top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Canard cycles : from birth to transition / / Peter De Maesschalck, Freddy Dumortier, Robert Roussarie
Canard cycles : from birth to transition / / Peter De Maesschalck, Freddy Dumortier, Robert Roussarie
Autore Maesschalck Peter De
Edizione [1st ed. 2021.]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (XXI, 408 p. 101 illus., 42 illus. in color.)
Disciplina 515.392
Collana Ergebnisse der Mathematik und ihrer Grenzgebiete
Soggetto topico Singular perturbations (Mathematics)
Vector fields
Bifurcation theory
Pertorbacions singulars (Matemàtica)
Camps vectorials
Teoria de la bifurcació
Soggetto genere / forma Llibres electrònics
ISBN 3-030-79233-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Part I Basic Notions -- 1 Basic Definitions and Notions -- 2 Local Invariants and Normal Forms -- 3 The Slow Vector Field -- 4 Slow-Fast Cycles -- 5 The Slow Divergence Integral -- 6 Breaking Mechanisms -- 7 Overview of Known Results -- Part II Technical Tools -- 8 Blow-Up of Contact Points -- 9 Center Manifolds -- 10 Normal Forms -- 11 Smooth Functions on Admissible Monomials and More -- 12 Local Transition Maps -- Part III Results and Open Problems -- 13 Ordinary Canard Cycles -- 14 Transitory Canard Cycles with Slow-Fast Passage Through a Jump Point -- 15 Transitory Canard Cycles with Fast-Fast Passage Through a Jump Point -- 16 Outlook and Open Problems -- Index -- References.
Record Nr. UNISA-996466410803316
Maesschalck Peter De  
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Handbook of Geometry and Topology of Singularities VI: Foliations / / edited by Felipe Cano, José Luis Cisneros-Molina, Lê Dũng Tráng, José Seade
Handbook of Geometry and Topology of Singularities VI: Foliations / / edited by Felipe Cano, José Luis Cisneros-Molina, Lê Dũng Tráng, José Seade
Autore Cano Felipe
Edizione [1st ed. 2024.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024
Descrizione fisica 1 online resource (500 pages)
Disciplina 516.35
Altri autori (Persone) Cisneros MolinaJosé Luis
Dũng TrángLê
SeadeJosé
Soggetto topico Geometry, Algebraic
Geometry, Differential
Topological groups
Lie groups
Functions of complex variables
Algebraic Geometry
Differential Geometry
Topological Groups and Lie Groups
Several Complex Variables and Analytic Spaces
Foliacions (Matemàtica)
Camps vectorials
Soggetto genere / forma Llibres electrònics
ISBN 9783031541728
3031541723
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1 Adolfo Guillot, On the singularities of complete holomorphic vector fields in dimension two -- 2 Julio Rebelo and Helena Reis, Singularities of holomorphic vector fields in dimensions ≥ 3: results and problems -- 3 Alcides Lins Neto, Codimension one holomorphic Foliations -- 4 Maurıcio Correa, Analytic varieties invariant by holomorphic foliations and Pfaff systems -- 5 Felipe Cano and Beatriz Molina-Samper, Local Invariant Hypersurfaces for Singular Foliations -- 6 Isao Nakai, From the perspective of nonsolvable dynamics on (C, 0): Basics and Applications -- 7 Javier Ribon, Description of the Zariski-closure of a group of formal diffeomorphisms -- 8 Frank Loray, The Riemann-Hilbert correspondence for rank 2 meromorphic connections on curves -- 9 Emmanuel Paul, Jean-Pierre Ramis, Dynamics of the fifth Painlevé foliation -- 10 Jean-Pierre Ramis, Epilogue: Stokes phenomena. Dynamics, Classification Problems and Avatars.
Record Nr. UNINA-9910866585403321
Cano Felipe  
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The Volume of Vector Fields on Riemannian Manifolds : Main Results and Open Problems / / by Olga Gil-Medrano
The Volume of Vector Fields on Riemannian Manifolds : Main Results and Open Problems / / by Olga Gil-Medrano
Autore Gil-Medrano Olga
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (131 pages)
Disciplina 516
Collana Lecture Notes in Mathematics
Soggetto topico Geometry
Mathematical analysis
Geometry, Differential
Global analysis (Mathematics)
Manifolds (Mathematics)
Analysis
Differential Geometry
Global Analysis and Analysis on Manifolds
Camps vectorials
Varietats de Riemann
Soggetto genere / forma Llibres electrònics
ISBN 3-031-36857-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Funding Acknowledgements -- Contents -- 1 Introduction -- 2 Minimal Sections of Tensor Bundles -- 2.1 Geometry of the Submanifold Determined by a Section of a Tensor Bundle -- 2.2 Minimal Sections of Tensor Bundles and Sphere Subbundles -- 2.3 First Variation of the Volume of Vector Fields: Minimal Vector Fields -- 2.4 Second Variation of the Volume of Vector Fields -- 2.5 The 2-Dimensional Case -- 2.6 Notes -- 2.6.1 Sections That Are Harmonic Maps -- 2.6.2 Sections That Are Critical Pointsof the Energy Functional -- 2.6.3 Minimal Oriented Distributions -- 3 Minimal Vector Fields of Constant Length on the Odd-Dimensional Spheres -- 3.1 Minimality of the Hopf Vector Fields -- 3.2 Study of the Stability of the Hopf Vector Fields -- 3.3 Stability of the Hopf Vector Fields of Odd-Dimensional Space Forms of Positive Curvature -- 3.4 Notes -- 3.4.1 Spheres and Their Quotients with Berger Metrics -- 3.4.2 The Minimality Condition for Unit Killing Vector Fields -- 3.4.3 Minimality of the Characteristic Vector Field of a Contact Riemannian Manifold -- 3.4.4 Minimal Invariant Vector Fields on Lie Groups and Homogeneous Spaces -- 3.4.5 Examples Related with Complex and Quaternionic Structures -- 4 Vector Fields of Constant Length of Minimum Volume on the Odd-Dimensional Spherical Space Forms -- 4.1 Hopf Vector Fields as Volume Minimisers in the 3-Dimensional Case -- 4.2 Hopf Vector Fields on 3-Dimensional Spheres with the Berger Metrics -- 4.3 Lower Bound of the Volume of Vector Fields of Constant Length -- 4.4 Asymptotic Behaviour of the Volume Functional -- 4.5 Notes -- 4.5.1 Unit Vector Fields on the Two-Dimensional Torus -- 4.5.2 Lower Bound of the Volume of Unit Vector Fields on Hypersurfaces of Rn+1 -- 4.5.3 Almost Hermitian Structures on S6 That Minimise the Volume -- 4.5.4 Minimisers of Functionals Related with the Energy.
5 Vector Fields of Constant Length on Punctured Spheres -- 5.1 The Radial Vector Fields -- 5.2 Parallel Transport Vector Fields -- 5.3 The Main Open Problem -- 5.4 Area Minimising Vector Fields on the 2-Sphere -- 5.5 Notes -- 5.5.1 Radial Vector Fields on Riemannian Manifolds -- 5.5.2 Minimisers of the Volume Among Unit Vector Fields with Singular Points -- References.
Record Nr. UNISA-996542671803316
Gil-Medrano Olga  
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui