top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advanced Mathematics for Engineers and Physicists [[electronic resource] /] / by Sever Angel Popescu, Marilena Jianu
Advanced Mathematics for Engineers and Physicists [[electronic resource] /] / by Sever Angel Popescu, Marilena Jianu
Autore Popescu Sever Angel
Edizione [1st ed. 2022.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
Descrizione fisica 1 online resource (833 pages)
Disciplina 620.00151
Soggetto topico Mathematical analysis
Probabilities
Mathematical optimization
Calculus of variations
Differential equations
Analysis
Probability Theory
Calculus of Variations and Optimization
Differential Equations
Matemàtica per a enginyers
Física matemàtica
Soggetto genere / forma Llibres electrònics
ISBN 3-031-21502-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- Basic Notations -- Sets -- Hyperbolic Functions -- Euler Integrals -- 1 First-Order Differential Equations -- 1.1 Introduction to Ordinary Differential Equations -- 1.2 Separable Equations -- 1.3 Homogeneous Equations -- 1.4 First-Order Linear Differential Equations -- 1.5 Bernoulli Equations -- 1.6 Riccati Equations -- 1.7 Exact Differential Equations -- 1.8 Lagrange Equations and Clairaut Equations -- 1.9 Existence and Uniqueness of Solution of the Cauchy Problem -- 1.10 Exercises -- 2 Higher-Order Differential Equations -- 2.1 Introduction -- 2.2 Homogeneous Linear Differential Equations of Order n -- 2.3 Non-Homogeneous Linear Differential Equations of Order n -- 2.4 Homogeneous Linear Equations with Constant Coefficients -- 2.5 Nonhomogeneous Linear Equations with Constant Coefficients -- 2.6 Euler Equations -- 2.7 Exercises -- 3 Systems of Differential Equations -- 3.1 Introduction -- 3.2 First-Order Systems and Differential Equations of Order n -- 3.3 Linear Systems of Differential Equations -- 3.4 Linear Systems with Constant Coefficients -- 3.4.1 The Homogeneous Case (the Algebraic Method) -- 3.4.2 The Non-Homogeneous Case (the Method of Undetermined Coefficients) -- 3.4.2.1 The Diagonalizable Case -- 3.4.2.2 The Non-Diagonalizable Case -- 3.4.3 Matrix Exponential and Linear Systems with Constant Coefficients -- 3.4.3.1 Fundamental Matrix -- 3.4.3.2 Matrix Exponential -- 3.4.3.3 The Exponential of a Diagonalizable Matrix -- 3.4.3.4 The Exponential of a Nondiagonalizable Matrix -- 3.4.4 Elimination Method for Linear Systems with Constant Coefficients -- 3.5 Autonomous Systems of Differential Equations -- 3.6 First-Order Partial Differential Equations -- 3.6.1 Linear Homogeneous First-Order PDE -- 3.6.2 Quasilinear First-Order Partial Differential Equations -- 3.7 Exercises -- 4 Fourier Series.
4.1 Introduction: Periodic, Piecewise Smooth Functions -- 4.1.1 Periodic Functions -- 4.1.2 Piecewise Continuous and Piecewise Smooth Functions -- 4.2 Fourier Series Expansions -- 4.2.1 Series of Functions -- 4.2.2 A Basic Trigonometric System -- 4.2.3 Fourier Coefficients -- 4.3 Orthogonal Systems of Functions -- 4.3.1 Inner Product -- 4.3.2 Best Approximation in the Mean: Bessel's Inequality -- 4.4 The Convergence of Fourier Series -- 4.5 Differentiation and Integration of the Fourier Series -- 4.6 The Convergence in the Mean: Complete Systems -- 4.7 Examples of Fourier Expansions -- 4.8 The Complex form of the Fourier Series -- 4.9 Exercises -- 5 Fourier Transform -- 5.1 Improper Integrals -- 5.2 The Fourier Integral Formula -- 5.3 The Fourier Transform -- 5.4 Solving Linear Differential Equations -- 5.5 Moments Theorems -- 5.6 Sampling Theorem -- 5.7 Discrete Fourier Transform -- 5.8 Exercises -- 6 Laplace Transform -- 6.1 Introduction -- 6.2 Properties of the Laplace Transform -- 6.3 Inverse Laplace Transform -- 6.4 Solving Linear Differential Equations -- 6.5 The Dirac Delta Function -- 6.6 Exercises -- 7 Second-Order Partial Differential Equations -- 7.1 Classification: Canonical Form -- 7.2 The Wave Equation -- 7.2.1 Infinite Vibrating String: D'Alembert Formula -- 7.2.2 Finite Vibrating String: Fourier Method -- 7.2.3 Laplace Transform Method for the Vibrating String -- 7.2.4 Vibrations of a Rectangular Membrane: Two-Dimensional Wave Equation -- 7.3 Vibrations of a Simply Supported Beam: Fourier Method -- 7.4 The Heat Equation -- 7.4.1 Modeling the Heat Flow from a Body in Space -- 7.4.2 Heat Flow in a Finite Rod: Fourier Method -- 7.4.3 Heat Flow in an Infinite Rod -- 7.4.4 Heat Flow in a Rectangular Plate -- 7.5 The Laplace's Equation -- 7.5.1 Dirichlet Problem for a Rectangle -- 7.5.2 Dirichlet Problem for a Disk -- 7.6 Exercises.
8 Introduction to the Calculus of Variations -- 8.1 Classical Variational Problems -- 8.2 General Frame of Calculus of Variations -- 8.3 The Case F[y]=abF(x,y,y) dx -- 8.4 The Case F[y]=ab F(x, y, y,…,y(n)) dx -- 8.5 The Case F[y1,…,yn]=abF(x,y1,…,yn,y1,…,yn) dx -- 8.6 The Case F[z]=@汥瑀瑯步渠D F (x,y,z,∂z∂x, ∂z∂y)dxdy -- 8.7 Isoperimetric Problems and Geodesic Problems -- 8.7.1 Isoperimetric Problems -- 8.7.2 Geodesic Problems -- 8.8 Exercises -- 9 Elements of Probability Theory -- 9.1 Sample Space: Event Space -- 9.2 Probability Space -- 9.3 Conditional Probability: Bayes Formula -- 9.4 Discrete Random Variables -- 9.4.1 Random Variables -- 9.4.2 Expected Value -- Moments -- 9.4.3 Variance -- 9.4.4 Discrete Uniform Distribution -- 9.4.5 Bernoulli Distribution -- 9.4.6 Binomial Distribution -- 9.4.7 Poisson Distribution -- 9.4.8 Geometric Distribution -- 9.5 Continuous Random Variables -- 9.5.1 The Probability Density Function -- The Distribution Function -- 9.5.2 Expected Value, Moments and Variance for Continuous Random Variables -- 9.5.3 Characteristic Function -- 9.5.4 The Uniform Distribution -- 9.5.5 The Exponential Distribution -- 9.5.6 The Normal Distribution -- 9.5.7 Gamma Distribution -- 9.5.8 Chi-Squared Distribution -- 9.5.9 Student t-Distribution -- 9.6 Limit Theorems -- 9.7 Exercises -- 10 Answers and Solutions to Exercises -- 10.1 Chapter 1 -- 10.2 Chapter 2 -- 10.3 Chapter 3 -- 10.4 Chapter 4 -- 10.5 Chapter 5 -- 10.6 Chapter 6 -- 10.7 Chapter 7 -- 10.8 Chapter 8 -- 10.9 Chapter 9 -- 11 Supplementary Materials -- 11.1 Normed, Metric and Hilbert Spaces -- 11.1.1 Normed Vector Spaces -- 11.1.2 Sequences and Series of Functions -- 11.1.3 Metric Spaces. Some Density Theorems -- 11.1.4 The Fields Q, R and C -- 11.1.5 Hilbert Spaces -- 11.1.6 Continuous Functions and Step Functions -- 11.1.7 Orthonormal Systems in a Hilbert Space.
11.2 Complex Function Theory -- 11.2.1 Differentiability of Complex Functions -- 11.2.2 Integration of Complex Functions -- 11.2.3 Power Series Representation -- 11.2.4 Residue Theorem and Applications -- Bibliography -- Index.
Record Nr. UNISA-996508570903316
Popescu Sever Angel  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Advanced Mathematics for Engineers and Physicists / / by Sever Angel Popescu, Marilena Jianu
Advanced Mathematics for Engineers and Physicists / / by Sever Angel Popescu, Marilena Jianu
Autore Popescu Sever Angel
Edizione [1st ed. 2022.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
Descrizione fisica 1 online resource (833 pages)
Disciplina 620.00151
Soggetto topico Mathematical analysis
Probabilities
Mathematical optimization
Calculus of variations
Differential equations
Analysis
Probability Theory
Calculus of Variations and Optimization
Differential Equations
Matemàtica per a enginyers
Física matemàtica
Soggetto genere / forma Llibres electrònics
ISBN 3-031-21502-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- Basic Notations -- Sets -- Hyperbolic Functions -- Euler Integrals -- 1 First-Order Differential Equations -- 1.1 Introduction to Ordinary Differential Equations -- 1.2 Separable Equations -- 1.3 Homogeneous Equations -- 1.4 First-Order Linear Differential Equations -- 1.5 Bernoulli Equations -- 1.6 Riccati Equations -- 1.7 Exact Differential Equations -- 1.8 Lagrange Equations and Clairaut Equations -- 1.9 Existence and Uniqueness of Solution of the Cauchy Problem -- 1.10 Exercises -- 2 Higher-Order Differential Equations -- 2.1 Introduction -- 2.2 Homogeneous Linear Differential Equations of Order n -- 2.3 Non-Homogeneous Linear Differential Equations of Order n -- 2.4 Homogeneous Linear Equations with Constant Coefficients -- 2.5 Nonhomogeneous Linear Equations with Constant Coefficients -- 2.6 Euler Equations -- 2.7 Exercises -- 3 Systems of Differential Equations -- 3.1 Introduction -- 3.2 First-Order Systems and Differential Equations of Order n -- 3.3 Linear Systems of Differential Equations -- 3.4 Linear Systems with Constant Coefficients -- 3.4.1 The Homogeneous Case (the Algebraic Method) -- 3.4.2 The Non-Homogeneous Case (the Method of Undetermined Coefficients) -- 3.4.2.1 The Diagonalizable Case -- 3.4.2.2 The Non-Diagonalizable Case -- 3.4.3 Matrix Exponential and Linear Systems with Constant Coefficients -- 3.4.3.1 Fundamental Matrix -- 3.4.3.2 Matrix Exponential -- 3.4.3.3 The Exponential of a Diagonalizable Matrix -- 3.4.3.4 The Exponential of a Nondiagonalizable Matrix -- 3.4.4 Elimination Method for Linear Systems with Constant Coefficients -- 3.5 Autonomous Systems of Differential Equations -- 3.6 First-Order Partial Differential Equations -- 3.6.1 Linear Homogeneous First-Order PDE -- 3.6.2 Quasilinear First-Order Partial Differential Equations -- 3.7 Exercises -- 4 Fourier Series.
4.1 Introduction: Periodic, Piecewise Smooth Functions -- 4.1.1 Periodic Functions -- 4.1.2 Piecewise Continuous and Piecewise Smooth Functions -- 4.2 Fourier Series Expansions -- 4.2.1 Series of Functions -- 4.2.2 A Basic Trigonometric System -- 4.2.3 Fourier Coefficients -- 4.3 Orthogonal Systems of Functions -- 4.3.1 Inner Product -- 4.3.2 Best Approximation in the Mean: Bessel's Inequality -- 4.4 The Convergence of Fourier Series -- 4.5 Differentiation and Integration of the Fourier Series -- 4.6 The Convergence in the Mean: Complete Systems -- 4.7 Examples of Fourier Expansions -- 4.8 The Complex form of the Fourier Series -- 4.9 Exercises -- 5 Fourier Transform -- 5.1 Improper Integrals -- 5.2 The Fourier Integral Formula -- 5.3 The Fourier Transform -- 5.4 Solving Linear Differential Equations -- 5.5 Moments Theorems -- 5.6 Sampling Theorem -- 5.7 Discrete Fourier Transform -- 5.8 Exercises -- 6 Laplace Transform -- 6.1 Introduction -- 6.2 Properties of the Laplace Transform -- 6.3 Inverse Laplace Transform -- 6.4 Solving Linear Differential Equations -- 6.5 The Dirac Delta Function -- 6.6 Exercises -- 7 Second-Order Partial Differential Equations -- 7.1 Classification: Canonical Form -- 7.2 The Wave Equation -- 7.2.1 Infinite Vibrating String: D'Alembert Formula -- 7.2.2 Finite Vibrating String: Fourier Method -- 7.2.3 Laplace Transform Method for the Vibrating String -- 7.2.4 Vibrations of a Rectangular Membrane: Two-Dimensional Wave Equation -- 7.3 Vibrations of a Simply Supported Beam: Fourier Method -- 7.4 The Heat Equation -- 7.4.1 Modeling the Heat Flow from a Body in Space -- 7.4.2 Heat Flow in a Finite Rod: Fourier Method -- 7.4.3 Heat Flow in an Infinite Rod -- 7.4.4 Heat Flow in a Rectangular Plate -- 7.5 The Laplace's Equation -- 7.5.1 Dirichlet Problem for a Rectangle -- 7.5.2 Dirichlet Problem for a Disk -- 7.6 Exercises.
8 Introduction to the Calculus of Variations -- 8.1 Classical Variational Problems -- 8.2 General Frame of Calculus of Variations -- 8.3 The Case F[y]=abF(x,y,y) dx -- 8.4 The Case F[y]=ab F(x, y, y,…,y(n)) dx -- 8.5 The Case F[y1,…,yn]=abF(x,y1,…,yn,y1,…,yn) dx -- 8.6 The Case F[z]=@汥瑀瑯步渠D F (x,y,z,∂z∂x, ∂z∂y)dxdy -- 8.7 Isoperimetric Problems and Geodesic Problems -- 8.7.1 Isoperimetric Problems -- 8.7.2 Geodesic Problems -- 8.8 Exercises -- 9 Elements of Probability Theory -- 9.1 Sample Space: Event Space -- 9.2 Probability Space -- 9.3 Conditional Probability: Bayes Formula -- 9.4 Discrete Random Variables -- 9.4.1 Random Variables -- 9.4.2 Expected Value -- Moments -- 9.4.3 Variance -- 9.4.4 Discrete Uniform Distribution -- 9.4.5 Bernoulli Distribution -- 9.4.6 Binomial Distribution -- 9.4.7 Poisson Distribution -- 9.4.8 Geometric Distribution -- 9.5 Continuous Random Variables -- 9.5.1 The Probability Density Function -- The Distribution Function -- 9.5.2 Expected Value, Moments and Variance for Continuous Random Variables -- 9.5.3 Characteristic Function -- 9.5.4 The Uniform Distribution -- 9.5.5 The Exponential Distribution -- 9.5.6 The Normal Distribution -- 9.5.7 Gamma Distribution -- 9.5.8 Chi-Squared Distribution -- 9.5.9 Student t-Distribution -- 9.6 Limit Theorems -- 9.7 Exercises -- 10 Answers and Solutions to Exercises -- 10.1 Chapter 1 -- 10.2 Chapter 2 -- 10.3 Chapter 3 -- 10.4 Chapter 4 -- 10.5 Chapter 5 -- 10.6 Chapter 6 -- 10.7 Chapter 7 -- 10.8 Chapter 8 -- 10.9 Chapter 9 -- 11 Supplementary Materials -- 11.1 Normed, Metric and Hilbert Spaces -- 11.1.1 Normed Vector Spaces -- 11.1.2 Sequences and Series of Functions -- 11.1.3 Metric Spaces. Some Density Theorems -- 11.1.4 The Fields Q, R and C -- 11.1.5 Hilbert Spaces -- 11.1.6 Continuous Functions and Step Functions -- 11.1.7 Orthonormal Systems in a Hilbert Space.
11.2 Complex Function Theory -- 11.2.1 Differentiability of Complex Functions -- 11.2.2 Integration of Complex Functions -- 11.2.3 Power Series Representation -- 11.2.4 Residue Theorem and Applications -- Bibliography -- Index.
Record Nr. UNINA-9910647396803321
Popescu Sever Angel  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Basics of Nonlinear Optimization : Around the Weierstrass Theorem / / by Marek Galewski
Basics of Nonlinear Optimization : Around the Weierstrass Theorem / / by Marek Galewski
Autore Galewski Marek
Edizione [1st ed. 2024.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Birkhäuser, , 2024
Descrizione fisica 1 online resource (173 pages)
Disciplina 519.6
515.64
Collana Compact Textbooks in Mathematics
Soggetto topico Mathematical optimization
Calculus of variations
Calculus of Variations and Optimization
ISBN 9783031771606
3031771605
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto - 1. The Weierstrass Theorem - the origin of optimization -- 2. Some basics from functional analysis and function spaces -- 3. Differentiation in infinite dimensional spaces -- 4. On the Weierstrass Theorem in infinite dimensional spaces -- 5. Applications to multiple integrals.
Record Nr. UNINA-9910918600903321
Galewski Marek  
Cham : , : Springer Nature Switzerland : , : Imprint : Birkhäuser, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Bayesian Nonparametric Statistics : École d’Été de Probabilités de Saint-Flour LI - 2023 / / by Ismaël Castillo
Bayesian Nonparametric Statistics : École d’Été de Probabilités de Saint-Flour LI - 2023 / / by Ismaël Castillo
Autore Castillo Ismaël
Edizione [1st ed. 2024.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024
Descrizione fisica 1 online resource (225 pages)
Disciplina 519.5
Collana École d'Été de Probabilités de Saint-Flour
Soggetto topico Statistics
Machine learning
Mathematical optimization
Calculus of variations
Statistical Physics
Probabilities
Statistical Theory and Methods
Machine Learning
Calculus of Variations and Optimization
Probability Theory
ISBN 9783031740350
9783031740343
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto -1. Introduction, rates I.-2. Rates II and first examples.-3. Adaptation I: smoothness.-4. Adaptation II: high-dimensions and deep neural networks -- 5. Bernstein-von Mises I: functionals -- 6. Bernstein-von Mises II: multiscale and applications -- 7. classification and multiple testing -- 8. Variational approximations.
Record Nr. UNINA-9910908381203321
Castillo Ismaël  
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Bayesian Nonparametric Statistics : École d’Été de Probabilités de Saint-Flour LI - 2023 / / by Ismaël Castillo
Bayesian Nonparametric Statistics : École d’Été de Probabilités de Saint-Flour LI - 2023 / / by Ismaël Castillo
Autore Castillo Ismaël
Edizione [1st ed. 2024.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024
Descrizione fisica 1 online resource (225 pages)
Disciplina 519.5
Collana École d'Été de Probabilités de Saint-Flour
Soggetto topico Statistics
Machine learning
Mathematical optimization
Calculus of variations
Statistical physics
Probabilities
Statistical Theory and Methods
Machine Learning
Calculus of Variations and Optimization
Statistical Physics
Probability Theory
ISBN 9783031740350
9783031740343
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto -1. Introduction, rates I.-2. Rates II and first examples.-3. Adaptation I: smoothness.-4. Adaptation II: high-dimensions and deep neural networks -- 5. Bernstein-von Mises I: functionals -- 6. Bernstein-von Mises II: multiscale and applications -- 7. classification and multiple testing -- 8. Variational approximations.
Record Nr. UNISA-996630872303316
Castillo Ismaël  
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Calculus II : Practice Problems, Methods, and Solutions / / by Mehdi Rahmani-Andebili
Calculus II : Practice Problems, Methods, and Solutions / / by Mehdi Rahmani-Andebili
Autore Rahmani-Andebili Mehdi
Edizione [1st ed. 2024.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2024
Descrizione fisica 1 online resource (115 pages)
Disciplina 620.00151
Soggetto topico Engineering mathematics
Mathematical analysis
Mathematical optimization
Calculus of variations
Differential equations
Engineering Mathematics
Integral Transforms and Operational Calculus
Calculus of Variations and Optimization
Differential Equations
ISBN 3-031-45353-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1: Problems: Applications of integration -- Chapter 2: Solutions of Problems: Applications of integration -- Chapter 3: Problems: Sequences and series and their applications -- Chapter 4: Solutions of Problems: Sequences and series and their applications -- Chapter 5: Problems: Polar coordinate system -- Chapter 6: Solutions of Problems: Polar coordinate system -- Chapter 7: Problems: Complex numbers -- Chapter 8: Solutions of Problems: Complex numbers.
Record Nr. UNINA-9910765492003321
Rahmani-Andebili Mehdi  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Calculus III : Practice Problems, Methods, and Solutions / / by Mehdi Rahmani-Andebili
Calculus III : Practice Problems, Methods, and Solutions / / by Mehdi Rahmani-Andebili
Autore Rahmani-Andebili Mehdi
Edizione [1st ed. 2024.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024
Descrizione fisica 1 online resource (143 pages)
Disciplina 620.00151
Soggetto topico Engineering mathematics
Mathematics
Mathematical analysis
Mathematical optimization
Calculus of variations
Differential equations
Engineering Mathematics
Integral Transforms and Operational Calculus
Calculus of Variations and Optimization
Differential Equations
ISBN 3-031-47483-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Problems: Multivariable Functions -- Solutions of Problems: Multivariable Functions -- Problems: Lines, Surfaces, and Vector Functions -- Solutions of Problems: Lines, Surfaces, and Vector Functions -- Problems: Multivariable Integrals -- Solutions of Problems: Multivariable Integrals -- Problems: Vector Fields and Line and Surface Integrals -- Solutions of Problems: Vector Fields and Line and Surface Integrals -- Problems: Vectors and Vector-valued Functions -- Solutions of Problems: Vectors and Vector-valued Functions.
Record Nr. UNINA-9910770276803321
Rahmani-Andebili Mehdi  
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Calculus of Variations on Thin Prestressed Films : Asymptotic Methods in Elasticity / / by Marta Lewicka
Calculus of Variations on Thin Prestressed Films : Asymptotic Methods in Elasticity / / by Marta Lewicka
Autore Lewicka Marta
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Birkhäuser, , 2023
Descrizione fisica 1 online resource (IX, 448 p. 20 illus., 16 illus. in color.)
Disciplina 519.6
515.64
Collana Progress in Nonlinear Differential Equations and Their Applications
Soggetto topico Mathematical optimization
Calculus of variations
Differential equations
Surfaces (Technology)
Thin films
Geometry, Differential
Calculus of Variations and Optimization
Differential Equations
Surfaces, Interfaces and Thin Film
Differential Geometry
Pel·lícules fines
Elasticitat
Models matemàtics
Expansions asimptòtiques
Soggetto genere / forma Llibres electrònics
ISBN 3-031-17495-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- Part I: Tools in Mathematical Analysis -- Γ-Convergence -- Korn's Inequality -- Friesecke-James-Müller’s Inequality -- Part II: Dimension Reduction in Classical Elasticity -- Limiting Theories for Elastic Plates and Shells: Nonlinear Bending -- Limiting Theories for Elastic Plates and Shells: Sublinear and Linear -- Linear Theories for Elastic Plates: Linearized Bending -- Infinite Hierarchy of Elastic Shell Models -- Limiting Theories on Elastic Elliptic Shells -- Limiting Theories on Elastic Developable Shells -- Part III: Dimension Reduction in Prestressed Elasticity -- Limiting Theories for Prestressed Films: Nonlinear Bending -- Limiting Theories for Prestressed Films: Von Kármán-like Theory -- Infinite Hierarchy of Limiting Theories for Prestressed Films -- Limiting Theories for Weakly Prestressed Films -- Terminology and Notation -- Index. .
Record Nr. UNINA-9910698646203321
Lewicka Marta  
Cham : , : Springer International Publishing : , : Imprint : Birkhäuser, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Computational Mathematics and Variational Analysis / / edited by Nicholas J. Daras, Themistocles M. Rassias
Computational Mathematics and Variational Analysis / / edited by Nicholas J. Daras, Themistocles M. Rassias
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (564 pages)
Disciplina 515.64
Collana Springer Optimization and Its Applications
Soggetto topico Mathematical optimization
Calculus of variations
Mathematics - Data processing
Calculus of Variations and Optimization
Computational Mathematics and Numerical Analysis
ISBN 3-030-44625-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto On some piecewise linear classifiers based on non-smooth optimization (A.M. BAGIROV) -- Local-optimal solutions and their applications (H.D. CHIANG) -- Cyber security investments with nonlinear budget constraints (P. DANIELE) -- Systemic theory and deterministic prediction (N.J. DARAS) -- Poincaré type inequalities for Green’s operator on harmonic forms (S. DING) -- Inequalities for relative operator entropy (S. DRAGOMIR) -- Complementarity and variational inequalities with applications in electronics (D.GOELEVEN) -- Strong and weak convexity of closed sets in a Hilbert space (V.V. GONCHAROV) -- Counterfactual reasoning with Bayesian networks as a healthcare governance tool to enhance defence medical services (E. KYRIMI, S. MOSSADEGH, N. TAI and W. MARSH) -- An optimization methodology for operational environmental forecasting systems (G. KOUMPAROULIS and G. GALANIS) -- When Data reveals ransomware activity (J.L. LANET) -- On non-smooth multiobjective optimality conditions (M.M. MAKELA) -- Small array systems with massive performance capabilities: Beamforming, localization and tracking (A. MANIKAS and V. SRIDHAR) -- Bottom-up hierarchical ramp secret sharing scheme (G. MELETIOU, S.A.N. ALEXANDROPOULOS, D. S. TRIANTAFYLLOU and M.N. VRAHATIS) -- Separation of finitely many convex sets (D. PALLASCHKE) -- Optimization Theory (P. PARDALOS) -- Blind transfer of personal data insuring privacy (R. ROLLAND and A. BONNECAZE) -- Optimization problems with hidden nonconvex structures (A.S. STREKALOVSKY) -- On the congruence subgroups of braid groups (C.STYLIANAKIS) -- Military info-support operations in modern conflicts: evolution of MISO’s methodology during the modern conflicts in XXI century (T. SCZUREK and M. GORNIKIEWICZ) -- Safety and Security for the system-of-systems in the military from a cyber-physical perspective in the new era of Internet-of-Things (W.R. TSAGALIDIS) -- Formal modeling and verification of an autonomous swarm of UAVs for monitoring applications (A. TSOURDOS and V. LAPPAS) -- Metrical Pareto efficiency and monotonicity (M. TURINICI).
Record Nr. UNINA-9910483485703321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Computational Stochastic Programming : Models, Algorithms, and Implementation / / by Lewis Ntaimo
Computational Stochastic Programming : Models, Algorithms, and Implementation / / by Lewis Ntaimo
Autore Ntaimo Lewis
Edizione [1st ed. 2024.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2024
Descrizione fisica 1 online resource (518 pages)
Disciplina 519.7
Collana Springer Optimization and Its Applications
Soggetto topico Mathematical optimization
Calculus of variations
Probabilities
Computer science - Mathematics
Neural networks (Computer science)
Algorithms
Dynamics
Calculus of Variations and Optimization
Probability Theory
Mathematical Applications in Computer Science
Mathematical Models of Cognitive Processes and Neural Networks
Dynamical Systems
ISBN 3-031-52464-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. Introduction -- 2 Stochastic Programming Models -- 3 Modeling and Illustrative Numerical Examples -- 4 Example Applications of Stochastic Programming -- 5 Deterministic Large-Scale Decomposition Methods -- 6 Risk-Neutral Stochastic Linear Programming Methods -- 7 Mean-Risk Stochastic Linear Programming Methods -- 8 Sampling-Based Stochastic Linear Programming Methods -- 9 Stochastic Mixed-Integer Programming Methods -- 10 Computational Experimentation. .
Record Nr. UNINA-9910847588003321
Ntaimo Lewis  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui