top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Algebraic theory of measure and integration / by C. Caratheodory
Algebraic theory of measure and integration / by C. Caratheodory
Autore Carathéodory, Constantin
Pubbl/distr/stampa New York : Chelsea Publ. Co., c1963
Descrizione fisica 378 p. : ill. ; 24 cm.
Disciplina 515.42
Soggetto topico Caratheodory measure
Classificazione AMS 28-02
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISALENTO-991000662769707536
Carathéodory, Constantin  
New York : Chelsea Publ. Co., c1963
Materiale a stampa
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui
Generalizations of a theorem of Carathéodory / / by John R. Reay
Generalizations of a theorem of Carathéodory / / by John R. Reay
Autore Reay John Robert <1934->
Pubbl/distr/stampa Providence : , : American Mathematical Society, , 1965
Descrizione fisica 1 online resource (54 p.)
Collana Memoirs of the American Mathematical Society
Soggetto topico Caratheodory measure
Soggetto genere / forma Electronic books.
ISBN 0-8218-9999-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910480468903321
Reay John Robert <1934->  
Providence : , : American Mathematical Society, , 1965
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Generalizations of a theorem of Carathéodory / / John R. Reay
Generalizations of a theorem of Carathéodory / / John R. Reay
Autore Reay John R. <1934->
Pubbl/distr/stampa Providence : , : American Mathematical Society, , 1965
Descrizione fisica 1 online resource (54 pages)
Collana Memoirs of the American Mathematical Society
Soggetto topico Caratheodory measure
ISBN 0-8218-9999-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910788611503321
Reay John R. <1934->  
Providence : , : American Mathematical Society, , 1965
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Generalizations of a theorem of Carathéodory / / John R. Reay
Generalizations of a theorem of Carathéodory / / John R. Reay
Autore Reay John R. <1934->
Pubbl/distr/stampa Providence : , : American Mathematical Society, , 1965
Descrizione fisica 1 online resource (54 pages)
Collana Memoirs of the American Mathematical Society
Soggetto topico Caratheodory measure
ISBN 0-8218-9999-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910827424303321
Reay John R. <1934->  
Providence : , : American Mathematical Society, , 1965
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Geometry of nonholonomically constrained systems [[electronic resource] /] / Richard Cushman, Hans Duistermaat, Jędrzej Śniatycki
Geometry of nonholonomically constrained systems [[electronic resource] /] / Richard Cushman, Hans Duistermaat, Jędrzej Śniatycki
Autore Cushman Richard H. <1942->
Pubbl/distr/stampa Singapore ; ; Hackensack, NJ, : World Scientific, c2010
Descrizione fisica 1 online resource (421 p.)
Disciplina 516.3/6
Altri autori (Persone) DuistermaatJ. J <1942-> (Johannes Jisse)
ŚniatyckiJędrzej
Collana Advanced series in nonlinear dynamics
Soggetto topico Nonholonomic dynamical systems
Geometry, Differential
Rigidity (Geometry)
Caratheodory measure
Soggetto genere / forma Electronic books.
ISBN 1-282-76167-6
9786612761676
981-4289-49-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Contents; Acknowledgments; Foreword; 1. Nonholonomically constrained motions; 1.1 Newton's equations; 1.2 Constraints; 1.3 Lagrange-d'Alembert equations; 1.4 Lagrange derivative in a trivialization; 1.5 Hamilton-d'Alembert equations; 1.6 Distributional Hamiltonian formulation; 1.6.1 The symplectic distribution (H,); 1.6.2 H and in a trivialization; 1.6.3 Distributional Hamiltonian vector field; 1.7 Almost Poisson brackets; 1.7.1 Hamilton's equations; 1.7.2 Nonholonomic Dirac brackets; 1.8 Momenta and momentum equation; 1.8.1 Momentum functions; 1.8.2 Momentum equations
1.8.3 Homogeneous functions1.8.4 Momenta as coordinates; 1.9 Projection principle; 1.10 Accessible sets; 1.11 Constants of motion; 1.12 Notes; 2. Group actions and orbit spaces; 2.1 Group actions; 2.2 Orbit spaces; 2.3 Isotropy and orbit types; 2.3.1 Isotropy types; 2.3.2 Orbit types; 2.3.3 When the action is proper; 2.3.4 Stratification on by orbit types; 2.4 Smooth structure on an orbit space; 2.4.1 Differential structure; 2.4.2 The orbit space as a differential space; 2.5 Subcartesian spaces; 2.6 Stratification of the orbit space by orbit types; 2.6.1 Orbit types in an orbit space
2.6.2 Stratification of an orbit space2.6.3 Minimality of S; 2.7 Derivations and vector fields on a differential space; 2.8 Vector fields on a stratified differential space; 2.9 Vector fields on an orbit space; 2.10 Tangent objects to an orbit space; 2.10.1 Stratified tangent bundle; 2.10.2 Zariski tangent bundle; 2.10.3 Tangent cone; 2.10.4 Tangent wedge; 2.11 Notes; 3. Symmetry and reductio; 3.1 Dynamical systems with symmetry; 3.1.1 Invariant vector fields; 3.1.2 Reduction of symmetry; 3.1.3 Reduction for or a free and proper G-action; 3.1.4 Reduction of a nonfree, proper G-action
3.2 Nonholonomic singular reduction for a proper action3.3 Nonholonomic reduction for a free and proper action; 3.4 Chaplygin systems; 3.5 Orbit types and reduction; 3.6 Conservation laws; 3.6.1 Momentum map; 3.6.2 Gauge momenta; 3.7 Lifted actions and the momentum equation; 3.7.1 Lifted actions; 3.7.2 Momentum equation; 3.8 Notes; 4.Reconstruction, relative equilibria and relative periodic orbits; 4.1 Reconstruction; 4.1.1 Reconstruction for proper free actions; 4.1.2 Reconstruction for nonfree proper actions; 4.1.3 Application to nonholonomic systems; 4.2 Relative equilibria
4.2.1 Basic properties4.2.2 Quasiperiodic relative equilibria; 4.2.3 Runaway relative equilibria; 4.2.4 Relative equilibria when the action is not free; 4.2.5 Other relative equilibria in a G-orbit; 4.2.5.1 When the G-action is free; 4.2.5.2 When the G-action is not free; 4.2.6 Smooth families of quasiperiodic relative equilibria; 4.2.6.1 Elliptic, regular, and stably elliptic elements of g; 4.2.6.2 When the G-action is free and proper; 4.2.6.3 When the G-action is proper but not free; 4.3 Relative periodic orbits; 4.3.1 Basic properties; 4.3.2 Quasiperiodic relative periodic orbits
4.3.3 Runaway relative period orbits
Record Nr. UNINA-9910455562003321
Cushman Richard H. <1942->  
Singapore ; ; Hackensack, NJ, : World Scientific, c2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Geometry of nonholonomically constrained systems [[electronic resource] /] / Richard Cushman, Hans Duistermaat, Jędrzej Śniatycki
Geometry of nonholonomically constrained systems [[electronic resource] /] / Richard Cushman, Hans Duistermaat, Jędrzej Śniatycki
Autore Cushman Richard H. <1942->
Pubbl/distr/stampa Singapore ; ; Hackensack, NJ, : World Scientific, c2010
Descrizione fisica 1 online resource (421 p.)
Disciplina 516.3/6
Altri autori (Persone) DuistermaatJ. J <1942-2010.> (Johannes Jisse)
ŚniatyckiJędrzej
Collana Advanced series in nonlinear dynamics
Soggetto topico Nonholonomic dynamical systems
Geometry, Differential
Rigidity (Geometry)
Caratheodory measure
ISBN 1-282-76167-6
9786612761676
981-4289-49-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Contents; Acknowledgments; Foreword; 1. Nonholonomically constrained motions; 1.1 Newton's equations; 1.2 Constraints; 1.3 Lagrange-d'Alembert equations; 1.4 Lagrange derivative in a trivialization; 1.5 Hamilton-d'Alembert equations; 1.6 Distributional Hamiltonian formulation; 1.6.1 The symplectic distribution (H,); 1.6.2 H and in a trivialization; 1.6.3 Distributional Hamiltonian vector field; 1.7 Almost Poisson brackets; 1.7.1 Hamilton's equations; 1.7.2 Nonholonomic Dirac brackets; 1.8 Momenta and momentum equation; 1.8.1 Momentum functions; 1.8.2 Momentum equations
1.8.3 Homogeneous functions1.8.4 Momenta as coordinates; 1.9 Projection principle; 1.10 Accessible sets; 1.11 Constants of motion; 1.12 Notes; 2. Group actions and orbit spaces; 2.1 Group actions; 2.2 Orbit spaces; 2.3 Isotropy and orbit types; 2.3.1 Isotropy types; 2.3.2 Orbit types; 2.3.3 When the action is proper; 2.3.4 Stratification on by orbit types; 2.4 Smooth structure on an orbit space; 2.4.1 Differential structure; 2.4.2 The orbit space as a differential space; 2.5 Subcartesian spaces; 2.6 Stratification of the orbit space by orbit types; 2.6.1 Orbit types in an orbit space
2.6.2 Stratification of an orbit space2.6.3 Minimality of S; 2.7 Derivations and vector fields on a differential space; 2.8 Vector fields on a stratified differential space; 2.9 Vector fields on an orbit space; 2.10 Tangent objects to an orbit space; 2.10.1 Stratified tangent bundle; 2.10.2 Zariski tangent bundle; 2.10.3 Tangent cone; 2.10.4 Tangent wedge; 2.11 Notes; 3. Symmetry and reductio; 3.1 Dynamical systems with symmetry; 3.1.1 Invariant vector fields; 3.1.2 Reduction of symmetry; 3.1.3 Reduction for or a free and proper G-action; 3.1.4 Reduction of a nonfree, proper G-action
3.2 Nonholonomic singular reduction for a proper action3.3 Nonholonomic reduction for a free and proper action; 3.4 Chaplygin systems; 3.5 Orbit types and reduction; 3.6 Conservation laws; 3.6.1 Momentum map; 3.6.2 Gauge momenta; 3.7 Lifted actions and the momentum equation; 3.7.1 Lifted actions; 3.7.2 Momentum equation; 3.8 Notes; 4.Reconstruction, relative equilibria and relative periodic orbits; 4.1 Reconstruction; 4.1.1 Reconstruction for proper free actions; 4.1.2 Reconstruction for nonfree proper actions; 4.1.3 Application to nonholonomic systems; 4.2 Relative equilibria
4.2.1 Basic properties4.2.2 Quasiperiodic relative equilibria; 4.2.3 Runaway relative equilibria; 4.2.4 Relative equilibria when the action is not free; 4.2.5 Other relative equilibria in a G-orbit; 4.2.5.1 When the G-action is free; 4.2.5.2 When the G-action is not free; 4.2.6 Smooth families of quasiperiodic relative equilibria; 4.2.6.1 Elliptic, regular, and stably elliptic elements of g; 4.2.6.2 When the G-action is free and proper; 4.2.6.3 When the G-action is proper but not free; 4.3 Relative periodic orbits; 4.3.1 Basic properties; 4.3.2 Quasiperiodic relative periodic orbits
4.3.3 Runaway relative period orbits
Record Nr. UNINA-9910780893703321
Cushman Richard H. <1942->  
Singapore ; ; Hackensack, NJ, : World Scientific, c2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Geometry of nonholonomically constrained systems / / Richard Cushman, Hans Duistermaat, Jedrzej Sniatycki
Geometry of nonholonomically constrained systems / / Richard Cushman, Hans Duistermaat, Jedrzej Sniatycki
Autore Cushman Richard H. <1942->
Edizione [1st ed.]
Pubbl/distr/stampa Singapore ; ; Hackensack, NJ, : World Scientific, c2010
Descrizione fisica 1 online resource (421 p.)
Disciplina 516.3/6
Altri autori (Persone) DuistermaatJ. J <1942-> (Johannes Jisse)
SniatyckiJedrzej
Collana Advanced series in nonlinear dynamics
Soggetto topico Nonholonomic dynamical systems
Geometry, Differential
Rigidity (Geometry)
Caratheodory measure
ISBN 1-282-76167-6
9786612761676
981-4289-49-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Contents; Acknowledgments; Foreword; 1. Nonholonomically constrained motions; 1.1 Newton's equations; 1.2 Constraints; 1.3 Lagrange-d'Alembert equations; 1.4 Lagrange derivative in a trivialization; 1.5 Hamilton-d'Alembert equations; 1.6 Distributional Hamiltonian formulation; 1.6.1 The symplectic distribution (H,); 1.6.2 H and in a trivialization; 1.6.3 Distributional Hamiltonian vector field; 1.7 Almost Poisson brackets; 1.7.1 Hamilton's equations; 1.7.2 Nonholonomic Dirac brackets; 1.8 Momenta and momentum equation; 1.8.1 Momentum functions; 1.8.2 Momentum equations
1.8.3 Homogeneous functions1.8.4 Momenta as coordinates; 1.9 Projection principle; 1.10 Accessible sets; 1.11 Constants of motion; 1.12 Notes; 2. Group actions and orbit spaces; 2.1 Group actions; 2.2 Orbit spaces; 2.3 Isotropy and orbit types; 2.3.1 Isotropy types; 2.3.2 Orbit types; 2.3.3 When the action is proper; 2.3.4 Stratification on by orbit types; 2.4 Smooth structure on an orbit space; 2.4.1 Differential structure; 2.4.2 The orbit space as a differential space; 2.5 Subcartesian spaces; 2.6 Stratification of the orbit space by orbit types; 2.6.1 Orbit types in an orbit space
2.6.2 Stratification of an orbit space2.6.3 Minimality of S; 2.7 Derivations and vector fields on a differential space; 2.8 Vector fields on a stratified differential space; 2.9 Vector fields on an orbit space; 2.10 Tangent objects to an orbit space; 2.10.1 Stratified tangent bundle; 2.10.2 Zariski tangent bundle; 2.10.3 Tangent cone; 2.10.4 Tangent wedge; 2.11 Notes; 3. Symmetry and reductio; 3.1 Dynamical systems with symmetry; 3.1.1 Invariant vector fields; 3.1.2 Reduction of symmetry; 3.1.3 Reduction for or a free and proper G-action; 3.1.4 Reduction of a nonfree, proper G-action
3.2 Nonholonomic singular reduction for a proper action3.3 Nonholonomic reduction for a free and proper action; 3.4 Chaplygin systems; 3.5 Orbit types and reduction; 3.6 Conservation laws; 3.6.1 Momentum map; 3.6.2 Gauge momenta; 3.7 Lifted actions and the momentum equation; 3.7.1 Lifted actions; 3.7.2 Momentum equation; 3.8 Notes; 4.Reconstruction, relative equilibria and relative periodic orbits; 4.1 Reconstruction; 4.1.1 Reconstruction for proper free actions; 4.1.2 Reconstruction for nonfree proper actions; 4.1.3 Application to nonholonomic systems; 4.2 Relative equilibria
4.2.1 Basic properties4.2.2 Quasiperiodic relative equilibria; 4.2.3 Runaway relative equilibria; 4.2.4 Relative equilibria when the action is not free; 4.2.5 Other relative equilibria in a G-orbit; 4.2.5.1 When the G-action is free; 4.2.5.2 When the G-action is not free; 4.2.6 Smooth families of quasiperiodic relative equilibria; 4.2.6.1 Elliptic, regular, and stably elliptic elements of g; 4.2.6.2 When the G-action is free and proper; 4.2.6.3 When the G-action is proper but not free; 4.3 Relative periodic orbits; 4.3.1 Basic properties; 4.3.2 Quasiperiodic relative periodic orbits
4.3.3 Runaway relative period orbits
Record Nr. UNINA-9910810615503321
Cushman Richard H. <1942->  
Singapore ; ; Hackensack, NJ, : World Scientific, c2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui