top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Modeling and simulation of catalytic reactors for petroleum refining [[electronic resource] /] / Jorge Ancheyta
Modeling and simulation of catalytic reactors for petroleum refining [[electronic resource] /] / Jorge Ancheyta
Autore Ancheyta Jorge
Pubbl/distr/stampa Hoboken, NJ, : Wiley, c2011
Descrizione fisica 1 online resource (525 p.)
Disciplina 665.5/3
Soggetto topico Catalytic reforming - Simulation methods
Petroleum - Refining
ISBN 1-118-00216-4
1-283-05233-4
9786613052339
0-470-93356-9
0-470-93355-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto MODELING AND SIMULATION OF CATALYTIC REACTORS FOR PETROLEUM REFINING; CONTENTS; PREFACE; ABOUT THE AUTHOR; 1: PETROLEUM REFINING; 1.1 PROPERTIES OF PETROLEUM; 1.2 ASSAY OF CRUDE OILS; 1.3 SEPARATION PROCESSES; 1.3.1 Crude Oil Pretreatment: Desalting; 1.3.2 Atmospheric Distillation; 1.3.3 Vacuum Distillation; 1.3.4 Solvent Extraction and Dewaxing; 1.3.5 Deasphalting; 1.3.6 Other Separation Processes; 1.4 UPGRADING OF DISTILLATES; 1.4.1 Catalytic Reforming; 1.4.2 Isomerization; 1.4.3 Alkylation; 1.4.4 Polymerization; 1.4.5 Catalytic Hydrotreating; 1.4.6 Fluid Catalytic Cracking
1.5 UPGRADING OF HEAVY FEEDS1.5.1 Properties of Heavy Oils; 1.5.2 Process Options for Upgrading Heavy Feeds; 2: REACTOR MODELING IN THE PETROLEUM REFINING INDUSTRY; 2.1 DESCRIPTION OF REACTORS; 2.1.1 Fixed-Bed Reactors; 2.1.2 Slurry-Bed Reactors; 2.2 DEVIATION FROM AN IDEAL FLOW PATTERN; 2.2.1 Ideal Flow Reactors; 2.2.2 Intrareactor Temperature Gradients; 2.2.3 Intrareactor Mass Gradients; 2.2.4 Wetting Effects; 2.2.5 Wall Effects; 2.3 KINETIC MODELING APPROACHES; 2.3.1 Traditional Lumping; 2.3.2 Models Based on Continuous Mixtures; 2.3.3 Structure-Oriented Lumping and Single-Event Models
2.4 REACTOR MODELING2.4.1 Classification and Selection of Reactor Models; 2.4.2 Description of Reactor Models; 2.4.3 Generalized Reactor Model; 2.4.4 Estimation of Model Parameters; REFERENCES; NOMENCLATURE; 3: MODELING OF CATALYTIC HYDROTREATING; 3.1 THE HYDROTREATING PROCESS; 3.1.1 Characteristics of HDT Reactors; 3.1.2 Process Variables; 3.1.3 Other Process Aspects; 3.2 FUNDAMENTALS OF HYDROTREATING; 3.2.1 Chemistry; 3.2.2 Thermodynamics; 3.2.3 Kinetics; 3.2.4 Catalysts; 3.3 REACTOR MODELING; 3.3.1 Effect of Catalyst Particle Shape; 3.3.2 Steady-State Simulation
3.3.3 Simulation of a Commercial HDT Reactor with Quenching3.3.4 Dynamic Simulation; 3.3.5 Simulation of Countercurrent Operation; REFERENCES; NOMENCLATURE; 4: MODELING OF CATALYTIC REFORMING; 4.1 THE CATALYTIC REFORMING PROCESS; 4.1.1 Description; 4.1.2 Types of Catalytic Reforming Processes; 4.1.3 Process Variables; 4.2 FUNDAMENTALS OF CATALYTIC REFORMING; 4.2.1 Chemistry; 4.2.2 Thermodynamics; 4.2.3 Kinetics; 4.2.4 Catalysts; 4.3 REACTOR MODELING; 4.3.1 Development of the Kinetic Model; 4.3.2 Validation of the Kinetic Model with Bench-Scale Reactor Experiments
4.3.3 Simulation of Commercial Semiregenerative Reforming Reactors4.3.4 Simulation of the Effect of Benzene Precursors in the Feed; 4.3.5 Use of the Model to Predict Other Process Parameters; REFERENCES; NOMENCLATURE; 5: MODELING AND SIMULATION OF FLUIDIZED-BED CATALYTIC CRACKING CONVERTERS; 5.1 INTRODUCTION; 5.1.1 Description of the Process; 5.1.2 Place of the FCC Unit Inside the Refinery; 5.1.3 Fractionation of Products and Gas Recovery; 5.1.4 Common Yields and Product Quality; 5.2 REACTION MECHANISM OF CATALYTIC CRACKING
5.2.1 Transport Phenomena, Thermodynamic Aspects, and Reaction Patterns
Record Nr. UNINA-9910141014303321
Ancheyta Jorge  
Hoboken, NJ, : Wiley, c2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Modeling and simulation of catalytic reactors for petroleum refining / / Jorge Ancheyta
Modeling and simulation of catalytic reactors for petroleum refining / / Jorge Ancheyta
Autore Ancheyta Juarez Jorge
Edizione [1st ed.]
Pubbl/distr/stampa Hoboken, NJ, : Wiley, c2011
Descrizione fisica 1 online resource (525 p.)
Disciplina 665.5/3
Soggetto topico Catalytic reforming - Simulation methods
Petroleum - Refining
ISBN 1-118-00216-4
1-283-05233-4
9786613052339
0-470-93356-9
0-470-93355-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto MODELING AND SIMULATION OF CATALYTIC REACTORS FOR PETROLEUM REFINING; CONTENTS; PREFACE; ABOUT THE AUTHOR; 1: PETROLEUM REFINING; 1.1 PROPERTIES OF PETROLEUM; 1.2 ASSAY OF CRUDE OILS; 1.3 SEPARATION PROCESSES; 1.3.1 Crude Oil Pretreatment: Desalting; 1.3.2 Atmospheric Distillation; 1.3.3 Vacuum Distillation; 1.3.4 Solvent Extraction and Dewaxing; 1.3.5 Deasphalting; 1.3.6 Other Separation Processes; 1.4 UPGRADING OF DISTILLATES; 1.4.1 Catalytic Reforming; 1.4.2 Isomerization; 1.4.3 Alkylation; 1.4.4 Polymerization; 1.4.5 Catalytic Hydrotreating; 1.4.6 Fluid Catalytic Cracking
1.5 UPGRADING OF HEAVY FEEDS1.5.1 Properties of Heavy Oils; 1.5.2 Process Options for Upgrading Heavy Feeds; 2: REACTOR MODELING IN THE PETROLEUM REFINING INDUSTRY; 2.1 DESCRIPTION OF REACTORS; 2.1.1 Fixed-Bed Reactors; 2.1.2 Slurry-Bed Reactors; 2.2 DEVIATION FROM AN IDEAL FLOW PATTERN; 2.2.1 Ideal Flow Reactors; 2.2.2 Intrareactor Temperature Gradients; 2.2.3 Intrareactor Mass Gradients; 2.2.4 Wetting Effects; 2.2.5 Wall Effects; 2.3 KINETIC MODELING APPROACHES; 2.3.1 Traditional Lumping; 2.3.2 Models Based on Continuous Mixtures; 2.3.3 Structure-Oriented Lumping and Single-Event Models
2.4 REACTOR MODELING2.4.1 Classification and Selection of Reactor Models; 2.4.2 Description of Reactor Models; 2.4.3 Generalized Reactor Model; 2.4.4 Estimation of Model Parameters; REFERENCES; NOMENCLATURE; 3: MODELING OF CATALYTIC HYDROTREATING; 3.1 THE HYDROTREATING PROCESS; 3.1.1 Characteristics of HDT Reactors; 3.1.2 Process Variables; 3.1.3 Other Process Aspects; 3.2 FUNDAMENTALS OF HYDROTREATING; 3.2.1 Chemistry; 3.2.2 Thermodynamics; 3.2.3 Kinetics; 3.2.4 Catalysts; 3.3 REACTOR MODELING; 3.3.1 Effect of Catalyst Particle Shape; 3.3.2 Steady-State Simulation
3.3.3 Simulation of a Commercial HDT Reactor with Quenching3.3.4 Dynamic Simulation; 3.3.5 Simulation of Countercurrent Operation; REFERENCES; NOMENCLATURE; 4: MODELING OF CATALYTIC REFORMING; 4.1 THE CATALYTIC REFORMING PROCESS; 4.1.1 Description; 4.1.2 Types of Catalytic Reforming Processes; 4.1.3 Process Variables; 4.2 FUNDAMENTALS OF CATALYTIC REFORMING; 4.2.1 Chemistry; 4.2.2 Thermodynamics; 4.2.3 Kinetics; 4.2.4 Catalysts; 4.3 REACTOR MODELING; 4.3.1 Development of the Kinetic Model; 4.3.2 Validation of the Kinetic Model with Bench-Scale Reactor Experiments
4.3.3 Simulation of Commercial Semiregenerative Reforming Reactors4.3.4 Simulation of the Effect of Benzene Precursors in the Feed; 4.3.5 Use of the Model to Predict Other Process Parameters; REFERENCES; NOMENCLATURE; 5: MODELING AND SIMULATION OF FLUIDIZED-BED CATALYTIC CRACKING CONVERTERS; 5.1 INTRODUCTION; 5.1.1 Description of the Process; 5.1.2 Place of the FCC Unit Inside the Refinery; 5.1.3 Fractionation of Products and Gas Recovery; 5.1.4 Common Yields and Product Quality; 5.2 REACTION MECHANISM OF CATALYTIC CRACKING
5.2.1 Transport Phenomena, Thermodynamic Aspects, and Reaction Patterns
Record Nr. UNINA-9910817470803321
Ancheyta Juarez Jorge  
Hoboken, NJ, : Wiley, c2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui