Algebraic theory of measure and integration / by C. Caratheodory |
Autore | Carathéodory, Constantin |
Pubbl/distr/stampa | New York : Chelsea Publ. Co., c1963 |
Descrizione fisica | 378 p. : ill. ; 24 cm. |
Disciplina | 515.42 |
Soggetto topico | Caratheodory measure |
Classificazione | AMS 28-02 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISALENTO-991000662769707536 |
Carathéodory, Constantin | ||
New York : Chelsea Publ. Co., c1963 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. del Salento | ||
|
Generalizations of a theorem of Carathéodory / / by John R. Reay |
Autore | Reay John Robert <1934-> |
Pubbl/distr/stampa | Providence : , : American Mathematical Society, , 1965 |
Descrizione fisica | 1 online resource (54 p.) |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico | Caratheodory measure |
Soggetto genere / forma | Electronic books. |
ISBN | 0-8218-9999-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910480468903321 |
Reay John Robert <1934-> | ||
Providence : , : American Mathematical Society, , 1965 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Generalizations of a theorem of Carathéodory / / John R. Reay |
Autore | Reay John R. <1934-> |
Pubbl/distr/stampa | Providence : , : American Mathematical Society, , 1965 |
Descrizione fisica | 1 online resource (54 pages) |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico | Caratheodory measure |
ISBN | 0-8218-9999-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910788611503321 |
Reay John R. <1934-> | ||
Providence : , : American Mathematical Society, , 1965 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Generalizations of a theorem of Carathéodory / / John R. Reay |
Autore | Reay John R. <1934-> |
Pubbl/distr/stampa | Providence : , : American Mathematical Society, , 1965 |
Descrizione fisica | 1 online resource (54 pages) |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico | Caratheodory measure |
ISBN | 0-8218-9999-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910827424303321 |
Reay John R. <1934-> | ||
Providence : , : American Mathematical Society, , 1965 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Geometry of nonholonomically constrained systems [[electronic resource] /] / Richard Cushman, Hans Duistermaat, Jędrzej Śniatycki |
Autore | Cushman Richard H. <1942-> |
Pubbl/distr/stampa | Singapore ; ; Hackensack, NJ, : World Scientific, c2010 |
Descrizione fisica | 1 online resource (421 p.) |
Disciplina | 516.3/6 |
Altri autori (Persone) |
DuistermaatJ. J <1942-> (Johannes Jisse)
ŚniatyckiJędrzej |
Collana | Advanced series in nonlinear dynamics |
Soggetto topico |
Nonholonomic dynamical systems
Geometry, Differential Rigidity (Geometry) Caratheodory measure |
Soggetto genere / forma | Electronic books. |
ISBN |
1-282-76167-6
9786612761676 981-4289-49-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Contents; Acknowledgments; Foreword; 1. Nonholonomically constrained motions; 1.1 Newton's equations; 1.2 Constraints; 1.3 Lagrange-d'Alembert equations; 1.4 Lagrange derivative in a trivialization; 1.5 Hamilton-d'Alembert equations; 1.6 Distributional Hamiltonian formulation; 1.6.1 The symplectic distribution (H,); 1.6.2 H and in a trivialization; 1.6.3 Distributional Hamiltonian vector field; 1.7 Almost Poisson brackets; 1.7.1 Hamilton's equations; 1.7.2 Nonholonomic Dirac brackets; 1.8 Momenta and momentum equation; 1.8.1 Momentum functions; 1.8.2 Momentum equations
1.8.3 Homogeneous functions1.8.4 Momenta as coordinates; 1.9 Projection principle; 1.10 Accessible sets; 1.11 Constants of motion; 1.12 Notes; 2. Group actions and orbit spaces; 2.1 Group actions; 2.2 Orbit spaces; 2.3 Isotropy and orbit types; 2.3.1 Isotropy types; 2.3.2 Orbit types; 2.3.3 When the action is proper; 2.3.4 Stratification on by orbit types; 2.4 Smooth structure on an orbit space; 2.4.1 Differential structure; 2.4.2 The orbit space as a differential space; 2.5 Subcartesian spaces; 2.6 Stratification of the orbit space by orbit types; 2.6.1 Orbit types in an orbit space 2.6.2 Stratification of an orbit space2.6.3 Minimality of S; 2.7 Derivations and vector fields on a differential space; 2.8 Vector fields on a stratified differential space; 2.9 Vector fields on an orbit space; 2.10 Tangent objects to an orbit space; 2.10.1 Stratified tangent bundle; 2.10.2 Zariski tangent bundle; 2.10.3 Tangent cone; 2.10.4 Tangent wedge; 2.11 Notes; 3. Symmetry and reductio; 3.1 Dynamical systems with symmetry; 3.1.1 Invariant vector fields; 3.1.2 Reduction of symmetry; 3.1.3 Reduction for or a free and proper G-action; 3.1.4 Reduction of a nonfree, proper G-action 3.2 Nonholonomic singular reduction for a proper action3.3 Nonholonomic reduction for a free and proper action; 3.4 Chaplygin systems; 3.5 Orbit types and reduction; 3.6 Conservation laws; 3.6.1 Momentum map; 3.6.2 Gauge momenta; 3.7 Lifted actions and the momentum equation; 3.7.1 Lifted actions; 3.7.2 Momentum equation; 3.8 Notes; 4.Reconstruction, relative equilibria and relative periodic orbits; 4.1 Reconstruction; 4.1.1 Reconstruction for proper free actions; 4.1.2 Reconstruction for nonfree proper actions; 4.1.3 Application to nonholonomic systems; 4.2 Relative equilibria 4.2.1 Basic properties4.2.2 Quasiperiodic relative equilibria; 4.2.3 Runaway relative equilibria; 4.2.4 Relative equilibria when the action is not free; 4.2.5 Other relative equilibria in a G-orbit; 4.2.5.1 When the G-action is free; 4.2.5.2 When the G-action is not free; 4.2.6 Smooth families of quasiperiodic relative equilibria; 4.2.6.1 Elliptic, regular, and stably elliptic elements of g; 4.2.6.2 When the G-action is free and proper; 4.2.6.3 When the G-action is proper but not free; 4.3 Relative periodic orbits; 4.3.1 Basic properties; 4.3.2 Quasiperiodic relative periodic orbits 4.3.3 Runaway relative period orbits |
Record Nr. | UNINA-9910455562003321 |
Cushman Richard H. <1942-> | ||
Singapore ; ; Hackensack, NJ, : World Scientific, c2010 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Geometry of nonholonomically constrained systems [[electronic resource] /] / Richard Cushman, Hans Duistermaat, Jędrzej Śniatycki |
Autore | Cushman Richard H. <1942-> |
Pubbl/distr/stampa | Singapore ; ; Hackensack, NJ, : World Scientific, c2010 |
Descrizione fisica | 1 online resource (421 p.) |
Disciplina | 516.3/6 |
Altri autori (Persone) |
DuistermaatJ. J <1942-2010.> (Johannes Jisse)
ŚniatyckiJędrzej |
Collana | Advanced series in nonlinear dynamics |
Soggetto topico |
Nonholonomic dynamical systems
Geometry, Differential Rigidity (Geometry) Caratheodory measure |
ISBN |
1-282-76167-6
9786612761676 981-4289-49-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Contents; Acknowledgments; Foreword; 1. Nonholonomically constrained motions; 1.1 Newton's equations; 1.2 Constraints; 1.3 Lagrange-d'Alembert equations; 1.4 Lagrange derivative in a trivialization; 1.5 Hamilton-d'Alembert equations; 1.6 Distributional Hamiltonian formulation; 1.6.1 The symplectic distribution (H,); 1.6.2 H and in a trivialization; 1.6.3 Distributional Hamiltonian vector field; 1.7 Almost Poisson brackets; 1.7.1 Hamilton's equations; 1.7.2 Nonholonomic Dirac brackets; 1.8 Momenta and momentum equation; 1.8.1 Momentum functions; 1.8.2 Momentum equations
1.8.3 Homogeneous functions1.8.4 Momenta as coordinates; 1.9 Projection principle; 1.10 Accessible sets; 1.11 Constants of motion; 1.12 Notes; 2. Group actions and orbit spaces; 2.1 Group actions; 2.2 Orbit spaces; 2.3 Isotropy and orbit types; 2.3.1 Isotropy types; 2.3.2 Orbit types; 2.3.3 When the action is proper; 2.3.4 Stratification on by orbit types; 2.4 Smooth structure on an orbit space; 2.4.1 Differential structure; 2.4.2 The orbit space as a differential space; 2.5 Subcartesian spaces; 2.6 Stratification of the orbit space by orbit types; 2.6.1 Orbit types in an orbit space 2.6.2 Stratification of an orbit space2.6.3 Minimality of S; 2.7 Derivations and vector fields on a differential space; 2.8 Vector fields on a stratified differential space; 2.9 Vector fields on an orbit space; 2.10 Tangent objects to an orbit space; 2.10.1 Stratified tangent bundle; 2.10.2 Zariski tangent bundle; 2.10.3 Tangent cone; 2.10.4 Tangent wedge; 2.11 Notes; 3. Symmetry and reductio; 3.1 Dynamical systems with symmetry; 3.1.1 Invariant vector fields; 3.1.2 Reduction of symmetry; 3.1.3 Reduction for or a free and proper G-action; 3.1.4 Reduction of a nonfree, proper G-action 3.2 Nonholonomic singular reduction for a proper action3.3 Nonholonomic reduction for a free and proper action; 3.4 Chaplygin systems; 3.5 Orbit types and reduction; 3.6 Conservation laws; 3.6.1 Momentum map; 3.6.2 Gauge momenta; 3.7 Lifted actions and the momentum equation; 3.7.1 Lifted actions; 3.7.2 Momentum equation; 3.8 Notes; 4.Reconstruction, relative equilibria and relative periodic orbits; 4.1 Reconstruction; 4.1.1 Reconstruction for proper free actions; 4.1.2 Reconstruction for nonfree proper actions; 4.1.3 Application to nonholonomic systems; 4.2 Relative equilibria 4.2.1 Basic properties4.2.2 Quasiperiodic relative equilibria; 4.2.3 Runaway relative equilibria; 4.2.4 Relative equilibria when the action is not free; 4.2.5 Other relative equilibria in a G-orbit; 4.2.5.1 When the G-action is free; 4.2.5.2 When the G-action is not free; 4.2.6 Smooth families of quasiperiodic relative equilibria; 4.2.6.1 Elliptic, regular, and stably elliptic elements of g; 4.2.6.2 When the G-action is free and proper; 4.2.6.3 When the G-action is proper but not free; 4.3 Relative periodic orbits; 4.3.1 Basic properties; 4.3.2 Quasiperiodic relative periodic orbits 4.3.3 Runaway relative period orbits |
Record Nr. | UNINA-9910780893703321 |
Cushman Richard H. <1942-> | ||
Singapore ; ; Hackensack, NJ, : World Scientific, c2010 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Geometry of nonholonomically constrained systems / / Richard Cushman, Hans Duistermaat, Jedrzej Sniatycki |
Autore | Cushman Richard H. <1942-> |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Singapore ; ; Hackensack, NJ, : World Scientific, c2010 |
Descrizione fisica | 1 online resource (421 p.) |
Disciplina | 516.3/6 |
Altri autori (Persone) |
DuistermaatJ. J <1942-> (Johannes Jisse)
SniatyckiJedrzej |
Collana | Advanced series in nonlinear dynamics |
Soggetto topico |
Nonholonomic dynamical systems
Geometry, Differential Rigidity (Geometry) Caratheodory measure |
ISBN |
1-282-76167-6
9786612761676 981-4289-49-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Contents; Acknowledgments; Foreword; 1. Nonholonomically constrained motions; 1.1 Newton's equations; 1.2 Constraints; 1.3 Lagrange-d'Alembert equations; 1.4 Lagrange derivative in a trivialization; 1.5 Hamilton-d'Alembert equations; 1.6 Distributional Hamiltonian formulation; 1.6.1 The symplectic distribution (H,); 1.6.2 H and in a trivialization; 1.6.3 Distributional Hamiltonian vector field; 1.7 Almost Poisson brackets; 1.7.1 Hamilton's equations; 1.7.2 Nonholonomic Dirac brackets; 1.8 Momenta and momentum equation; 1.8.1 Momentum functions; 1.8.2 Momentum equations
1.8.3 Homogeneous functions1.8.4 Momenta as coordinates; 1.9 Projection principle; 1.10 Accessible sets; 1.11 Constants of motion; 1.12 Notes; 2. Group actions and orbit spaces; 2.1 Group actions; 2.2 Orbit spaces; 2.3 Isotropy and orbit types; 2.3.1 Isotropy types; 2.3.2 Orbit types; 2.3.3 When the action is proper; 2.3.4 Stratification on by orbit types; 2.4 Smooth structure on an orbit space; 2.4.1 Differential structure; 2.4.2 The orbit space as a differential space; 2.5 Subcartesian spaces; 2.6 Stratification of the orbit space by orbit types; 2.6.1 Orbit types in an orbit space 2.6.2 Stratification of an orbit space2.6.3 Minimality of S; 2.7 Derivations and vector fields on a differential space; 2.8 Vector fields on a stratified differential space; 2.9 Vector fields on an orbit space; 2.10 Tangent objects to an orbit space; 2.10.1 Stratified tangent bundle; 2.10.2 Zariski tangent bundle; 2.10.3 Tangent cone; 2.10.4 Tangent wedge; 2.11 Notes; 3. Symmetry and reductio; 3.1 Dynamical systems with symmetry; 3.1.1 Invariant vector fields; 3.1.2 Reduction of symmetry; 3.1.3 Reduction for or a free and proper G-action; 3.1.4 Reduction of a nonfree, proper G-action 3.2 Nonholonomic singular reduction for a proper action3.3 Nonholonomic reduction for a free and proper action; 3.4 Chaplygin systems; 3.5 Orbit types and reduction; 3.6 Conservation laws; 3.6.1 Momentum map; 3.6.2 Gauge momenta; 3.7 Lifted actions and the momentum equation; 3.7.1 Lifted actions; 3.7.2 Momentum equation; 3.8 Notes; 4.Reconstruction, relative equilibria and relative periodic orbits; 4.1 Reconstruction; 4.1.1 Reconstruction for proper free actions; 4.1.2 Reconstruction for nonfree proper actions; 4.1.3 Application to nonholonomic systems; 4.2 Relative equilibria 4.2.1 Basic properties4.2.2 Quasiperiodic relative equilibria; 4.2.3 Runaway relative equilibria; 4.2.4 Relative equilibria when the action is not free; 4.2.5 Other relative equilibria in a G-orbit; 4.2.5.1 When the G-action is free; 4.2.5.2 When the G-action is not free; 4.2.6 Smooth families of quasiperiodic relative equilibria; 4.2.6.1 Elliptic, regular, and stably elliptic elements of g; 4.2.6.2 When the G-action is free and proper; 4.2.6.3 When the G-action is proper but not free; 4.3 Relative periodic orbits; 4.3.1 Basic properties; 4.3.2 Quasiperiodic relative periodic orbits 4.3.3 Runaway relative period orbits |
Record Nr. | UNINA-9910810615503321 |
Cushman Richard H. <1942-> | ||
Singapore ; ; Hackensack, NJ, : World Scientific, c2010 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|