top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Burgers-KPZ turbulence : Göttingen lectures / / Wojbor A. Woyczyński
Burgers-KPZ turbulence : Göttingen lectures / / Wojbor A. Woyczyński
Autore Woyczyński W. A (Wojbor Andrzej), <1943->
Edizione [1st ed. 1998.]
Pubbl/distr/stampa Berlin, Germany ; ; New York, New York : , : Springer-Verlag, , [1998]
Descrizione fisica 1 online resource (XII, 328 p.)
Disciplina 510
Collana Lecture Notes in Mathematics
Soggetto topico Turbulence - Mathematical models
Burgers equation
ISBN 3-540-49480-4
Classificazione 60H15
76L05
35Q53
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Shock waves and the large scale structure (LSS) of the universe -- Hydrodynamic limits, nonlinear diffusions, and propagation of chaos -- Hopf-Cole formula and its asymptotic analysis -- Statistical description, parabolic approximation -- Hyperbolic approximation and inviscid limit -- Forced Burgers turbulence -- Passive tracer transport in Burgers' and related flows -- Fractal Burgers-KPZ models.
Record Nr. UNINA-9910146307603321
Woyczyński W. A (Wojbor Andrzej), <1943->  
Berlin, Germany ; ; New York, New York : , : Springer-Verlag, , [1998]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Burgers-KPZ turbulence : Göttingen lectures / / Wojbor A. Woyczyński
Burgers-KPZ turbulence : Göttingen lectures / / Wojbor A. Woyczyński
Autore Woyczyński W. A (Wojbor Andrzej), <1943->
Edizione [1st ed. 1998.]
Pubbl/distr/stampa Berlin, Germany ; ; New York, New York : , : Springer-Verlag, , [1998]
Descrizione fisica 1 online resource (XII, 328 p.)
Disciplina 510
Collana Lecture Notes in Mathematics
Soggetto topico Turbulence - Mathematical models
Burgers equation
ISBN 3-540-49480-4
Classificazione 60H15
76L05
35Q53
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Shock waves and the large scale structure (LSS) of the universe -- Hydrodynamic limits, nonlinear diffusions, and propagation of chaos -- Hopf-Cole formula and its asymptotic analysis -- Statistical description, parabolic approximation -- Hyperbolic approximation and inviscid limit -- Forced Burgers turbulence -- Passive tracer transport in Burgers' and related flows -- Fractal Burgers-KPZ models.
Record Nr. UNISA-996466619603316
Woyczyński W. A (Wojbor Andrzej), <1943->  
Berlin, Germany ; ; New York, New York : , : Springer-Verlag, , [1998]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Degenerate nonlinear diffusion equations / / Angelo Favini, Gabriela Marinoschi
Degenerate nonlinear diffusion equations / / Angelo Favini, Gabriela Marinoschi
Autore Favini A (Angelo), <1946->
Edizione [1st ed. 2012.]
Pubbl/distr/stampa Berlin ; ; Heidelberg, : Springer, c2012
Descrizione fisica 1 online resource (XXI, 143 p. 12 illus., 9 illus. in color.)
Disciplina 515.3534
Altri autori (Persone) MarinoschiGabriela
Collana Lecture notes in mathematics
Soggetto topico Burgers equation
Degenerate differential equations
ISBN 3-642-28285-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1 Parameter identification in a parabolic-elliptic degenerate problem -- 2 Existence for diffusion degenerate problems -- 3 Existence for nonautonomous parabolic-elliptic degenerate diffusion Equations -- 4 Parameter identification in a parabolic-elliptic degenerate problem.
Record Nr. UNINA-9910483845203321
Favini A (Angelo), <1946->  
Berlin ; ; Heidelberg, : Springer, c2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Degenerate nonlinear diffusion equations / Angelo Favini, Gabriela Marinoschi
Degenerate nonlinear diffusion equations / Angelo Favini, Gabriela Marinoschi
Autore Favini, Angelo
Pubbl/distr/stampa Berlin ; New York : Springer, c2012
Descrizione fisica xxi, 143 p. : col. ill. ; 23 cm
Disciplina 515.353
Altri autori (Persone) Marinoschi, Gabrielaauthor
Collana Lecture notes in mathematics, 0075-8434 ; 2049
Soggetto topico Burgers equation
Degenerate differential equations
ISBN 9783642282843
Classificazione LC QA377.F38
AMS 35K35
AMS 47H
AMS 35R35
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISALENTO-991001809529707536
Favini, Angelo  
Berlin ; New York : Springer, c2012
Materiale a stampa
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui
Dual variational approach to nonlinear diffusion equations / / Gabriela Marinoschi
Dual variational approach to nonlinear diffusion equations / / Gabriela Marinoschi
Autore Marinoschi Gabriela
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2023]
Descrizione fisica 1 online resource (223 pages)
Disciplina 260
Collana PNLDE Subseries in Control
Soggetto topico Burgers equation
Differential equations, Nonlinear
Equacions diferencials no lineals
Soggetto genere / forma Llibres electrònics
ISBN 9783031245831
9783031245824
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- Nonlinear Diffusion Equations with Slow and Fast Diffusion -- Weakly Coercive Nonlinear Diffusion Equations -- Nonlinear Diffusion Equations with a Noncoercive Potential -- Nonlinear Parabolic Equations in Divergence Form with Wentzell Boundary Conditions -- A Nonlinear Control Problem in Image Denoising -- An Optimal Control Problem for a Phase Transition Model -- Appendix -- Bibliography -- Index.
Record Nr. UNINA-9910686790303321
Marinoschi Gabriela  
Cham, Switzerland : , : Springer, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The dynamics of modulated wave trains / / Arjen Doelman [and three others]
The dynamics of modulated wave trains / / Arjen Doelman [and three others]
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , 2009
Descrizione fisica 1 online resource (122 p.)
Disciplina 515.3534
Collana Memoirs of the American Mathematical Society
Soggetto topico Reaction-diffusion equations
Approximation theory
Burgers equation
Soggetto genere / forma Electronic books.
ISBN 1-4704-0540-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""Contents""; ""Notation""; ""Chapter 1. Introduction""; ""1.1. Grasshopper's guide""; ""1.2. Slowly-varying modulations of nonlinear wave trains""; ""1.3. Predictions from the Burgers equation""; ""1.4. Verifying the predictions made from the Burgers equation""; ""1.5. Related modulation equations""; ""1.6. References to related works""; ""Chapter 2. The Burgers equation""; ""2.1. Decay estimates""; ""2.2. Fronts in the Burgers equation""; ""Chapter 3. The complex cubic Ginzburg�Landau equation""; ""3.1. Set-up""; ""3.2. Slowly-varying modulations of the k = 0 wave train: Results""
""3.3. Derivation of the Burgers equation""""3.4. The construction of higher-order approximations""; ""3.5. The approximation theorem for the wave numbers""; ""3.6. Mode filters, and separation into critical and noncritical modes""; ""3.7. Estimates of the linear semigroups""; ""3.8. Estimates of the residual""; ""3.9. Estimates of the errors""; ""3.10. Proofs of the theorems from Â3.2""; ""Chapter 4. Reaction-diffusion equations: Set-up and results""; ""4.1. The abstract set-up""; ""4.2. Expansions of the linear and nonlinear dispersion relations""
""4.3. Formal derivation of the Burgers equation""""4.4. Validity of the Burgers equation""; ""4.5. Existence and stability of weak shocks""; ""Chapter 5. Validity of the Burgers equation in reaction-diffusion equations""; ""5.1. From phases to wave numbers""; ""5.2. Bloch-wave analysis""; ""5.3. Mode filters, and separation into critical and noncritical modes""; ""5.4. Estimates for residuals and errors""; ""5.5. Proofs of the theorems from Â4.4""; ""Chapter 6. Validity of the inviscid Burgers equation in reaction-diffusion systems""; ""6.1. An illustration: The Ginzburgâ€?Landau equation""
""6.2. Formal derivation of the conservation law""""6.3. Validity of the inviscid Burgers equation""; ""6.4. Proof of the theorems from Â6.3""; ""Chapter 7. Modulations of wave trains near sideband instabilities""; ""7.1. Introduction""; ""7.2. An illustration: The Ginzburgâ€?Landau equation""; ""7.3. Validity of the Kortewegâ€?de Vries and the Kuramotoâ€?Sivashinsky equation""; ""7.4. Proof of Theorem 7.2""; ""7.5. Proof of Theorem 7.5""; ""Chapter 8. Existence and stability of weak shocks""; ""8.1. Proof of Theorem 4.10""; ""8.2. Proof of Theorem 4.12""
""Chapter 9. Existence of shocks in the long-wavelength limit""""9.1. A lattice model for weakly interacting pulses""; ""9.2. Proof of Theorem 9.2""; ""Chapter 10. Applications""; ""10.1. The FitzHugh�Nagumo equation""; ""10.2. The weakly unstable Taylor�Couette problem""; ""Bibliography""
Record Nr. UNINA-9910480757103321
Providence, Rhode Island : , : American Mathematical Society, , 2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The dynamics of modulated wave trains / / Arjen Doelman [and three others]
The dynamics of modulated wave trains / / Arjen Doelman [and three others]
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , 2009
Descrizione fisica 1 online resource (122 p.)
Disciplina 515.3534
Collana Memoirs of the American Mathematical Society
Soggetto topico Reaction-diffusion equations
Approximation theory
Burgers equation
ISBN 1-4704-0540-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""Contents""; ""Notation""; ""Chapter 1. Introduction""; ""1.1. Grasshopper's guide""; ""1.2. Slowly-varying modulations of nonlinear wave trains""; ""1.3. Predictions from the Burgers equation""; ""1.4. Verifying the predictions made from the Burgers equation""; ""1.5. Related modulation equations""; ""1.6. References to related works""; ""Chapter 2. The Burgers equation""; ""2.1. Decay estimates""; ""2.2. Fronts in the Burgers equation""; ""Chapter 3. The complex cubic Ginzburg�Landau equation""; ""3.1. Set-up""; ""3.2. Slowly-varying modulations of the k = 0 wave train: Results""
""3.3. Derivation of the Burgers equation""""3.4. The construction of higher-order approximations""; ""3.5. The approximation theorem for the wave numbers""; ""3.6. Mode filters, and separation into critical and noncritical modes""; ""3.7. Estimates of the linear semigroups""; ""3.8. Estimates of the residual""; ""3.9. Estimates of the errors""; ""3.10. Proofs of the theorems from Â3.2""; ""Chapter 4. Reaction-diffusion equations: Set-up and results""; ""4.1. The abstract set-up""; ""4.2. Expansions of the linear and nonlinear dispersion relations""
""4.3. Formal derivation of the Burgers equation""""4.4. Validity of the Burgers equation""; ""4.5. Existence and stability of weak shocks""; ""Chapter 5. Validity of the Burgers equation in reaction-diffusion equations""; ""5.1. From phases to wave numbers""; ""5.2. Bloch-wave analysis""; ""5.3. Mode filters, and separation into critical and noncritical modes""; ""5.4. Estimates for residuals and errors""; ""5.5. Proofs of the theorems from Â4.4""; ""Chapter 6. Validity of the inviscid Burgers equation in reaction-diffusion systems""; ""6.1. An illustration: The Ginzburgâ€?Landau equation""
""6.2. Formal derivation of the conservation law""""6.3. Validity of the inviscid Burgers equation""; ""6.4. Proof of the theorems from Â6.3""; ""Chapter 7. Modulations of wave trains near sideband instabilities""; ""7.1. Introduction""; ""7.2. An illustration: The Ginzburgâ€?Landau equation""; ""7.3. Validity of the Kortewegâ€?de Vries and the Kuramotoâ€?Sivashinsky equation""; ""7.4. Proof of Theorem 7.2""; ""7.5. Proof of Theorem 7.5""; ""Chapter 8. Existence and stability of weak shocks""; ""8.1. Proof of Theorem 4.10""; ""8.2. Proof of Theorem 4.12""
""Chapter 9. Existence of shocks in the long-wavelength limit""""9.1. A lattice model for weakly interacting pulses""; ""9.2. Proof of Theorem 9.2""; ""Chapter 10. Applications""; ""10.1. The FitzHugh�Nagumo equation""; ""10.2. The weakly unstable Taylor�Couette problem""; ""Bibliography""
Record Nr. UNINA-9910788854903321
Providence, Rhode Island : , : American Mathematical Society, , 2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The dynamics of modulated wave trains / / Arjen Doelman [and three others]
The dynamics of modulated wave trains / / Arjen Doelman [and three others]
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , 2009
Descrizione fisica 1 online resource (122 p.)
Disciplina 515.3534
Collana Memoirs of the American Mathematical Society
Soggetto topico Reaction-diffusion equations
Approximation theory
Burgers equation
ISBN 1-4704-0540-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""Contents""; ""Notation""; ""Chapter 1. Introduction""; ""1.1. Grasshopper's guide""; ""1.2. Slowly-varying modulations of nonlinear wave trains""; ""1.3. Predictions from the Burgers equation""; ""1.4. Verifying the predictions made from the Burgers equation""; ""1.5. Related modulation equations""; ""1.6. References to related works""; ""Chapter 2. The Burgers equation""; ""2.1. Decay estimates""; ""2.2. Fronts in the Burgers equation""; ""Chapter 3. The complex cubic Ginzburg�Landau equation""; ""3.1. Set-up""; ""3.2. Slowly-varying modulations of the k = 0 wave train: Results""
""3.3. Derivation of the Burgers equation""""3.4. The construction of higher-order approximations""; ""3.5. The approximation theorem for the wave numbers""; ""3.6. Mode filters, and separation into critical and noncritical modes""; ""3.7. Estimates of the linear semigroups""; ""3.8. Estimates of the residual""; ""3.9. Estimates of the errors""; ""3.10. Proofs of the theorems from Â3.2""; ""Chapter 4. Reaction-diffusion equations: Set-up and results""; ""4.1. The abstract set-up""; ""4.2. Expansions of the linear and nonlinear dispersion relations""
""4.3. Formal derivation of the Burgers equation""""4.4. Validity of the Burgers equation""; ""4.5. Existence and stability of weak shocks""; ""Chapter 5. Validity of the Burgers equation in reaction-diffusion equations""; ""5.1. From phases to wave numbers""; ""5.2. Bloch-wave analysis""; ""5.3. Mode filters, and separation into critical and noncritical modes""; ""5.4. Estimates for residuals and errors""; ""5.5. Proofs of the theorems from Â4.4""; ""Chapter 6. Validity of the inviscid Burgers equation in reaction-diffusion systems""; ""6.1. An illustration: The Ginzburgâ€?Landau equation""
""6.2. Formal derivation of the conservation law""""6.3. Validity of the inviscid Burgers equation""; ""6.4. Proof of the theorems from Â6.3""; ""Chapter 7. Modulations of wave trains near sideband instabilities""; ""7.1. Introduction""; ""7.2. An illustration: The Ginzburgâ€?Landau equation""; ""7.3. Validity of the Kortewegâ€?de Vries and the Kuramotoâ€?Sivashinsky equation""; ""7.4. Proof of Theorem 7.2""; ""7.5. Proof of Theorem 7.5""; ""Chapter 8. Existence and stability of weak shocks""; ""8.1. Proof of Theorem 4.10""; ""8.2. Proof of Theorem 4.12""
""Chapter 9. Existence of shocks in the long-wavelength limit""""9.1. A lattice model for weakly interacting pulses""; ""9.2. Proof of Theorem 9.2""; ""Chapter 10. Applications""; ""10.1. The FitzHugh�Nagumo equation""; ""10.2. The weakly unstable Taylor�Couette problem""; ""Bibliography""
Record Nr. UNINA-9910829176903321
Providence, Rhode Island : , : American Mathematical Society, , 2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Nonlinear diffusion equations [[electronic resource] /] / Zhuoqun Wu, Junning Zhao and Jingxue Yin, Huilai Li
Nonlinear diffusion equations [[electronic resource] /] / Zhuoqun Wu, Junning Zhao and Jingxue Yin, Huilai Li
Pubbl/distr/stampa River Edge, N.J., : World Scientific, c2001
Descrizione fisica 1 online resource (xvii, 502 p.)
Disciplina 515/.352
Altri autori (Persone) WuZhuoqun
Soggetto topico Burgers equation
Heat equation
Soggetto genere / forma Electronic books.
ISBN 1-281-95135-8
9786611951351
981-279-979-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ch. 1. Newtonian filtration equations. 1.1. Introduction. 1.2. Existence and uniqueness of solutions: One dimensional case. 1.3. Existence and uniqueness of solutions: Higher dimensional case. 1.4. Regularity of solutions: One Dimensional case. 1.5. Regularity of solutions: Higher dimensional case. 1.6. Properties of the free boundary: One dimensional case. 1.7. Properties of the free boundary: Higher dimensional case. 1.8. Initial trace of solutions. 1.9. Other problems -- ch. 2. Non-Newtonian filtration equations. 2.1. Introduction. Preliminary knowledge. 2.2. Existence of solutions. 2.3. Harnack inequality and the initial trace of solutions. 2.4. Regularity of solutions. 2.5. Uniqueness of solutions. 2.6. Properties of the free boundary. 2.7. Other problems -- ch. 3. General quasilinear equations of second order. 3.1. Introduction. 3.2. Weakly degenerate equations in one dimension. 3.3. Weakly Degenerate equations in higher dimension. 3.4. Strongly degenerate equations in one dimension. 3.5. Degenerate equations in higher dimension without terms of lower order. 3.6. General strongly degenerate equations in higher dimension -- ch. 4. Nonlinear diffusion equations of higher order. 4.1. Introduction. 4.2. Similarity solutions of a fourth order equation. 4.3. Equations with double-degeneracy. 4.4. Cahn-Hilliard equation with constant mobility. 4.5. Cahn-Hilliard equations with positive concentration dependent mobility. 4.6. Thin film equation. 4.7. Cahn-Hilliard equation with degenerate mobility.
Record Nr. UNINA-9910454363903321
River Edge, N.J., : World Scientific, c2001
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Nonlinear diffusion equations [[electronic resource] /] / Zhuoqun Wu, Junning Zhao and Jingxue Yin, Huilai Li
Nonlinear diffusion equations [[electronic resource] /] / Zhuoqun Wu, Junning Zhao and Jingxue Yin, Huilai Li
Pubbl/distr/stampa River Edge, N.J., : World Scientific, c2001
Descrizione fisica 1 online resource (xvii, 502 p.)
Disciplina 515/.352
Altri autori (Persone) WuZhuoqun
Soggetto topico Burgers equation
Heat equation
ISBN 1-281-95135-8
9786611951351
981-279-979-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ch. 1. Newtonian filtration equations. 1.1. Introduction. 1.2. Existence and uniqueness of solutions: One dimensional case. 1.3. Existence and uniqueness of solutions: Higher dimensional case. 1.4. Regularity of solutions: One Dimensional case. 1.5. Regularity of solutions: Higher dimensional case. 1.6. Properties of the free boundary: One dimensional case. 1.7. Properties of the free boundary: Higher dimensional case. 1.8. Initial trace of solutions. 1.9. Other problems -- ch. 2. Non-Newtonian filtration equations. 2.1. Introduction. Preliminary knowledge. 2.2. Existence of solutions. 2.3. Harnack inequality and the initial trace of solutions. 2.4. Regularity of solutions. 2.5. Uniqueness of solutions. 2.6. Properties of the free boundary. 2.7. Other problems -- ch. 3. General quasilinear equations of second order. 3.1. Introduction. 3.2. Weakly degenerate equations in one dimension. 3.3. Weakly Degenerate equations in higher dimension. 3.4. Strongly degenerate equations in one dimension. 3.5. Degenerate equations in higher dimension without terms of lower order. 3.6. General strongly degenerate equations in higher dimension -- ch. 4. Nonlinear diffusion equations of higher order. 4.1. Introduction. 4.2. Similarity solutions of a fourth order equation. 4.3. Equations with double-degeneracy. 4.4. Cahn-Hilliard equation with constant mobility. 4.5. Cahn-Hilliard equations with positive concentration dependent mobility. 4.6. Thin film equation. 4.7. Cahn-Hilliard equation with degenerate mobility.
Record Nr. UNINA-9910782387703321
River Edge, N.J., : World Scientific, c2001
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui