Burgers-KPZ turbulence : Göttingen lectures / / Wojbor A. Woyczyński |
Autore | Woyczyński W. A (Wojbor Andrzej), <1943-> |
Edizione | [1st ed. 1998.] |
Pubbl/distr/stampa | Berlin, Germany ; ; New York, New York : , : Springer-Verlag, , [1998] |
Descrizione fisica | 1 online resource (XII, 328 p.) |
Disciplina | 510 |
Collana | Lecture Notes in Mathematics |
Soggetto topico |
Turbulence - Mathematical models
Burgers equation |
ISBN | 3-540-49480-4 |
Classificazione |
60H15
76L05 35Q53 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Shock waves and the large scale structure (LSS) of the universe -- Hydrodynamic limits, nonlinear diffusions, and propagation of chaos -- Hopf-Cole formula and its asymptotic analysis -- Statistical description, parabolic approximation -- Hyperbolic approximation and inviscid limit -- Forced Burgers turbulence -- Passive tracer transport in Burgers' and related flows -- Fractal Burgers-KPZ models. |
Record Nr. | UNINA-9910146307603321 |
Woyczyński W. A (Wojbor Andrzej), <1943-> | ||
Berlin, Germany ; ; New York, New York : , : Springer-Verlag, , [1998] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Burgers-KPZ turbulence : Göttingen lectures / / Wojbor A. Woyczyński |
Autore | Woyczyński W. A (Wojbor Andrzej), <1943-> |
Edizione | [1st ed. 1998.] |
Pubbl/distr/stampa | Berlin, Germany ; ; New York, New York : , : Springer-Verlag, , [1998] |
Descrizione fisica | 1 online resource (XII, 328 p.) |
Disciplina | 510 |
Collana | Lecture Notes in Mathematics |
Soggetto topico |
Turbulence - Mathematical models
Burgers equation |
ISBN | 3-540-49480-4 |
Classificazione |
60H15
76L05 35Q53 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Shock waves and the large scale structure (LSS) of the universe -- Hydrodynamic limits, nonlinear diffusions, and propagation of chaos -- Hopf-Cole formula and its asymptotic analysis -- Statistical description, parabolic approximation -- Hyperbolic approximation and inviscid limit -- Forced Burgers turbulence -- Passive tracer transport in Burgers' and related flows -- Fractal Burgers-KPZ models. |
Record Nr. | UNISA-996466619603316 |
Woyczyński W. A (Wojbor Andrzej), <1943-> | ||
Berlin, Germany ; ; New York, New York : , : Springer-Verlag, , [1998] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Degenerate nonlinear diffusion equations / / Angelo Favini, Gabriela Marinoschi |
Autore | Favini A (Angelo), <1946-> |
Edizione | [1st ed. 2012.] |
Pubbl/distr/stampa | Berlin ; ; Heidelberg, : Springer, c2012 |
Descrizione fisica | 1 online resource (XXI, 143 p. 12 illus., 9 illus. in color.) |
Disciplina | 515.3534 |
Altri autori (Persone) | MarinoschiGabriela |
Collana | Lecture notes in mathematics |
Soggetto topico |
Burgers equation
Degenerate differential equations |
ISBN | 3-642-28285-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | 1 Parameter identification in a parabolic-elliptic degenerate problem -- 2 Existence for diffusion degenerate problems -- 3 Existence for nonautonomous parabolic-elliptic degenerate diffusion Equations -- 4 Parameter identification in a parabolic-elliptic degenerate problem. |
Record Nr. | UNINA-9910483845203321 |
Favini A (Angelo), <1946-> | ||
Berlin ; ; Heidelberg, : Springer, c2012 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Degenerate nonlinear diffusion equations / Angelo Favini, Gabriela Marinoschi |
Autore | Favini, Angelo |
Pubbl/distr/stampa | Berlin ; New York : Springer, c2012 |
Descrizione fisica | xxi, 143 p. : col. ill. ; 23 cm |
Disciplina | 515.353 |
Altri autori (Persone) | Marinoschi, Gabrielaauthor |
Collana | Lecture notes in mathematics, 0075-8434 ; 2049 |
Soggetto topico |
Burgers equation
Degenerate differential equations |
ISBN | 9783642282843 |
Classificazione |
LC QA377.F38
AMS 35K35 AMS 47H AMS 35R35 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISALENTO-991001809529707536 |
Favini, Angelo | ||
Berlin ; New York : Springer, c2012 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. del Salento | ||
|
Dual variational approach to nonlinear diffusion equations / / Gabriela Marinoschi |
Autore | Marinoschi Gabriela |
Edizione | [1st ed. 2023.] |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2023] |
Descrizione fisica | 1 online resource (223 pages) |
Disciplina | 260 |
Collana | PNLDE Subseries in Control |
Soggetto topico |
Burgers equation
Differential equations, Nonlinear Equacions diferencials no lineals |
Soggetto genere / forma | Llibres electrònics |
ISBN |
9783031245831
9783031245824 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Introduction -- Nonlinear Diffusion Equations with Slow and Fast Diffusion -- Weakly Coercive Nonlinear Diffusion Equations -- Nonlinear Diffusion Equations with a Noncoercive Potential -- Nonlinear Parabolic Equations in Divergence Form with Wentzell Boundary Conditions -- A Nonlinear Control Problem in Image Denoising -- An Optimal Control Problem for a Phase Transition Model -- Appendix -- Bibliography -- Index. |
Record Nr. | UNINA-9910686790303321 |
Marinoschi Gabriela | ||
Cham, Switzerland : , : Springer, , [2023] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
The dynamics of modulated wave trains / / Arjen Doelman [and three others] |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2009 |
Descrizione fisica | 1 online resource (122 p.) |
Disciplina | 515.3534 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Reaction-diffusion equations
Approximation theory Burgers equation |
Soggetto genere / forma | Electronic books. |
ISBN | 1-4704-0540-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""Contents""; ""Notation""; ""Chapter 1. Introduction""; ""1.1. Grasshopper's guide""; ""1.2. Slowly-varying modulations of nonlinear wave trains""; ""1.3. Predictions from the Burgers equation""; ""1.4. Verifying the predictions made from the Burgers equation""; ""1.5. Related modulation equations""; ""1.6. References to related works""; ""Chapter 2. The Burgers equation""; ""2.1. Decay estimates""; ""2.2. Fronts in the Burgers equation""; ""Chapter 3. The complex cubic Ginzburg�Landau equation""; ""3.1. Set-up""; ""3.2. Slowly-varying modulations of the k = 0 wave train: Results""
""3.3. Derivation of the Burgers equation""""3.4. The construction of higher-order approximations""; ""3.5. The approximation theorem for the wave numbers""; ""3.6. Mode filters, and separation into critical and noncritical modes""; ""3.7. Estimates of the linear semigroups""; ""3.8. Estimates of the residual""; ""3.9. Estimates of the errors""; ""3.10. Proofs of the theorems from Â3.2""; ""Chapter 4. Reaction-diffusion equations: Set-up and results""; ""4.1. The abstract set-up""; ""4.2. Expansions of the linear and nonlinear dispersion relations"" ""4.3. Formal derivation of the Burgers equation""""4.4. Validity of the Burgers equation""; ""4.5. Existence and stability of weak shocks""; ""Chapter 5. Validity of the Burgers equation in reaction-diffusion equations""; ""5.1. From phases to wave numbers""; ""5.2. Bloch-wave analysis""; ""5.3. Mode filters, and separation into critical and noncritical modes""; ""5.4. Estimates for residuals and errors""; ""5.5. Proofs of the theorems from Â4.4""; ""Chapter 6. Validity of the inviscid Burgers equation in reaction-diffusion systems""; ""6.1. An illustration: The Ginzburgâ€?Landau equation"" ""6.2. Formal derivation of the conservation law""""6.3. Validity of the inviscid Burgers equation""; ""6.4. Proof of the theorems from Â6.3""; ""Chapter 7. Modulations of wave trains near sideband instabilities""; ""7.1. Introduction""; ""7.2. An illustration: The Ginzburgâ€?Landau equation""; ""7.3. Validity of the Kortewegâ€?de Vries and the Kuramotoâ€?Sivashinsky equation""; ""7.4. Proof of Theorem 7.2""; ""7.5. Proof of Theorem 7.5""; ""Chapter 8. Existence and stability of weak shocks""; ""8.1. Proof of Theorem 4.10""; ""8.2. Proof of Theorem 4.12"" ""Chapter 9. Existence of shocks in the long-wavelength limit""""9.1. A lattice model for weakly interacting pulses""; ""9.2. Proof of Theorem 9.2""; ""Chapter 10. Applications""; ""10.1. The FitzHughâ€?Nagumo equation""; ""10.2. The weakly unstable Taylorâ€?Couette problem""; ""Bibliography"" |
Record Nr. | UNINA-9910480757103321 |
Providence, Rhode Island : , : American Mathematical Society, , 2009 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
The dynamics of modulated wave trains / / Arjen Doelman [and three others] |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2009 |
Descrizione fisica | 1 online resource (122 p.) |
Disciplina | 515.3534 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Reaction-diffusion equations
Approximation theory Burgers equation |
ISBN | 1-4704-0540-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""Contents""; ""Notation""; ""Chapter 1. Introduction""; ""1.1. Grasshopper's guide""; ""1.2. Slowly-varying modulations of nonlinear wave trains""; ""1.3. Predictions from the Burgers equation""; ""1.4. Verifying the predictions made from the Burgers equation""; ""1.5. Related modulation equations""; ""1.6. References to related works""; ""Chapter 2. The Burgers equation""; ""2.1. Decay estimates""; ""2.2. Fronts in the Burgers equation""; ""Chapter 3. The complex cubic Ginzburg�Landau equation""; ""3.1. Set-up""; ""3.2. Slowly-varying modulations of the k = 0 wave train: Results""
""3.3. Derivation of the Burgers equation""""3.4. The construction of higher-order approximations""; ""3.5. The approximation theorem for the wave numbers""; ""3.6. Mode filters, and separation into critical and noncritical modes""; ""3.7. Estimates of the linear semigroups""; ""3.8. Estimates of the residual""; ""3.9. Estimates of the errors""; ""3.10. Proofs of the theorems from Â3.2""; ""Chapter 4. Reaction-diffusion equations: Set-up and results""; ""4.1. The abstract set-up""; ""4.2. Expansions of the linear and nonlinear dispersion relations"" ""4.3. Formal derivation of the Burgers equation""""4.4. Validity of the Burgers equation""; ""4.5. Existence and stability of weak shocks""; ""Chapter 5. Validity of the Burgers equation in reaction-diffusion equations""; ""5.1. From phases to wave numbers""; ""5.2. Bloch-wave analysis""; ""5.3. Mode filters, and separation into critical and noncritical modes""; ""5.4. Estimates for residuals and errors""; ""5.5. Proofs of the theorems from Â4.4""; ""Chapter 6. Validity of the inviscid Burgers equation in reaction-diffusion systems""; ""6.1. An illustration: The Ginzburgâ€?Landau equation"" ""6.2. Formal derivation of the conservation law""""6.3. Validity of the inviscid Burgers equation""; ""6.4. Proof of the theorems from Â6.3""; ""Chapter 7. Modulations of wave trains near sideband instabilities""; ""7.1. Introduction""; ""7.2. An illustration: The Ginzburgâ€?Landau equation""; ""7.3. Validity of the Kortewegâ€?de Vries and the Kuramotoâ€?Sivashinsky equation""; ""7.4. Proof of Theorem 7.2""; ""7.5. Proof of Theorem 7.5""; ""Chapter 8. Existence and stability of weak shocks""; ""8.1. Proof of Theorem 4.10""; ""8.2. Proof of Theorem 4.12"" ""Chapter 9. Existence of shocks in the long-wavelength limit""""9.1. A lattice model for weakly interacting pulses""; ""9.2. Proof of Theorem 9.2""; ""Chapter 10. Applications""; ""10.1. The FitzHughâ€?Nagumo equation""; ""10.2. The weakly unstable Taylorâ€?Couette problem""; ""Bibliography"" |
Record Nr. | UNINA-9910788854903321 |
Providence, Rhode Island : , : American Mathematical Society, , 2009 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
The dynamics of modulated wave trains / / Arjen Doelman [and three others] |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2009 |
Descrizione fisica | 1 online resource (122 p.) |
Disciplina | 515.3534 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Reaction-diffusion equations
Approximation theory Burgers equation |
ISBN | 1-4704-0540-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""Contents""; ""Notation""; ""Chapter 1. Introduction""; ""1.1. Grasshopper's guide""; ""1.2. Slowly-varying modulations of nonlinear wave trains""; ""1.3. Predictions from the Burgers equation""; ""1.4. Verifying the predictions made from the Burgers equation""; ""1.5. Related modulation equations""; ""1.6. References to related works""; ""Chapter 2. The Burgers equation""; ""2.1. Decay estimates""; ""2.2. Fronts in the Burgers equation""; ""Chapter 3. The complex cubic Ginzburg�Landau equation""; ""3.1. Set-up""; ""3.2. Slowly-varying modulations of the k = 0 wave train: Results""
""3.3. Derivation of the Burgers equation""""3.4. The construction of higher-order approximations""; ""3.5. The approximation theorem for the wave numbers""; ""3.6. Mode filters, and separation into critical and noncritical modes""; ""3.7. Estimates of the linear semigroups""; ""3.8. Estimates of the residual""; ""3.9. Estimates of the errors""; ""3.10. Proofs of the theorems from Â3.2""; ""Chapter 4. Reaction-diffusion equations: Set-up and results""; ""4.1. The abstract set-up""; ""4.2. Expansions of the linear and nonlinear dispersion relations"" ""4.3. Formal derivation of the Burgers equation""""4.4. Validity of the Burgers equation""; ""4.5. Existence and stability of weak shocks""; ""Chapter 5. Validity of the Burgers equation in reaction-diffusion equations""; ""5.1. From phases to wave numbers""; ""5.2. Bloch-wave analysis""; ""5.3. Mode filters, and separation into critical and noncritical modes""; ""5.4. Estimates for residuals and errors""; ""5.5. Proofs of the theorems from Â4.4""; ""Chapter 6. Validity of the inviscid Burgers equation in reaction-diffusion systems""; ""6.1. An illustration: The Ginzburgâ€?Landau equation"" ""6.2. Formal derivation of the conservation law""""6.3. Validity of the inviscid Burgers equation""; ""6.4. Proof of the theorems from Â6.3""; ""Chapter 7. Modulations of wave trains near sideband instabilities""; ""7.1. Introduction""; ""7.2. An illustration: The Ginzburgâ€?Landau equation""; ""7.3. Validity of the Kortewegâ€?de Vries and the Kuramotoâ€?Sivashinsky equation""; ""7.4. Proof of Theorem 7.2""; ""7.5. Proof of Theorem 7.5""; ""Chapter 8. Existence and stability of weak shocks""; ""8.1. Proof of Theorem 4.10""; ""8.2. Proof of Theorem 4.12"" ""Chapter 9. Existence of shocks in the long-wavelength limit""""9.1. A lattice model for weakly interacting pulses""; ""9.2. Proof of Theorem 9.2""; ""Chapter 10. Applications""; ""10.1. The FitzHughâ€?Nagumo equation""; ""10.2. The weakly unstable Taylorâ€?Couette problem""; ""Bibliography"" |
Record Nr. | UNINA-9910829176903321 |
Providence, Rhode Island : , : American Mathematical Society, , 2009 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Nonlinear diffusion equations [[electronic resource] /] / Zhuoqun Wu, Junning Zhao and Jingxue Yin, Huilai Li |
Pubbl/distr/stampa | River Edge, N.J., : World Scientific, c2001 |
Descrizione fisica | 1 online resource (xvii, 502 p.) |
Disciplina | 515/.352 |
Altri autori (Persone) | WuZhuoqun |
Soggetto topico |
Burgers equation
Heat equation |
Soggetto genere / forma | Electronic books. |
ISBN |
1-281-95135-8
9786611951351 981-279-979-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | ch. 1. Newtonian filtration equations. 1.1. Introduction. 1.2. Existence and uniqueness of solutions: One dimensional case. 1.3. Existence and uniqueness of solutions: Higher dimensional case. 1.4. Regularity of solutions: One Dimensional case. 1.5. Regularity of solutions: Higher dimensional case. 1.6. Properties of the free boundary: One dimensional case. 1.7. Properties of the free boundary: Higher dimensional case. 1.8. Initial trace of solutions. 1.9. Other problems -- ch. 2. Non-Newtonian filtration equations. 2.1. Introduction. Preliminary knowledge. 2.2. Existence of solutions. 2.3. Harnack inequality and the initial trace of solutions. 2.4. Regularity of solutions. 2.5. Uniqueness of solutions. 2.6. Properties of the free boundary. 2.7. Other problems -- ch. 3. General quasilinear equations of second order. 3.1. Introduction. 3.2. Weakly degenerate equations in one dimension. 3.3. Weakly Degenerate equations in higher dimension. 3.4. Strongly degenerate equations in one dimension. 3.5. Degenerate equations in higher dimension without terms of lower order. 3.6. General strongly degenerate equations in higher dimension -- ch. 4. Nonlinear diffusion equations of higher order. 4.1. Introduction. 4.2. Similarity solutions of a fourth order equation. 4.3. Equations with double-degeneracy. 4.4. Cahn-Hilliard equation with constant mobility. 4.5. Cahn-Hilliard equations with positive concentration dependent mobility. 4.6. Thin film equation. 4.7. Cahn-Hilliard equation with degenerate mobility. |
Record Nr. | UNINA-9910454363903321 |
River Edge, N.J., : World Scientific, c2001 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Nonlinear diffusion equations [[electronic resource] /] / Zhuoqun Wu, Junning Zhao and Jingxue Yin, Huilai Li |
Pubbl/distr/stampa | River Edge, N.J., : World Scientific, c2001 |
Descrizione fisica | 1 online resource (xvii, 502 p.) |
Disciplina | 515/.352 |
Altri autori (Persone) | WuZhuoqun |
Soggetto topico |
Burgers equation
Heat equation |
ISBN |
1-281-95135-8
9786611951351 981-279-979-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | ch. 1. Newtonian filtration equations. 1.1. Introduction. 1.2. Existence and uniqueness of solutions: One dimensional case. 1.3. Existence and uniqueness of solutions: Higher dimensional case. 1.4. Regularity of solutions: One Dimensional case. 1.5. Regularity of solutions: Higher dimensional case. 1.6. Properties of the free boundary: One dimensional case. 1.7. Properties of the free boundary: Higher dimensional case. 1.8. Initial trace of solutions. 1.9. Other problems -- ch. 2. Non-Newtonian filtration equations. 2.1. Introduction. Preliminary knowledge. 2.2. Existence of solutions. 2.3. Harnack inequality and the initial trace of solutions. 2.4. Regularity of solutions. 2.5. Uniqueness of solutions. 2.6. Properties of the free boundary. 2.7. Other problems -- ch. 3. General quasilinear equations of second order. 3.1. Introduction. 3.2. Weakly degenerate equations in one dimension. 3.3. Weakly Degenerate equations in higher dimension. 3.4. Strongly degenerate equations in one dimension. 3.5. Degenerate equations in higher dimension without terms of lower order. 3.6. General strongly degenerate equations in higher dimension -- ch. 4. Nonlinear diffusion equations of higher order. 4.1. Introduction. 4.2. Similarity solutions of a fourth order equation. 4.3. Equations with double-degeneracy. 4.4. Cahn-Hilliard equation with constant mobility. 4.5. Cahn-Hilliard equations with positive concentration dependent mobility. 4.6. Thin film equation. 4.7. Cahn-Hilliard equation with degenerate mobility. |
Record Nr. | UNINA-9910782387703321 |
River Edge, N.J., : World Scientific, c2001 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|