An Accelerated Solution Method for Two-Stage Stochastic Models in Disaster Management / / by Emilia Graß
| An Accelerated Solution Method for Two-Stage Stochastic Models in Disaster Management / / by Emilia Graß |
| Autore | Graß Emilia |
| Edizione | [1st ed. 2018.] |
| Pubbl/distr/stampa | Wiesbaden : , : Springer Fachmedien Wiesbaden : , : Imprint : Springer Spektrum, , 2018 |
| Descrizione fisica | 1 online resource (xvii, 155 pages) : illustrations |
| Disciplina | 519.2 |
| Collana | Mathematische Optimierung und Wirtschaftsmathematik | Mathematical Optimization and Economathematics |
| Soggetto topico |
Operations research
Management science Calculus of variations Computer science - Mathematics Operations Research, Management Science Calculus of Variations and Optimal Control; Optimization Computational Mathematics and Numerical Analysis |
| ISBN | 3-658-24081-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Quantitative Optimization Models in Disaster Management: A Literature Review -- Solution Methods in Disaster Management: A Literature Review -- The Accelerated L-Shaped Method -- Case Study Design -- Numerical Experiments and Analysis. |
| Record Nr. | UNINA-9910300106203321 |
Graß Emilia
|
||
| Wiesbaden : , : Springer Fachmedien Wiesbaden : , : Imprint : Springer Spektrum, , 2018 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Advanced Boundary Element Methods : Treatment of Boundary Value, Transmission and Contact Problems / / by Joachim Gwinner, Ernst Peter Stephan
| Advanced Boundary Element Methods : Treatment of Boundary Value, Transmission and Contact Problems / / by Joachim Gwinner, Ernst Peter Stephan |
| Autore | Gwinner Joachim |
| Edizione | [1st ed. 2018.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018 |
| Descrizione fisica | 1 online resource (XVIII, 652 p. 69 illus., 18 illus. in color.) |
| Disciplina | 515.45 |
| Collana | Springer Series in Computational Mathematics |
| Soggetto topico |
Integral equations
Numerical analysis Differential equations, Partial Calculus of variations Applied mathematics Engineering mathematics Mathematical physics Integral Equations Numerical Analysis Partial Differential Equations Calculus of Variations and Optimal Control; Optimization Mathematical and Computational Engineering Theoretical, Mathematical and Computational Physics |
| ISBN | 3-319-92001-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | 1 Introduction -- 2 Some Elements of Potential Theory -- 3 A Fourier Series Approach -- 4 Mixed BVPs, Transmission Problems and Pseudodifferential Operators -- 5 The Signorini Problem and More Nonsmooth BVPs and Their Boundary Integral Formulation -- 6 A Primer to Boundary Element Methods -- 7 Advanced BEM for BVPs in Polygonal/Polyhedral Domains: h- and p-Versions -- 8 Exponential Convergence of hp-BEM -- 9 Mapping Properties of Integral Operators on Polygons -- 10 A-BEM -- 11 BEM for Contact Problems -- 12 FEM-BEM Coupling -- 13 Time-Domain BEM -- A Linear Operator Theory -- B Pseudodifferential Operators -- C Convex and Nonsmooth Analysis, Variational Inequalities -- D Some Implementation for BEM -- References -- Index. |
| Record Nr. | UNINA-9910300133603321 |
Gwinner Joachim
|
||
| Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Advances in Mathematical Modeling, Optimization and Optimal Control / / edited by Jean-Baptiste Hiriart-Urruty, Adam Korytowski, Helmut Maurer, Maciej Szymkat
| Advances in Mathematical Modeling, Optimization and Optimal Control / / edited by Jean-Baptiste Hiriart-Urruty, Adam Korytowski, Helmut Maurer, Maciej Szymkat |
| Edizione | [1st ed. 2016.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2016 |
| Descrizione fisica | 1 online resource (205 p.) |
| Disciplina | 519.3 |
| Collana | Springer Optimization and Its Applications |
| Soggetto topico |
Calculus of variations
Biomedical engineering Optical data processing Operator theory Computer science - Mathematics Calculus of Variations and Optimal Control; Optimization Biomedical Engineering and Bioengineering Image Processing and Computer Vision Operator Theory Computational Mathematics and Numerical Analysis |
| ISBN | 3-319-30785-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910254069903321 |
| Cham : , : Springer International Publishing : , : Imprint : Springer, , 2016 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Algebraic and Symbolic Computation Methods in Dynamical Systems [[electronic resource] /] / edited by Alban Quadrat, Eva Zerz
| Algebraic and Symbolic Computation Methods in Dynamical Systems [[electronic resource] /] / edited by Alban Quadrat, Eva Zerz |
| Edizione | [1st ed. 2020.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 |
| Descrizione fisica | 1 online resource (320 pages) : illustrations |
| Disciplina | 512.56 |
| Collana | Advances in Delays and Dynamics |
| Soggetto topico |
System theory
Vibration Dynamical systems Dynamics Calculus of variations Systems Theory, Control Vibration, Dynamical Systems, Control Calculus of Variations and Optimal Control; Optimization |
| ISBN | 3-030-38356-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | State-Dependent Sampling for Online Control -- Design of First Order Controllers for Unstable Infinite Dimensional Plants -- Anti-Windup Conditioning for Actuator Saturation in Internal Model Control with Delays -- Stabilization of Some Fractional Neutral Delay Systems which Possibly Possess an Infinite Number of Unstable Poles -- Controller Design for a Class of Delayed and Constrained Systems: Application to Supply Chains. |
| Record Nr. | UNISA-996418260203316 |
| Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Algorithms for Solving Common Fixed Point Problems / / by Alexander J. Zaslavski
| Algorithms for Solving Common Fixed Point Problems / / by Alexander J. Zaslavski |
| Autore | Zaslavski Alexander J |
| Edizione | [1st ed. 2018.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018 |
| Descrizione fisica | 1 online resource (VIII, 316 p.) |
| Disciplina | 515.64 |
| Collana | Springer Optimization and Its Applications |
| Soggetto topico |
Calculus of variations
Operator theory Numerical analysis Calculus of Variations and Optimal Control; Optimization Operator Theory Numerical Analysis |
| ISBN | 3-319-77437-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | 1. Introduction -- 2. Iterative methods in metric spaces -- 3. Dynamic string-averaging methods in normed spaces -- 4. Dynamic string-maximum methods in metric spaces -- 5. Abstract version of CARP algorithm -- 6. Proximal point algorithm -- 7. Dynamic string-averaging proximal point algorithm -- 8. Convex feasibility problems. |
| Record Nr. | UNINA-9910300106503321 |
Zaslavski Alexander J
|
||
| Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Analysis and topology in nonlinear differential equations : a tribute to Bernhard Ruf on the occasion of his 60th birthday / / edited by Djairo G de Figueiredo, João Marcos do Ó, Carlos Tomei
| Analysis and topology in nonlinear differential equations : a tribute to Bernhard Ruf on the occasion of his 60th birthday / / edited by Djairo G de Figueiredo, João Marcos do Ó, Carlos Tomei |
| Edizione | [1st ed. 2014.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Birkhäuser, , 2014 |
| Descrizione fisica | 1 online resource (465 p.) |
| Disciplina | 515.355 |
| Collana | Progress in Nonlinear Differential Equations and Their Applications |
| Soggetto topico |
Differential equations, Partial
Calculus of variations Topology Partial Differential Equations Calculus of Variations and Optimal Control; Optimization |
| Soggetto genere / forma | Conference papers and proceedings. |
| ISBN | 3-319-04214-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Preface -- Asymptotic Behavior of Sobolev Trace Embeddings in Expanding Domains -- Multiplicity of Positive Solutions for an Obstacle Problem in R -- Elliptic Problems in Unbounded Cylinders -- Basic Properties of Ultra functions -- Multiple Radial Solutions at Resonance for Neumann Problems Involving the Mean Extrinsic Curvature Operator -- Equivariant Bifurcation in Geometric Variational Problems -- And many more. |
| Record Nr. | UNINA-9910299981303321 |
| Cham : , : Springer International Publishing : , : Imprint : Birkhäuser, , 2014 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Applications of Nonlinear Analysis / / edited by Themistocles M. Rassias
| Applications of Nonlinear Analysis / / edited by Themistocles M. Rassias |
| Edizione | [1st ed. 2018.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018 |
| Descrizione fisica | 1 online resource (xvi, 931 pages) |
| Disciplina | 530.15 |
| Collana | Springer Optimization and Its Applications |
| Soggetto topico |
Calculus of variations
Functional analysis Fourier analysis Differential equations Differential equations, Partial Calculus of Variations and Optimal Control; Optimization Functional Analysis Fourier Analysis Ordinary Differential Equations Partial Differential Equations |
| ISBN | 3-319-89815-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Chapter 01- New applications of γ-quasiconvexity -- Chapter 02- Criteria for convergence of iterates in a compression-expansion fixed point theorem of functional type -- Chapter 03- On Lagrangian duality in infinite dimension and its applications -- Chapter 04- Stability analysis of the inverse problem of parameter identification in mixed variational problems -- Chapter 05- Nonlinear duality in Banach spaces and applications to finance and elasticity -- Chapter 06- Selective priorities in processing of big data -- Chapter 07- General inertial Mann algorithms and their convergence analysis for nonexpansive mappings -- Chapter 08- Reverses of Jensen's integral inequality and applications: a survey of recent results -- Chapter 09- Ordering structures and their applications -- Chapter 10- An overview on singular nonlinear elliptic boundary value problems -- Chapter 11- The Pilgerschritt (Liedl) transform on manifolds -- Chapter 12- On some mathematical models arising in lubrication theory -- Chapter 13- On the spectrum of a nonlinear two parameter matrix eigenvalue problem -- Chapter 14- On the properties of a nonlocal nonlinear Schr¨odinger model and its soliton solutions -- Chapter 15- Stability of a Cauchy-Jensen additive mapping in various normed spaces -- Chapter 16- NAN-RN approximately generalized additive functional equations -- Chapter 17- On the HUR-stability of quadratic functional equations in fuzzy Banach spaces -- Chapter 18- Asymptotic orbits in Hill's problem when the larger primary is a source of radiation -- Chapter 19- Computations for minors of Weighing Matrices with application to the growth problem -- Chapter 20- Robots that do not avoid obstacles -- Chapter 21- On the exact solution of nonlinear integro-differential equations -- Chapter 22- Qualitative, approximate and numerical approaches for the solution of nonlinear differential equations -- Chapter 23- On a Hilbert-type integral inequality in the whole plane -- Chapter 24- Four conjectures in Nonlinear Analysis -- Chapter 25- Corelations are more powerful tools than relations -- Chapter 26- Rational contractions and coupled fixed points -- Chapter 27- A multiple Hilbert-type integral inequality in the whole space -- Chapter 28- Generalizations of Metric Spaces: From the Fixed-Point Theory to the Fixed-Circle Theory -- Chapter 29- Finite-difference modeling of nonlinear phenomena in time-domain electromagnetics: A Review. |
| Record Nr. | UNINA-9910767537003321 |
| Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Applied Functional Analysis [[electronic resource] ] : Main Principles and Their Applications / / by Eberhard Zeidler
| Applied Functional Analysis [[electronic resource] ] : Main Principles and Their Applications / / by Eberhard Zeidler |
| Autore | Zeidler Eberhard |
| Edizione | [1st ed. 1995.] |
| Pubbl/distr/stampa | New York, NY : , : Springer New York : , : Imprint : Springer, , 1995 |
| Descrizione fisica | 1 online resource (XVI, 406 p.) |
| Disciplina | 515.7 |
| Collana | Applied Mathematical Sciences |
| Soggetto topico |
Functional analysis
Mathematical analysis Analysis (Mathematics) System theory Calculus of variations Functional Analysis Analysis Systems Theory, Control Calculus of Variations and Optimal Control; Optimization |
| ISBN | 1-4612-0821-1 |
| Classificazione | 46Bxx |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | 1 The Hahn-Banach Theorem Optimization Problems -- 1.1 The Hahn-Banach Theorem -- 1.2 Applications to the Separation of Convex Sets -- 1.3 The Dual Space C[a,b]* -- 1.4 Applications to the Moment Problem -- 1.5 Minimum Norm Problems and Duality Theory -- 1.6 Applications to ?ebyšev Approximation -- 1.7 Applications to the Optimal Control of Rockets -- 2 Variational Principles and Weak Convergence -- 2.1 The nth Variation -- 2.2 Necessary and Sufficient Conditions for Local Extrema and the Classical Calculus of Variations -- 2.3 The Lack of Compactness in Infinite-Dimensional Banach Spaces -- 2.4 Weak Convergence -- 2.5 The Generalized Weierstrass Existence Theorem -- 2.6 Applications to the Calculus of Variations -- 2.7 Applications to Nonlinear Eigenvalue Problems -- 2.8 Reflexive Banach Spaces -- 2.9 Applications to Convex Minimum Problems and Variational Inequalities -- 2.10 Applications to Obstacle Problems in Elasticity -- 2.11 Saddle Points -- 2.12 Applications to Duality Theory -- 2.13 The von Neumann Minimax Theorem on the Existence of Saddle Points -- 2.14 Applications to Game Theory -- 2.15 The Ekeland Principle about Quasi-Minimal Points -- 2.16 Applications to a General Minimum Principle via the Palais-Smale Condition -- 2.17 Applications to the Mountain Pass Theorem -- 2.18 The Galerkin Method and Nonlinear Monotone Operators -- 2.19 Symmetries and Conservation Laws (The Noether Theorem) -- 2.20 The Basic Ideas of Gauge Field Theory -- 2.21 Representations of Lie Algebras -- 2.22 Applications to Elementary Particles -- 3 Principles of Linear Functional Analysis -- 3.1 The Baire Theorem -- 3.2 Application to the Existence of Nondifferentiable Continuous Functions -- 3.3 The Uniform Boundedness Theorem -- 3.4 Applications to Cubature Formulas -- 3.5 The Open Mapping Theorem -- 3.6 Product Spaces -- 3.7 The Closed Graph Theorem -- 3.8 Applications to Factor Spaces -- 3.9 Applications to Direct Sums and Projections -- 3.10 Dual Operators -- 3.11 The Exactness of the Duality Functor -- 3.12 Applications to the Closed Range Theorem and to Fredholm Alternatives -- 4 The Implicit Function Theorem -- 4.1 m-Linear Bounded Operators -- 4.2 The Differential of Operators and the Fréchet Derivative -- 4.3 Applications to Analytic Operators -- 4.4 Integration -- 4.5 Applications to the Taylor Theorem -- 4.6 Iterated Derivatives -- 4.7 The Chain Rule -- 4.8 The Implicit Function Theorem -- 4.9 Applications to Differential Equations -- 4.10 Diffeomorphisms and the Local Inverse Mapping Theorem -- 4.11 Equivalent Maps and the Linearization Principle -- 4.12 The Local Normal Form for Nonlinear Double Splitting Maps -- 4.13 The Surjective Implicit Function Theorem -- 4.14 Applications to the Lagrange Multiplier Rule -- 5 Fredholm Operators -- 5.1 Duality for Linear Compact Operators -- 5.2 The Riesz-Schauder Theory on Hilbert Spaces -- 5.3 Applications to Integral Equations -- 5.4 Linear Fredholm Operators -- 5.5 The Riesz-Schauder Theory on Banach Spaces -- 5.6 Applications to the Spectrum of Linear Compact Operators -- 5.7 The Parametrix -- 5.8 Applications to the Perturbation of Fredholm Operators -- 5.9 Applications to the Product Index Theorem -- 5.10 Fredholm Alternatives via Dual Pairs -- 5.11 Applications to Integral Equations and Boundary-Value Problems -- 5.12 Bifurcation Theory -- 5.13 Applications to Nonlinear Integral Equations -- 5.14 Applications to Nonlinear Boundary-Value Problems -- 5.15 Nonlinear Fredholm Operators -- 5.16 Interpolation Inequalities -- 5.17 Applications to the Navier-Stokes Equations -- References -- List of Symbols -- List of Theorems -- List of Most Important Definitions. |
| Record Nr. | UNINA-9910480063503321 |
Zeidler Eberhard
|
||
| New York, NY : , : Springer New York : , : Imprint : Springer, , 1995 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Applied Functional Analysis [[electronic resource] ] : Applications to Mathematical Physics / / by Eberhard Zeidler
| Applied Functional Analysis [[electronic resource] ] : Applications to Mathematical Physics / / by Eberhard Zeidler |
| Autore | Zeidler Eberhard |
| Edizione | [1st ed. 1995.] |
| Pubbl/distr/stampa | New York, NY : , : Springer New York : , : Imprint : Springer, , 1995 |
| Descrizione fisica | 1 online resource (XXIX, 481 p.) |
| Disciplina | 515 |
| Collana | Applied Mathematical Sciences |
| Soggetto topico |
Mathematical analysis
Analysis (Mathematics) System theory Calculus of variations Analysis Systems Theory, Control Calculus of Variations and Optimal Control; Optimization |
| ISBN | 1-4612-0815-7 |
| Classificazione | 46Bxx |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | 1 Banach Spaces and Fixed-Point Theorems -- 1.1 Linear Spaces and Dimension -- 1.2 Normed Spaces and Convergence -- 1.3 Banach Spaces and the Cauchy Convergence Criterion -- 1.4 Open and Closed Sets -- 1.5 Operators -- 1.6 The Banach Fixed-Point Theorem and the Iteration Method -- 1.7 Applications to Integral Equations -- 1.8 Applications to Ordinary Differential Equations -- 1.9 Continuity -- 1.10 Convexity -- 1.11 Compactness -- 1.12 Finite-Dimensional Banach Spaces and Equivalent Norms -- 1.13 The Minkowski Functional and Homeomorphisms -- 1.14 The Brouwer Fixed-Point Theorem -- 1.15 The Schauder Fixed-Point Theorem -- 1.16 Applications to Integral Equations -- 1.17 Applications to Ordinary Differential Equations -- 1.18 The Leray-Schauder Principle and a priori Estimates -- 1.19 Sub- and Supersolutions, and the Iteration Method in Ordered Banach Spaces -- 1.20 Linear Operators -- 1.21 The Dual Space -- 1.22 Infinite Series in Normed Spaces -- 1.23 Banach Algebras and Operator Functions -- 1.24 Applications to Linear Differential Equations in Banach Spaces -- 1.25 Applications to the Spectrum -- 1.26 Density and Approximation -- 1.27 Summary of Important Notions -- 2 Hilbert Spaces, Orthogonality, and the Dirichlet Principle -- 2.1 Hilbert Spaces -- 2.2 Standard Examples -- 2.3 Bilinear Forms -- 2.4 The Main Theorem on Quadratic Variational Problems -- 2.5 The Functional Analytic Justification of the Dirichlet Principle -- 2.6 The Convergence of the Ritz Method for Quadratic Variational Problems -- 2.7 Applications to Boundary-Value Problems, the Method of Finite Elements, and Elasticity -- 2.8 Generalized Functions and Linear Functionals -- 2.9 Orthogonal Projection -- 2.10 Linear Functionals and the Riesz Theorem -- 2.11 The Duality Map -- 2.12 Duality for Quadratic Variational Problems -- 2.13 The Linear Orthogonality Principle -- 2.14 Nonlinear Monotone Operators -- 2.15 Applications to the Nonlinear Lax-Milgram Theorem and the Nonlinear Orthogonality Principle -- 3 Hilbert Spaces and Generalized Fourier Series -- 3.1 Orthonormal Series -- 3.2 Applications to Classical Fourier Series -- 3.3 The Schmidt Orthogonalization Method -- 3.4 Applications to Polynomials -- 3.5 Unitary Operators -- 3.6 The Extension Principle -- 3.7 Applications to the Fourier Transformation -- 3.8 The Fourier Transform of Tempered Generalized Functions -- 4 Eigenvalue Problems for Linear Compact Symmetric Operators -- 4.1 Symmetric Operators -- 4.2 The Hilbert-Schmidt Theory -- 4.3 The Fredholm Alternative -- 4.4 Applications to Integral Equations -- 4.5 Applications to Boundary-Eigenvalue Value Problems -- 5 Self-Adjoint Operators, the Friedrichs Extension and the Partial Differential Equations of Mathematical Physics -- 5.1 Extensions and Embeddings -- 5.2 Self-Adjoint Operators -- 5.3 The Energetic Space -- 5.4 The Energetic Extension -- 5.5 The Friedrichs Extension of Symmetric Operators -- 5.6 Applications to Boundary-Eigenvalue Problems for the Laplace Equation -- 5.7 The Poincaré Inequality and Rellich’s Compactness Theorem -- 5.8 Functions of Self-Adjoint Operators -- 5.9 Semigroups, One-Parameter Groups, and Their Physical Relevance -- 5.10 Applications to the Heat Equation -- 5.11 Applications to the Wave Equation -- 5.12 Applications to the Vibrating String and the Fourier Method -- 5.13 Applications to the Schrödinger Equation -- 5.14 Applications to Quantum Mechanics -- 5.15 Generalized Eigenfunctions -- 5.16 Trace Class Operators -- 5.17 Applications to Quantum Statistics -- 5.18 C*-Algebras and the Algebraic Approach to Quantum Statistics -- 5.19 The Fock Space in Quantum Field Theory and the Pauli Principle -- 5.20 A Look at Scattering Theory -- 5.21 The Language of Physicists in Quantum Physics and the Justification of the Dirac Calculus -- 5.22 The Euclidean Strategy in Quantum Physics -- 5.23 Applications to Feynman’s Path Integral -- 5.24 The Importance of the Propagator in Quantum Physics -- 5.25 A Look at Solitons and Inverse Scattering Theory -- Epilogue -- References -- Hints for Further Reading -- List of Symbols -- List of Theorems -- List of the Most Important Definitions. |
| Record Nr. | UNINA-9910480363703321 |
Zeidler Eberhard
|
||
| New York, NY : , : Springer New York : , : Imprint : Springer, , 1995 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Applied Functional Analysis [[electronic resource] ] : Main Principles and Their Applications / / by Eberhard Zeidler
| Applied Functional Analysis [[electronic resource] ] : Main Principles and Their Applications / / by Eberhard Zeidler |
| Autore | Zeidler Eberhard |
| Edizione | [1st ed. 1995.] |
| Pubbl/distr/stampa | New York, NY : , : Springer New York : , : Imprint : Springer, , 1995 |
| Descrizione fisica | 1 online resource (XVI, 406 p.) |
| Disciplina | 515.7 |
| Collana | Applied Mathematical Sciences |
| Soggetto topico |
Functional analysis
Mathematical analysis Analysis (Mathematics) System theory Calculus of variations Functional Analysis Analysis Systems Theory, Control Calculus of Variations and Optimal Control; Optimization |
| ISBN | 1-4612-0821-1 |
| Classificazione | 46Bxx |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | 1 The Hahn-Banach Theorem Optimization Problems -- 1.1 The Hahn-Banach Theorem -- 1.2 Applications to the Separation of Convex Sets -- 1.3 The Dual Space C[a,b]* -- 1.4 Applications to the Moment Problem -- 1.5 Minimum Norm Problems and Duality Theory -- 1.6 Applications to ?ebyšev Approximation -- 1.7 Applications to the Optimal Control of Rockets -- 2 Variational Principles and Weak Convergence -- 2.1 The nth Variation -- 2.2 Necessary and Sufficient Conditions for Local Extrema and the Classical Calculus of Variations -- 2.3 The Lack of Compactness in Infinite-Dimensional Banach Spaces -- 2.4 Weak Convergence -- 2.5 The Generalized Weierstrass Existence Theorem -- 2.6 Applications to the Calculus of Variations -- 2.7 Applications to Nonlinear Eigenvalue Problems -- 2.8 Reflexive Banach Spaces -- 2.9 Applications to Convex Minimum Problems and Variational Inequalities -- 2.10 Applications to Obstacle Problems in Elasticity -- 2.11 Saddle Points -- 2.12 Applications to Duality Theory -- 2.13 The von Neumann Minimax Theorem on the Existence of Saddle Points -- 2.14 Applications to Game Theory -- 2.15 The Ekeland Principle about Quasi-Minimal Points -- 2.16 Applications to a General Minimum Principle via the Palais-Smale Condition -- 2.17 Applications to the Mountain Pass Theorem -- 2.18 The Galerkin Method and Nonlinear Monotone Operators -- 2.19 Symmetries and Conservation Laws (The Noether Theorem) -- 2.20 The Basic Ideas of Gauge Field Theory -- 2.21 Representations of Lie Algebras -- 2.22 Applications to Elementary Particles -- 3 Principles of Linear Functional Analysis -- 3.1 The Baire Theorem -- 3.2 Application to the Existence of Nondifferentiable Continuous Functions -- 3.3 The Uniform Boundedness Theorem -- 3.4 Applications to Cubature Formulas -- 3.5 The Open Mapping Theorem -- 3.6 Product Spaces -- 3.7 The Closed Graph Theorem -- 3.8 Applications to Factor Spaces -- 3.9 Applications to Direct Sums and Projections -- 3.10 Dual Operators -- 3.11 The Exactness of the Duality Functor -- 3.12 Applications to the Closed Range Theorem and to Fredholm Alternatives -- 4 The Implicit Function Theorem -- 4.1 m-Linear Bounded Operators -- 4.2 The Differential of Operators and the Fréchet Derivative -- 4.3 Applications to Analytic Operators -- 4.4 Integration -- 4.5 Applications to the Taylor Theorem -- 4.6 Iterated Derivatives -- 4.7 The Chain Rule -- 4.8 The Implicit Function Theorem -- 4.9 Applications to Differential Equations -- 4.10 Diffeomorphisms and the Local Inverse Mapping Theorem -- 4.11 Equivalent Maps and the Linearization Principle -- 4.12 The Local Normal Form for Nonlinear Double Splitting Maps -- 4.13 The Surjective Implicit Function Theorem -- 4.14 Applications to the Lagrange Multiplier Rule -- 5 Fredholm Operators -- 5.1 Duality for Linear Compact Operators -- 5.2 The Riesz-Schauder Theory on Hilbert Spaces -- 5.3 Applications to Integral Equations -- 5.4 Linear Fredholm Operators -- 5.5 The Riesz-Schauder Theory on Banach Spaces -- 5.6 Applications to the Spectrum of Linear Compact Operators -- 5.7 The Parametrix -- 5.8 Applications to the Perturbation of Fredholm Operators -- 5.9 Applications to the Product Index Theorem -- 5.10 Fredholm Alternatives via Dual Pairs -- 5.11 Applications to Integral Equations and Boundary-Value Problems -- 5.12 Bifurcation Theory -- 5.13 Applications to Nonlinear Integral Equations -- 5.14 Applications to Nonlinear Boundary-Value Problems -- 5.15 Nonlinear Fredholm Operators -- 5.16 Interpolation Inequalities -- 5.17 Applications to the Navier-Stokes Equations -- References -- List of Symbols -- List of Theorems -- List of Most Important Definitions. |
| Record Nr. | UNINA-9910789342603321 |
Zeidler Eberhard
|
||
| New York, NY : , : Springer New York : , : Imprint : Springer, , 1995 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||