Semi-characteristic; 7.2 Atiyah's Original Proof; 7.3 A proof via Witten Deformation; 7.4 A Generic Counting Formula for k(M ); 7.5 Non-multiplicativity of k(M); 7.6 References; Index |
Record Nr. | UNINA-9910780601303321 |
Zhang Weiping | ||
River Edge, N.J., : World Scientific, c2001 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Lectures on Chern-Weil theory and Witten deformations / / Weiping Zhang |
Autore | Zhang Weiping |
Edizione | [1st ed.] |
Pubbl/distr/stampa | River Edge, N.J., : World Scientific, c2001 |
Descrizione fisica | 1 online resource (131 p.) |
Disciplina |
514.72
516.36 |
Collana | Nankai tracts in mathematics |
Soggetto topico |
Chern classes
Index theorems Complexes |
ISBN | 981-238-658-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Contents; Preface; Chapter 1 Chern-Weil Theory for Characteristic Classes; 1.1 Review of the de Rham Cohomology Theory; 1.2 Connections on Vector Bundles; 1.3 The Curvature of a Connection; 1.4 Chern-Weil Theorem; 1.5 Characteristic Forms, Classes and Numbers; 1.6 Some Examples; 1.6.1 Chern Forms and Classes; 1.6.2 Pontrjagin Classes for Real Vector Bundles; 1.6.3 Hirzebruch's L-class and A-class; 1.6.4 K-groups and the Chern Character; 1.6.5 The Chern-Simons Transgressed Form; 1.7 Bott Vanishing Theorem for Foliations; 1.7.1 Foliations and the Bott Vanishing Theorem
1.7.2 Adiabatic Limit and the Bott Connection1.8 Chern-Weil Theory in Odd Dimension; 1.9 References; Chapter 2 Bott and Duistermaat-Heckman Formulas; 2.1 Berline-Vergne Localization Formula; 2.2 Bott Residue Formula; 2.3 Duistermaat-Heckman Formula; 2.4 Bott's Original Idea; 2.5 References; Chapter 3 Gauss-Bonnet-Chern Theorem; 3.1 A Toy Model and the Berezin Integral; 3.2 Mathai-Quillen's Thom Form; 3.3 A Transgression Formula; 3.4 Proof of the Gauss-Bonnet-Chern Theorem; 3.5 Some Remarks; 3.6 Chern's Original Proof; 3.7 References; Chapter 4 Poincare-Hopf Index Formula: an Analytic Proof 4.1 Review of Hodge Theorem4.2 Poincare-Hopf Index Formula; 4.3 Clifford Actions and the Witten Deformation; 4.4 An Estimate Outside of Up zero(V) Up; 4.5 Harmonic Oscillators on Euclidean Spaces; 4.6 A Proof of the Poincare-Hopf Index Formula; 4.7 Some Estimates for DT,i's, 2 i 4; 4.8 An Alternate Analytic Proof; 4.9 References; Chapter 5 Morse Inequalities: an Analytic Proof; 5.1 Review of Morse Inequalities; 5.2 Witten Deformation; 5.3 Hodge Theorem for ( * (M), dTf; 5.4 Behaviour of rf Near the Critical Points of f; 5.5 Proof of Morse Inequalities; 5.6 Proof of Proposition 5.5 5.7 Some Remarks and Comments5.8 References; Chapter 6 Thom-Smale and Witten Complexes; 6.1 The Thom-Smale Complex; 6.2 The de Rham Map for Thom-Smale Complexes; 6.3 Witten's Instanton Complex and the Map eT; 6.4 The Map P, TeT; 6.5 An Analytic Proof of Theorem 6.4; 6.6 References; Chapter 7 Atiyah Theorem on Kervaire Semi-characteristic; 7.1 Kervaire Semi-characteristic; 7.2 Atiyah's Original Proof; 7.3 A proof via Witten Deformation; 7.4 A Generic Counting Formula for k(M ); 7.5 Non-multiplicativity of k(M); 7.6 References; Index |
Record Nr. | UNINA-9910815738203321 |
Zhang Weiping | ||
River Edge, N.J., : World Scientific, c2001 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|