top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Asian Pacific journal of cancer care
Asian Pacific journal of cancer care
Pubbl/distr/stampa Tehran, Iran : , : West Asia Organization for Cancer Prevention, , 2016-
Descrizione fisica 1 online resource
Soggetto topico Cancer
Cancer - Treatment
Cancer - Diagnosis
Cancer - Prognosis
Soggetto genere / forma Periodicals.
ISSN 2588-3682
Formato Materiale a stampa
Livello bibliografico Periodico
Lingua di pubblicazione eng
Altri titoli varianti APJCC
Record Nr. UNISA-996321586303316
Tehran, Iran : , : West Asia Organization for Cancer Prevention, , 2016-
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Asian Pacific journal of cancer care
Asian Pacific journal of cancer care
Pubbl/distr/stampa Tehran, Iran : , : West Asia Organization for Cancer Prevention, , 2016-
Descrizione fisica 1 online resource
Soggetto topico Cancer
Cancer - Treatment
Cancer - Diagnosis
Cancer - Prognosis
Soggetto genere / forma Periodicals.
ISSN 2588-3682
Formato Materiale a stampa
Livello bibliografico Periodico
Lingua di pubblicazione eng
Altri titoli varianti APJCC
Record Nr. UNINA-9910267957803321
Tehran, Iran : , : West Asia Organization for Cancer Prevention, , 2016-
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Cancer Prognosis / / edited by Guy-Joseph Lemamy
Cancer Prognosis / / edited by Guy-Joseph Lemamy
Pubbl/distr/stampa London : , : IntechOpen, , 2018
Descrizione fisica 1 online resource (76 pages) : illustrations
Disciplina 616.9
Soggetto topico Cancer - Prognosis
ISBN 1-83881-722-0
1-78984-775-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910317774703321
London : , : IntechOpen, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
La interpretación de los pronósticos y las estadísticas del cáncer [[electronic resource]]
La interpretación de los pronósticos y las estadísticas del cáncer [[electronic resource]]
Pubbl/distr/stampa [Bethesda, Md.] : , : National Cancer Institute, , [2005]
Descrizione fisica 4 pages : digital, PDF file
Collana Hojas informativas
Soggetto topico Cancer - Prognosis
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione spa
Altri titoli varianti Interpretación de los pronósticos y las estadísticas del cáncer
Record Nr. UNINA-9910698551603321
[Bethesda, Md.] : , : National Cancer Institute, , [2005]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Outcome prediction in cancer [[electronic resource] /] / editors, Azzam F.G. Taktak and Anthony C. Fisher
Outcome prediction in cancer [[electronic resource] /] / editors, Azzam F.G. Taktak and Anthony C. Fisher
Edizione [1st ed.]
Pubbl/distr/stampa Amsterdam ; ; Boston, : Elsevier, 2007
Descrizione fisica 1 online resource (483 p.)
Disciplina 362.196994
616.994
Altri autori (Persone) TaktakAzzam F. G
FisherAnthony C., Dr.
Soggetto topico Cancer - Diagnosis
Cancer - Prognosis
Neural networks (Computer science)
Survival analysis (Biometry)
Soggetto genere / forma Electronic books.
ISBN 1-280-74728-5
9786610747283
0-08-046803-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front cover; Title page; Copyright page; Foreword; Table of Contents; Contributors; Introduction; Section 1: The Clinical Problem; Chapter 1: The Predictive Value of Detailed Histological Staging of Surgical Resection Specimens in Oral Cancer; 1. INTRODUCTION; 2. PREDICTIVE FEATURES RELATED TO THE PRIMARY TUMOUR; 3. PREDICTIVE FEATURES RELATED TO THE REGIONAL LYMPH NODES; 4. DISTANT (SYSTEMIC) METASTASES; 5. GENERAL PATIENT FEATURES; 6. MOLECULAR AND BIOLOGICAL MARKERS; 7. THE WAY AHEAD?; REFERENCES; Chapter 2: Survival after Treatment of Intraocular Melanoma; 1. INTRODUCTION
2. INTRAOCULAR MELANOMA3. STATISTICAL METHODS FOR PREDICTING METASTATIC DISEASE; 4. PREDICTING METASTATIC DEATH WITH NEURAL NETWORKS; 5. MISCELLANEOUS ERRORS; 6. A NEURAL NETWORK FOR PREDICTING SURVIVAL IN UVEAL MELANOMA PATIENTS; 7. CAVEATS REGARDING INTERPRETATION OF SURVIVAL STATISTICS; 8. FURTHER STUDIES; 9. CONCLUSIONS; REFERENCES; Chapter 3: Recent Developments in Relative Survival Analysis; 1. INTRODUCTION; 2. CAUSE-SPECIFIC SURVIVAL; 3. INDEPENDENCE ASSUMPTION; 4. EXPECTED SURVIVAL; 5. RELATIVE SURVIVAL; 6. POINT OF CURE; 7. REGRESSION ANALYSIS; 8. PERIOD ANALYSIS
9. AGE STANDARDIZATION10. PARAMETRIC METHODS; 11. MULTIPLE TUMOURS; 12. CONCLUSION; REFERENCES; Section 2: Biological and Genetic Factors; Chapter 4: Environmental and Genetic Risk Factors of Lung Cancer; 1. INTRODUCTION; 2. LUNG CANCER INCIDENCE AND MORTALITY; 3. CONCLUSION; REFERENCES; Chapter 5: Chaos, Cancer, the Cellular Operating System and the Prediction of Survival in Head and Neck Cancer; 1. INTRODUCTION; 2. CANCER AND ITS CAUSATION; 3. FUNDAMENTAL CELL BIOLOGY AND ONCOLOGY; 4. A NEW DIRECTION FOR FUNDAMENTAL CELL BIOLOGY AND ONCOLOGY
5. COMPLEX SYSTEMS ANALYSIS AS APPLIED TO BIOLOGICAL SYSTEMS AND SURVIVAL ANALYSIS6. METHODS OF ANALYSING FAILURE IN BIOLOGICAL SYSTEMS; 7. A COMPARISON OF A NEURAL NETWORK WITH COX'S REGRESSION IN PREDICTING SURVIVAL IN OVER 800 PATIENTS; 8. THE NEURAL NETWORK AND FUNDAMENTAL BIOLOGY AND ONCOLOGY; 9. THE DIRECTION OF FUTURE WORK; 10. SUMMARY; REFERENCES; Section 3: Mathematical Background of Prognostic Models; Chapter 6: Flexible Hazard Modelling for Outcome Prediction in Cancer: Perspectives for the Use of Bioinformatics Knowledge; 1. INTRODUCTION; 2. FAILURE TIME DATA
3. PARTITION AND GROUPING OF FAILURE TIMES4. COMPETING RISKS; 5. GLMs AND FFANNs; 6. APPLICATIONS TO CANCER DATA; 7. CONCLUSIONS; REFERENCES; Chapter 7: Information Geometry for Survival Analysis and Feature Selection by Neural Networks; 1. INTRODUCTION; 2. SURVIVAL FUNCTIONS; 3. STANDARD MODELS FOR SURVIVAL ANALYSIS; 4. THE NEURAL NETWORK MODEL; 5. LEARNING IN THE CPENN MODEL; 6. THE BAYESIAN APPROACH TO MODELLING; 7. VARIABLE SELECTION; 8. THE LAYERED PROJECTION ALGORITHM; 9. A SEARCH STRATEGY; 10. EXPERIMENTS; 11. CONCLUSION; REFERENCES
Chapter 8: Artificial Neural Networks Used in the Survival Analysis of Breast Cancer Patients: A Node-Negative Study
Record Nr. UNINA-9910457223503321
Amsterdam ; ; Boston, : Elsevier, 2007
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Outcome prediction in cancer [[electronic resource] /] / editors, Azzam F.G. Taktak and Anthony C. Fisher
Outcome prediction in cancer [[electronic resource] /] / editors, Azzam F.G. Taktak and Anthony C. Fisher
Edizione [1st ed.]
