Advanced Mathematics for Engineers and Physicists [[electronic resource] /] / by Sever Angel Popescu, Marilena Jianu |
Autore | Popescu Sever Angel |
Edizione | [1st ed. 2022.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022 |
Descrizione fisica | 1 online resource (833 pages) |
Disciplina | 620.00151 |
Soggetto topico |
Mathematical analysis
Probabilities Mathematical optimization Calculus of variations Differential equations Analysis Probability Theory Calculus of Variations and Optimization Differential Equations Matemàtica per a enginyers Física matemàtica |
Soggetto genere / forma | Llibres electrònics |
ISBN | 3-031-21502-8 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Contents -- Basic Notations -- Sets -- Hyperbolic Functions -- Euler Integrals -- 1 First-Order Differential Equations -- 1.1 Introduction to Ordinary Differential Equations -- 1.2 Separable Equations -- 1.3 Homogeneous Equations -- 1.4 First-Order Linear Differential Equations -- 1.5 Bernoulli Equations -- 1.6 Riccati Equations -- 1.7 Exact Differential Equations -- 1.8 Lagrange Equations and Clairaut Equations -- 1.9 Existence and Uniqueness of Solution of the Cauchy Problem -- 1.10 Exercises -- 2 Higher-Order Differential Equations -- 2.1 Introduction -- 2.2 Homogeneous Linear Differential Equations of Order n -- 2.3 Non-Homogeneous Linear Differential Equations of Order n -- 2.4 Homogeneous Linear Equations with Constant Coefficients -- 2.5 Nonhomogeneous Linear Equations with Constant Coefficients -- 2.6 Euler Equations -- 2.7 Exercises -- 3 Systems of Differential Equations -- 3.1 Introduction -- 3.2 First-Order Systems and Differential Equations of Order n -- 3.3 Linear Systems of Differential Equations -- 3.4 Linear Systems with Constant Coefficients -- 3.4.1 The Homogeneous Case (the Algebraic Method) -- 3.4.2 The Non-Homogeneous Case (the Method of Undetermined Coefficients) -- 3.4.2.1 The Diagonalizable Case -- 3.4.2.2 The Non-Diagonalizable Case -- 3.4.3 Matrix Exponential and Linear Systems with Constant Coefficients -- 3.4.3.1 Fundamental Matrix -- 3.4.3.2 Matrix Exponential -- 3.4.3.3 The Exponential of a Diagonalizable Matrix -- 3.4.3.4 The Exponential of a Nondiagonalizable Matrix -- 3.4.4 Elimination Method for Linear Systems with Constant Coefficients -- 3.5 Autonomous Systems of Differential Equations -- 3.6 First-Order Partial Differential Equations -- 3.6.1 Linear Homogeneous First-Order PDE -- 3.6.2 Quasilinear First-Order Partial Differential Equations -- 3.7 Exercises -- 4 Fourier Series.
4.1 Introduction: Periodic, Piecewise Smooth Functions -- 4.1.1 Periodic Functions -- 4.1.2 Piecewise Continuous and Piecewise Smooth Functions -- 4.2 Fourier Series Expansions -- 4.2.1 Series of Functions -- 4.2.2 A Basic Trigonometric System -- 4.2.3 Fourier Coefficients -- 4.3 Orthogonal Systems of Functions -- 4.3.1 Inner Product -- 4.3.2 Best Approximation in the Mean: Bessel's Inequality -- 4.4 The Convergence of Fourier Series -- 4.5 Differentiation and Integration of the Fourier Series -- 4.6 The Convergence in the Mean: Complete Systems -- 4.7 Examples of Fourier Expansions -- 4.8 The Complex form of the Fourier Series -- 4.9 Exercises -- 5 Fourier Transform -- 5.1 Improper Integrals -- 5.2 The Fourier Integral Formula -- 5.3 The Fourier Transform -- 5.4 Solving Linear Differential Equations -- 5.5 Moments Theorems -- 5.6 Sampling Theorem -- 5.7 Discrete Fourier Transform -- 5.8 Exercises -- 6 Laplace Transform -- 6.1 Introduction -- 6.2 Properties of the Laplace Transform -- 6.3 Inverse Laplace Transform -- 6.4 Solving Linear Differential Equations -- 6.5 The Dirac Delta Function -- 6.6 Exercises -- 7 Second-Order Partial Differential Equations -- 7.1 Classification: Canonical Form -- 7.2 The Wave Equation -- 7.2.1 Infinite Vibrating String: D'Alembert Formula -- 7.2.2 Finite Vibrating String: Fourier Method -- 7.2.3 Laplace Transform Method for the Vibrating String -- 7.2.4 Vibrations of a Rectangular Membrane: Two-Dimensional Wave Equation -- 7.3 Vibrations of a Simply Supported Beam: Fourier Method -- 7.4 The Heat Equation -- 7.4.1 Modeling the Heat Flow from a Body in Space -- 7.4.2 Heat Flow in a Finite Rod: Fourier Method -- 7.4.3 Heat Flow in an Infinite Rod -- 7.4.4 Heat Flow in a Rectangular Plate -- 7.5 The Laplace's Equation -- 7.5.1 Dirichlet Problem for a Rectangle -- 7.5.2 Dirichlet Problem for a Disk -- 7.6 Exercises. 8 Introduction to the Calculus of Variations -- 8.1 Classical Variational Problems -- 8.2 General Frame of Calculus of Variations -- 8.3 The Case F[y]=abF(x,y,y) dx -- 8.4 The Case F[y]=ab F(x, y, y,…,y(n)) dx -- 8.5 The Case F[y1,…,yn]=abF(x,y1,…,yn,y1,…,yn) dx -- 8.6 The Case F[z]=@汥瑀瑯步渠D F (x,y,z,∂z∂x, ∂z∂y)dxdy -- 8.7 Isoperimetric Problems and Geodesic Problems -- 8.7.1 Isoperimetric Problems -- 8.7.2 Geodesic Problems -- 8.8 Exercises -- 9 Elements of Probability Theory -- 9.1 Sample Space: Event Space -- 9.2 Probability Space -- 9.3 Conditional Probability: Bayes Formula -- 9.4 Discrete Random Variables -- 9.4.1 Random Variables -- 9.4.2 Expected Value -- Moments -- 9.4.3 Variance -- 9.4.4 Discrete Uniform Distribution -- 9.4.5 Bernoulli Distribution -- 9.4.6 Binomial Distribution -- 9.4.7 Poisson Distribution -- 9.4.8 Geometric Distribution -- 9.5 Continuous Random Variables -- 9.5.1 The Probability Density Function -- The Distribution Function -- 9.5.2 Expected Value, Moments and Variance for Continuous Random Variables -- 9.5.3 Characteristic Function -- 9.5.4 The Uniform Distribution -- 9.5.5 The Exponential Distribution -- 9.5.6 The Normal Distribution -- 9.5.7 Gamma Distribution -- 9.5.8 Chi-Squared Distribution -- 9.5.9 Student t-Distribution -- 9.6 Limit Theorems -- 9.7 Exercises -- 10 Answers and Solutions to Exercises -- 10.1 Chapter 1 -- 10.2 Chapter 2 -- 10.3 Chapter 3 -- 10.4 Chapter 4 -- 10.5 Chapter 5 -- 10.6 Chapter 6 -- 10.7 Chapter 7 -- 10.8 Chapter 8 -- 10.9 Chapter 9 -- 11 Supplementary Materials -- 11.1 Normed, Metric and Hilbert Spaces -- 11.1.1 Normed Vector Spaces -- 11.1.2 Sequences and Series of Functions -- 11.1.3 Metric Spaces. Some Density Theorems -- 11.1.4 The Fields Q, R and C -- 11.1.5 Hilbert Spaces -- 11.1.6 Continuous Functions and Step Functions -- 11.1.7 Orthonormal Systems in a Hilbert Space. 11.2 Complex Function Theory -- 11.2.1 Differentiability of Complex Functions -- 11.2.2 Integration of Complex Functions -- 11.2.3 Power Series Representation -- 11.2.4 Residue Theorem and Applications -- Bibliography -- Index. |
Record Nr. | UNISA-996508570903316 |
Popescu Sever Angel
![]() |
||
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022 | ||
![]() | ||
Lo trovi qui: Univ. di Salerno | ||
|
Advanced Mathematics for Engineers and Physicists / / by Sever Angel Popescu, Marilena Jianu |
Autore | Popescu Sever Angel |
Edizione | [1st ed. 2022.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022 |
Descrizione fisica | 1 online resource (833 pages) |
Disciplina | 620.00151 |
Soggetto topico |
Mathematical analysis
Probabilities Mathematical optimization Calculus of variations Differential equations Analysis Probability Theory Calculus of Variations and Optimization Differential Equations Matemàtica per a enginyers Física matemàtica |
Soggetto genere / forma | Llibres electrònics |
ISBN | 3-031-21502-8 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Contents -- Basic Notations -- Sets -- Hyperbolic Functions -- Euler Integrals -- 1 First-Order Differential Equations -- 1.1 Introduction to Ordinary Differential Equations -- 1.2 Separable Equations -- 1.3 Homogeneous Equations -- 1.4 First-Order Linear Differential Equations -- 1.5 Bernoulli Equations -- 1.6 Riccati Equations -- 1.7 Exact Differential Equations -- 1.8 Lagrange Equations and Clairaut Equations -- 1.9 Existence and Uniqueness of Solution of the Cauchy Problem -- 1.10 Exercises -- 2 Higher-Order Differential Equations -- 2.1 Introduction -- 2.2 Homogeneous Linear Differential Equations of Order n -- 2.3 Non-Homogeneous Linear Differential Equations of Order n -- 2.4 Homogeneous Linear Equations with Constant Coefficients -- 2.5 Nonhomogeneous Linear Equations with Constant Coefficients -- 2.6 Euler Equations -- 2.7 Exercises -- 3 Systems of Differential Equations -- 3.1 Introduction -- 3.2 First-Order Systems and Differential Equations of Order n -- 3.3 Linear Systems of Differential Equations -- 3.4 Linear Systems with Constant Coefficients -- 3.4.1 The Homogeneous Case (the Algebraic Method) -- 3.4.2 The Non-Homogeneous Case (the Method of Undetermined Coefficients) -- 3.4.2.1 The Diagonalizable Case -- 3.4.2.2 The Non-Diagonalizable Case -- 3.4.3 Matrix Exponential and Linear Systems with Constant Coefficients -- 3.4.3.1 Fundamental Matrix -- 3.4.3.2 Matrix Exponential -- 3.4.3.3 The Exponential of a Diagonalizable Matrix -- 3.4.3.4 The Exponential of a Nondiagonalizable Matrix -- 3.4.4 Elimination Method for Linear Systems with Constant Coefficients -- 3.5 Autonomous Systems of Differential Equations -- 3.6 First-Order Partial Differential Equations -- 3.6.1 Linear Homogeneous First-Order PDE -- 3.6.2 Quasilinear First-Order Partial Differential Equations -- 3.7 Exercises -- 4 Fourier Series.
4.1 Introduction: Periodic, Piecewise Smooth Functions -- 4.1.1 Periodic Functions -- 4.1.2 Piecewise Continuous and Piecewise Smooth Functions -- 4.2 Fourier Series Expansions -- 4.2.1 Series of Functions -- 4.2.2 A Basic Trigonometric System -- 4.2.3 Fourier Coefficients -- 4.3 Orthogonal Systems of Functions -- 4.3.1 Inner Product -- 4.3.2 Best Approximation in the Mean: Bessel's Inequality -- 4.4 The Convergence of Fourier Series -- 4.5 Differentiation and Integration of the Fourier Series -- 4.6 The Convergence in the Mean: Complete Systems -- 4.7 Examples of Fourier Expansions -- 4.8 The Complex form of the Fourier Series -- 4.9 Exercises -- 5 Fourier Transform -- 5.1 Improper Integrals -- 5.2 The Fourier Integral Formula -- 5.3 The Fourier Transform -- 5.4 Solving Linear Differential Equations -- 5.5 Moments Theorems -- 5.6 Sampling Theorem -- 5.7 Discrete Fourier Transform -- 5.8 Exercises -- 6 Laplace Transform -- 6.1 Introduction -- 6.2 Properties of the Laplace Transform -- 6.3 Inverse Laplace Transform -- 6.4 Solving Linear Differential Equations -- 6.5 The Dirac Delta Function -- 6.6 Exercises -- 7 Second-Order Partial Differential Equations -- 7.1 Classification: Canonical Form -- 7.2 The Wave Equation -- 7.2.1 Infinite Vibrating String: D'Alembert Formula -- 7.2.2 Finite Vibrating String: Fourier Method -- 7.2.3 Laplace Transform Method for the Vibrating String -- 7.2.4 Vibrations of a Rectangular Membrane: Two-Dimensional Wave Equation -- 7.3 Vibrations of a Simply Supported Beam: Fourier Method -- 7.4 The Heat Equation -- 7.4.1 Modeling the Heat Flow from a Body in Space -- 7.4.2 Heat Flow in a Finite Rod: Fourier Method -- 7.4.3 Heat Flow in an Infinite Rod -- 7.4.4 Heat Flow in a Rectangular Plate -- 7.5 The Laplace's Equation -- 7.5.1 Dirichlet Problem for a Rectangle -- 7.5.2 Dirichlet Problem for a Disk -- 7.6 Exercises. 8 Introduction to the Calculus of Variations -- 8.1 Classical Variational Problems -- 8.2 General Frame of Calculus of Variations -- 8.3 The Case F[y]=abF(x,y,y) dx -- 8.4 The Case F[y]=ab F(x, y, y,…,y(n)) dx -- 8.5 The Case F[y1,…,yn]=abF(x,y1,…,yn,y1,…,yn) dx -- 8.6 The Case F[z]=@汥瑀瑯步渠D F (x,y,z,∂z∂x, ∂z∂y)dxdy -- 8.7 Isoperimetric Problems and Geodesic Problems -- 8.7.1 Isoperimetric Problems -- 8.7.2 Geodesic Problems -- 8.8 Exercises -- 9 Elements of Probability Theory -- 9.1 Sample Space: Event Space -- 9.2 Probability Space -- 9.3 Conditional Probability: Bayes Formula -- 9.4 Discrete Random Variables -- 9.4.1 Random Variables -- 9.4.2 Expected Value -- Moments -- 9.4.3 Variance -- 9.4.4 Discrete Uniform Distribution -- 9.4.5 Bernoulli Distribution -- 9.4.6 Binomial Distribution -- 9.4.7 Poisson Distribution -- 9.4.8 Geometric Distribution -- 9.5 Continuous Random Variables -- 9.5.1 The Probability Density Function -- The Distribution Function -- 9.5.2 Expected Value, Moments and Variance for Continuous Random Variables -- 9.5.3 Characteristic Function -- 9.5.4 The Uniform Distribution -- 9.5.5 The Exponential Distribution -- 9.5.6 The Normal Distribution -- 9.5.7 Gamma Distribution -- 9.5.8 Chi-Squared Distribution -- 9.5.9 Student t-Distribution -- 9.6 Limit Theorems -- 9.7 Exercises -- 10 Answers and Solutions to Exercises -- 10.1 Chapter 1 -- 10.2 Chapter 2 -- 10.3 Chapter 3 -- 10.4 Chapter 4 -- 10.5 Chapter 5 -- 10.6 Chapter 6 -- 10.7 Chapter 7 -- 10.8 Chapter 8 -- 10.9 Chapter 9 -- 11 Supplementary Materials -- 11.1 Normed, Metric and Hilbert Spaces -- 11.1.1 Normed Vector Spaces -- 11.1.2 Sequences and Series of Functions -- 11.1.3 Metric Spaces. Some Density Theorems -- 11.1.4 The Fields Q, R and C -- 11.1.5 Hilbert Spaces -- 11.1.6 Continuous Functions and Step Functions -- 11.1.7 Orthonormal Systems in a Hilbert Space. 11.2 Complex Function Theory -- 11.2.1 Differentiability of Complex Functions -- 11.2.2 Integration of Complex Functions -- 11.2.3 Power Series Representation -- 11.2.4 Residue Theorem and Applications -- Bibliography -- Index. |
Record Nr. | UNINA-9910647396803321 |
Popescu Sever Angel
![]() |
||
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Basics of Nonlinear Optimization : Around the Weierstrass Theorem / / by Marek Galewski |
Autore | Galewski Marek |
Edizione | [1st ed. 2024.] |
Pubbl/distr/stampa | Cham : , : Springer Nature Switzerland : , : Imprint : Birkhäuser, , 2024 |
Descrizione fisica | 1 online resource (173 pages) |
Disciplina |
519.6
515.64 |
Collana | Compact Textbooks in Mathematics |
Soggetto topico |
Mathematical optimization
Calculus of variations Calculus of Variations and Optimization |
ISBN |
9783031771606
3031771605 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | - 1. The Weierstrass Theorem - the origin of optimization -- 2. Some basics from functional analysis and function spaces -- 3. Differentiation in infinite dimensional spaces -- 4. On the Weierstrass Theorem in infinite dimensional spaces -- 5. Applications to multiple integrals. |
Record Nr. | UNINA-9910918600903321 |
Galewski Marek
![]() |
||
Cham : , : Springer Nature Switzerland : , : Imprint : Birkhäuser, , 2024 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Bayesian Nonparametric Statistics : École d’Été de Probabilités de Saint-Flour LI - 2023 / / by Ismaël Castillo |
Autore | Castillo Ismaël |
Edizione | [1st ed. 2024.] |
Pubbl/distr/stampa | Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024 |
Descrizione fisica | 1 online resource (225 pages) |
Disciplina | 519.5 |
Collana | École d'Été de Probabilités de Saint-Flour |
Soggetto topico |
Statistics
Machine learning Mathematical optimization Calculus of variations Statistical Physics Probabilities Statistical Theory and Methods Machine Learning Calculus of Variations and Optimization Probability Theory |
ISBN |
9783031740350
9783031740343 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | -1. Introduction, rates I.-2. Rates II and first examples.-3. Adaptation I: smoothness.-4. Adaptation II: high-dimensions and deep neural networks -- 5. Bernstein-von Mises I: functionals -- 6. Bernstein-von Mises II: multiscale and applications -- 7. classification and multiple testing -- 8. Variational approximations. |
Record Nr. | UNINA-9910908381203321 |
Castillo Ismaël
![]() |
||
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Bayesian Nonparametric Statistics : École d’Été de Probabilités de Saint-Flour LI - 2023 / / by Ismaël Castillo |
Autore | Castillo Ismaël |
Edizione | [1st ed. 2024.] |
Pubbl/distr/stampa | Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024 |
Descrizione fisica | 1 online resource (225 pages) |
Disciplina | 519.5 |
Collana | École d'Été de Probabilités de Saint-Flour |
Soggetto topico |
Statistics
Machine learning Mathematical optimization Calculus of variations Statistical physics Probabilities Statistical Theory and Methods Machine Learning Calculus of Variations and Optimization Statistical Physics Probability Theory |
ISBN |
9783031740350
9783031740343 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | -1. Introduction, rates I.-2. Rates II and first examples.-3. Adaptation I: smoothness.-4. Adaptation II: high-dimensions and deep neural networks -- 5. Bernstein-von Mises I: functionals -- 6. Bernstein-von Mises II: multiscale and applications -- 7. classification and multiple testing -- 8. Variational approximations. |
Record Nr. | UNISA-996630872303316 |
Castillo Ismaël
![]() |
||
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024 | ||
![]() | ||
Lo trovi qui: Univ. di Salerno | ||
|
Calculus II : Practice Problems, Methods, and Solutions / / by Mehdi Rahmani-Andebili |
Autore | Rahmani-Andebili Mehdi |
Edizione | [1st ed. 2024.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2024 |
Descrizione fisica | 1 online resource (115 pages) |
Disciplina | 620.00151 |
Soggetto topico |
Engineering mathematics
Mathematical analysis Mathematical optimization Calculus of variations Differential equations Engineering Mathematics Integral Transforms and Operational Calculus Calculus of Variations and Optimization Differential Equations |
ISBN | 3-031-45353-0 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Chapter 1: Problems: Applications of integration -- Chapter 2: Solutions of Problems: Applications of integration -- Chapter 3: Problems: Sequences and series and their applications -- Chapter 4: Solutions of Problems: Sequences and series and their applications -- Chapter 5: Problems: Polar coordinate system -- Chapter 6: Solutions of Problems: Polar coordinate system -- Chapter 7: Problems: Complex numbers -- Chapter 8: Solutions of Problems: Complex numbers. |
Record Nr. | UNINA-9910765492003321 |
Rahmani-Andebili Mehdi
![]() |
||
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2024 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Calculus III : Practice Problems, Methods, and Solutions / / by Mehdi Rahmani-Andebili |
Autore | Rahmani-Andebili Mehdi |
Edizione | [1st ed. 2024.] |
Pubbl/distr/stampa | Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024 |
Descrizione fisica | 1 online resource (143 pages) |
Disciplina | 620.00151 |
Soggetto topico |
Engineering mathematics
Mathematics Mathematical analysis Mathematical optimization Calculus of variations Differential equations Engineering Mathematics Integral Transforms and Operational Calculus Calculus of Variations and Optimization Differential Equations |
ISBN | 3-031-47483-X |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Problems: Multivariable Functions -- Solutions of Problems: Multivariable Functions -- Problems: Lines, Surfaces, and Vector Functions -- Solutions of Problems: Lines, Surfaces, and Vector Functions -- Problems: Multivariable Integrals -- Solutions of Problems: Multivariable Integrals -- Problems: Vector Fields and Line and Surface Integrals -- Solutions of Problems: Vector Fields and Line and Surface Integrals -- Problems: Vectors and Vector-valued Functions -- Solutions of Problems: Vectors and Vector-valued Functions. |
Record Nr. | UNINA-9910770276803321 |
Rahmani-Andebili Mehdi
![]() |
||
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Calculus of Variations on Thin Prestressed Films : Asymptotic Methods in Elasticity / / by Marta Lewicka |
Autore | Lewicka Marta |
Edizione | [1st ed. 2023.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Birkhäuser, , 2023 |
Descrizione fisica | 1 online resource (IX, 448 p. 20 illus., 16 illus. in color.) |
Disciplina |
519.6
515.64 |
Collana | Progress in Nonlinear Differential Equations and Their Applications |
Soggetto topico |
Mathematical optimization
Calculus of variations Differential equations Surfaces (Technology) Thin films Geometry, Differential Calculus of Variations and Optimization Differential Equations Surfaces, Interfaces and Thin Film Differential Geometry Pel·lícules fines Elasticitat Models matemàtics Expansions asimptòtiques |
Soggetto genere / forma | Llibres electrònics |
ISBN | 3-031-17495-X |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Introduction -- Part I: Tools in Mathematical Analysis -- Γ-Convergence -- Korn's Inequality -- Friesecke-James-Müller’s Inequality -- Part II: Dimension Reduction in Classical Elasticity -- Limiting Theories for Elastic Plates and Shells: Nonlinear Bending -- Limiting Theories for Elastic Plates and Shells: Sublinear and Linear -- Linear Theories for Elastic Plates: Linearized Bending -- Infinite Hierarchy of Elastic Shell Models -- Limiting Theories on Elastic Elliptic Shells -- Limiting Theories on Elastic Developable Shells -- Part III: Dimension Reduction in Prestressed Elasticity -- Limiting Theories for Prestressed Films: Nonlinear Bending -- Limiting Theories for Prestressed Films: Von Kármán-like Theory -- Infinite Hierarchy of Limiting Theories for Prestressed Films -- Limiting Theories for Weakly Prestressed Films -- Terminology and Notation -- Index. . |
Record Nr. | UNINA-9910698646203321 |
Lewicka Marta
![]() |
||
Cham : , : Springer International Publishing : , : Imprint : Birkhäuser, , 2023 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Computational Mathematics and Variational Analysis / / edited by Nicholas J. Daras, Themistocles M. Rassias |
Edizione | [1st ed. 2020.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 |
Descrizione fisica | 1 online resource (564 pages) |
Disciplina | 515.64 |
Collana | Springer Optimization and Its Applications |
Soggetto topico |
Mathematical optimization
Calculus of variations Mathematics - Data processing Calculus of Variations and Optimization Computational Mathematics and Numerical Analysis |
ISBN | 3-030-44625-5 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | On some piecewise linear classifiers based on non-smooth optimization (A.M. BAGIROV) -- Local-optimal solutions and their applications (H.D. CHIANG) -- Cyber security investments with nonlinear budget constraints (P. DANIELE) -- Systemic theory and deterministic prediction (N.J. DARAS) -- Poincaré type inequalities for Green’s operator on harmonic forms (S. DING) -- Inequalities for relative operator entropy (S. DRAGOMIR) -- Complementarity and variational inequalities with applications in electronics (D.GOELEVEN) -- Strong and weak convexity of closed sets in a Hilbert space (V.V. GONCHAROV) -- Counterfactual reasoning with Bayesian networks as a healthcare governance tool to enhance defence medical services (E. KYRIMI, S. MOSSADEGH, N. TAI and W. MARSH) -- An optimization methodology for operational environmental forecasting systems (G. KOUMPAROULIS and G. GALANIS) -- When Data reveals ransomware activity (J.L. LANET) -- On non-smooth multiobjective optimality conditions (M.M. MAKELA) -- Small array systems with massive performance capabilities: Beamforming, localization and tracking (A. MANIKAS and V. SRIDHAR) -- Bottom-up hierarchical ramp secret sharing scheme (G. MELETIOU, S.A.N. ALEXANDROPOULOS, D. S. TRIANTAFYLLOU and M.N. VRAHATIS) -- Separation of finitely many convex sets (D. PALLASCHKE) -- Optimization Theory (P. PARDALOS) -- Blind transfer of personal data insuring privacy (R. ROLLAND and A. BONNECAZE) -- Optimization problems with hidden nonconvex structures (A.S. STREKALOVSKY) -- On the congruence subgroups of braid groups (C.STYLIANAKIS) -- Military info-support operations in modern conflicts: evolution of MISO’s methodology during the modern conflicts in XXI century (T. SCZUREK and M. GORNIKIEWICZ) -- Safety and Security for the system-of-systems in the military from a cyber-physical perspective in the new era of Internet-of-Things (W.R. TSAGALIDIS) -- Formal modeling and verification of an autonomous swarm of UAVs for monitoring applications (A. TSOURDOS and V. LAPPAS) -- Metrical Pareto efficiency and monotonicity (M. TURINICI). |
Record Nr. | UNINA-9910483485703321 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Computational Stochastic Programming : Models, Algorithms, and Implementation / / by Lewis Ntaimo |
Autore | Ntaimo Lewis |
Edizione | [1st ed. 2024.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2024 |
Descrizione fisica | 1 online resource (518 pages) |
Disciplina | 519.7 |
Collana | Springer Optimization and Its Applications |
Soggetto topico |
Mathematical optimization
Calculus of variations Probabilities Computer science - Mathematics Neural networks (Computer science) Algorithms Dynamics Calculus of Variations and Optimization Probability Theory Mathematical Applications in Computer Science Mathematical Models of Cognitive Processes and Neural Networks Dynamical Systems |
ISBN | 3-031-52464-0 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | 1. Introduction -- 2 Stochastic Programming Models -- 3 Modeling and Illustrative Numerical Examples -- 4 Example Applications of Stochastic Programming -- 5 Deterministic Large-Scale Decomposition Methods -- 6 Risk-Neutral Stochastic Linear Programming Methods -- 7 Mean-Risk Stochastic Linear Programming Methods -- 8 Sampling-Based Stochastic Linear Programming Methods -- 9 Stochastic Mixed-Integer Programming Methods -- 10 Computational Experimentation. . |
Record Nr. | UNINA-9910847588003321 |
Ntaimo Lewis
![]() |
||
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2024 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|