Pubbl/distr/stampa Amsterdam ; ; Boston, : Elsevier, 2007
Descrizione fisica 1 online resource (483 p.)
Disciplina 362.196994
616.994
Altri autori (Persone) TaktakAzzam F. G
FisherAnthony C., Dr.
Soggetto topico Cancer - Diagnosis
Cancer - Prognosis
Neural networks (Computer science)
Survival analysis (Biometry)
ISBN 1-280-74728-5
9786610747283
0-08-046803-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front cover; Title page; Copyright page; Foreword; Table of Contents; Contributors; Introduction; Section 1: The Clinical Problem; Chapter 1: The Predictive Value of Detailed Histological Staging of Surgical Resection Specimens in Oral Cancer; 1. INTRODUCTION; 2. PREDICTIVE FEATURES RELATED TO THE PRIMARY TUMOUR; 3. PREDICTIVE FEATURES RELATED TO THE REGIONAL LYMPH NODES; 4. DISTANT (SYSTEMIC) METASTASES; 5. GENERAL PATIENT FEATURES; 6. MOLECULAR AND BIOLOGICAL MARKERS; 7. THE WAY AHEAD?; REFERENCES; Chapter 2: Survival after Treatment of Intraocular Melanoma; 1. INTRODUCTION
2. INTRAOCULAR MELANOMA3. STATISTICAL METHODS FOR PREDICTING METASTATIC DISEASE; 4. PREDICTING METASTATIC DEATH WITH NEURAL NETWORKS; 5. MISCELLANEOUS ERRORS; 6. A NEURAL NETWORK FOR PREDICTING SURVIVAL IN UVEAL MELANOMA PATIENTS; 7. CAVEATS REGARDING INTERPRETATION OF SURVIVAL STATISTICS; 8. FURTHER STUDIES; 9. CONCLUSIONS; REFERENCES; Chapter 3: Recent Developments in Relative Survival Analysis; 1. INTRODUCTION; 2. CAUSE-SPECIFIC SURVIVAL; 3. INDEPENDENCE ASSUMPTION; 4. EXPECTED SURVIVAL; 5. RELATIVE SURVIVAL; 6. POINT OF CURE; 7. REGRESSION ANALYSIS; 8. PERIOD ANALYSIS
9. AGE STANDARDIZATION10. PARAMETRIC METHODS; 11. MULTIPLE TUMOURS; 12. CONCLUSION; REFERENCES; Section 2: Biological and Genetic Factors; Chapter 4: Environmental and Genetic Risk Factors of Lung Cancer; 1. INTRODUCTION; 2. LUNG CANCER INCIDENCE AND MORTALITY; 3. CONCLUSION; REFERENCES; Chapter 5: Chaos, Cancer, the Cellular Operating System and the Prediction of Survival in Head and Neck Cancer; 1. INTRODUCTION; 2. CANCER AND ITS CAUSATION; 3. FUNDAMENTAL CELL BIOLOGY AND ONCOLOGY; 4. A NEW DIRECTION FOR FUNDAMENTAL CELL BIOLOGY AND ONCOLOGY
5. COMPLEX SYSTEMS ANALYSIS AS APPLIED TO BIOLOGICAL SYSTEMS AND SURVIVAL ANALYSIS6. METHODS OF ANALYSING FAILURE IN BIOLOGICAL SYSTEMS; 7. A COMPARISON OF A NEURAL NETWORK WITH COX'S REGRESSION IN PREDICTING SURVIVAL IN OVER 800 PATIENTS; 8. THE NEURAL NETWORK AND FUNDAMENTAL BIOLOGY AND ONCOLOGY; 9. THE DIRECTION OF FUTURE WORK; 10. SUMMARY; REFERENCES; Section 3: Mathematical Background of Prognostic Models; Chapter 6: Flexible Hazard Modelling for Outcome Prediction in Cancer: Perspectives for the Use of Bioinformatics Knowledge; 1. INTRODUCTION; 2. FAILURE TIME DATA
3. PARTITION AND GROUPING OF FAILURE TIMES4. COMPETING RISKS; 5. GLMs AND FFANNs; 6. APPLICATIONS TO CANCER DATA; 7. CONCLUSIONS; REFERENCES; Chapter 7: Information Geometry for Survival Analysis and Feature Selection by Neural Networks; 1. INTRODUCTION; 2. SURVIVAL FUNCTIONS; 3. STANDARD MODELS FOR SURVIVAL ANALYSIS; 4. THE NEURAL NETWORK MODEL; 5. LEARNING IN THE CPENN MODEL; 6. THE BAYESIAN APPROACH TO MODELLING; 7. VARIABLE SELECTION; 8. THE LAYERED PROJECTION ALGORITHM; 9. A SEARCH STRATEGY; 10. EXPERIMENTS; 11. CONCLUSION; REFERENCES
Chapter 8: Artificial Neural Networks Used in the Survival Analysis of Breast Cancer Patients: A Node-Negative Study
Record Nr. UNINA-9910784592903321
Amsterdam ; ; Boston, : Elsevier, 2007
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Outcome prediction in cancer / / editors, Azzam F.G. Taktak and Anthony C. Fisher
Outcome prediction in cancer / / editors, Azzam F.G. Taktak and Anthony C. Fisher
Edizione [1st ed.]
Pubbl/distr/stampa Amsterdam ; ; Boston, : Elsevier, 2007
Descrizione fisica 1 online resource (483 p.)
Disciplina 362.196994
616.994
616.994075
Altri autori (Persone) TaktakAzzam F. G
FisherAnthony C., Dr.
Soggetto topico Cancer - Diagnosis
Cancer - Prognosis
Neural networks (Computer science)
Survival analysis (Biometry)
ISBN 1-280-74728-5
9786610747283
0-08-046803-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front cover; Title page; Copyright page; Foreword; Table of Contents; Contributors; Introduction; Section 1: The Clinical Problem; Chapter 1: The Predictive Value of Detailed Histological Staging of Surgical Resection Specimens in Oral Cancer; 1. INTRODUCTION; 2. PREDICTIVE FEATURES RELATED TO THE PRIMARY TUMOUR; 3. PREDICTIVE FEATURES RELATED TO THE REGIONAL LYMPH NODES; 4. DISTANT (SYSTEMIC) METASTASES; 5. GENERAL PATIENT FEATURES; 6. MOLECULAR AND BIOLOGICAL MARKERS; 7. THE WAY AHEAD?; REFERENCES; Chapter 2: Survival after Treatment of Intraocular Melanoma; 1. INTRODUCTION
2. INTRAOCULAR MELANOMA3. STATISTICAL METHODS FOR PREDICTING METASTATIC DISEASE; 4. PREDICTING METASTATIC DEATH WITH NEURAL NETWORKS; 5. MISCELLANEOUS ERRORS; 6. A NEURAL NETWORK FOR PREDICTING SURVIVAL IN UVEAL MELANOMA PATIENTS; 7. CAVEATS REGARDING INTERPRETATION OF SURVIVAL STATISTICS; 8. FURTHER STUDIES; 9. CONCLUSIONS; REFERENCES; Chapter 3: Recent Developments in Relative Survival Analysis; 1. INTRODUCTION; 2. CAUSE-SPECIFIC SURVIVAL; 3. INDEPENDENCE ASSUMPTION; 4. EXPECTED SURVIVAL; 5. RELATIVE SURVIVAL; 6. POINT OF CURE; 7. REGRESSION ANALYSIS; 8. PERIOD ANALYSIS
9. AGE STANDARDIZATION10. PARAMETRIC METHODS; 11. MULTIPLE TUMOURS; 12. CONCLUSION; REFERENCES; Section 2: Biological and Genetic Factors; Chapter 4: Environmental and Genetic Risk Factors of Lung Cancer; 1. INTRODUCTION; 2. LUNG CANCER INCIDENCE AND MORTALITY; 3. CONCLUSION; REFERENCES; Chapter 5: Chaos, Cancer, the Cellular Operating System and the Prediction of Survival in Head and Neck Cancer; 1. INTRODUCTION; 2. CANCER AND ITS CAUSATION; 3. FUNDAMENTAL CELL BIOLOGY AND ONCOLOGY; 4. A NEW DIRECTION FOR FUNDAMENTAL CELL BIOLOGY AND ONCOLOGY
5. COMPLEX SYSTEMS ANALYSIS AS APPLIED TO BIOLOGICAL SYSTEMS AND SURVIVAL ANALYSIS6. METHODS OF ANALYSING FAILURE IN BIOLOGICAL SYSTEMS; 7. A COMPARISON OF A NEURAL NETWORK WITH COX'S REGRESSION IN PREDICTING SURVIVAL IN OVER 800 PATIENTS; 8. THE NEURAL NETWORK AND FUNDAMENTAL BIOLOGY AND ONCOLOGY; 9. THE DIRECTION OF FUTURE WORK; 10. SUMMARY; REFERENCES; Section 3: Mathematical Background of Prognostic Models; Chapter 6: Flexible Hazard Modelling for Outcome Prediction in Cancer: Perspectives for the Use of Bioinformatics Knowledge; 1. INTRODUCTION; 2. FAILURE TIME DATA
3. PARTITION AND GROUPING OF FAILURE TIMES4. COMPETING RISKS; 5. GLMs AND FFANNs; 6. APPLICATIONS TO CANCER DATA; 7. CONCLUSIONS; REFERENCES; Chapter 7: Information Geometry for Survival Analysis and Feature Selection by Neural Networks; 1. INTRODUCTION; 2. SURVIVAL FUNCTIONS; 3. STANDARD MODELS FOR SURVIVAL ANALYSIS; 4. THE NEURAL NETWORK MODEL; 5. LEARNING IN THE CPENN MODEL; 6. THE BAYESIAN APPROACH TO MODELLING; 7. VARIABLE SELECTION; 8. THE LAYERED PROJECTION ALGORITHM; 9. A SEARCH STRATEGY; 10. EXPERIMENTS; 11. CONCLUSION; REFERENCES
Chapter 8: Artificial Neural Networks Used in the Survival Analysis of Breast Cancer Patients: A Node-Negative Study
Record Nr. UNINA-9910824564103321
Amsterdam ; ; Boston, : Elsevier, 2007
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Understanding prognosis and cancer statistics [[electronic resource] ] : questions and answers
Understanding prognosis and cancer statistics [[electronic resource] ] : questions and answers
Pubbl/distr/stampa [Bethesda, Md.] : , : National Cancer Institute, , [2008]
Descrizione fisica 4 pages : digital, PDF file
Collana Fact sheet
Soggetto topico Cancer - Prognosis
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Understanding Prognosis and Cancer Statistics
Record Nr. UNINA-9910698551203321
[Bethesda, Md.] : , : National Cancer Institute, , [2008]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Who survives cancer? / / Howard P. Greenwald
Who survives cancer? / / Howard P. Greenwald
Autore Greenwald Howard P.
Pubbl/distr/stampa Berkeley : , : University of California Press, [1992]
Descrizione fisica 1 online resource (xxi, 280 pages) : illustrations
Disciplina 362.1/96994
Soggetto topico Cancer - Prognosis
Cancer - Social aspects
Cancer - Psychological aspects
Cancer - Patients
Health Maintenance Organizations - United States
Health Services Administration - United States
Neoplasms - mortality - United States
prevention & control - United States
Neoplasms - therapy - United States
Survival Rate - United States
Oncology
Medicine
Health & Biological Sciences
ISBN 0-585-09866-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto The problem and its context -- The disease and its survivors -- Cancer treatment: the industry of hope -- Can cancer be prevented? -- Emotional health and cancer survival -- Early detection: the key to cancer survival? -- Class and cancer survival -- The Health Maintenance Organization: a model for the future? -- Conclusion: personal strategies and public issues.
Record Nr. UNINA-9910495886203321
Greenwald Howard P.  
Berkeley : , : University of California Press, [1992]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui