top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Behavioral modelling and predistortion of wideband wireless transmitters / / Fadhel Ghannouchi, Oualid Hammi, Mohamed Helaoui
Behavioral modelling and predistortion of wideband wireless transmitters / / Fadhel Ghannouchi, Oualid Hammi, Mohamed Helaoui
Autore Ghannouchi Fadhel M. <1958->
Edizione [1st edition]
Pubbl/distr/stampa Chichester, England : , : Wiley, , 2015
Descrizione fisica 1 online resource (272 p.)
Disciplina 621.384131
Soggetto topico Wireless communication systems - Mathematical models
Broadband communication systems - Mathematical models
Signal theory (Telecommunication) - Mathematics
Telecommunication - Transmitters and transmission - Mathematics
Nonlinear systems - Mathematical models
Electric distortion - Mathematical models
ISBN 1-119-00444-6
1-119-00442-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Title Page; Copyright; Contents; About the Authors; Preface; Acknowledgments; Chapter 1 Characterization of Wireless Transmitter Distortions; 1.1 Introduction; 1.1.1 RF Power Amplifier Nonlinearity; 1.1.2 Inter-Modulation Distortion and Spectrum Regrowth; 1.2 Impact of Distortions on Transmitter Performances; 1.3 Output Power versus Input Power Characteristic; 1.4 AM/AM and AM/PM Characteristics; 1.5 1 dB Compression Point; 1.6 Third and Fifth Order Intercept Points; 1.7 Carrier to Inter-Modulation Distortion Ratio; 1.8 Adjacent Channel Leakage Ratio; 1.9 Error Vector Magnitude
ReferencesChapter 2 Dynamic Nonlinear Systems; 2.1 Classification of Nonlinear Systems; 2.1.1 Memoryless Systems; 2.1.2 Systems with Memory; 2.2 Memory in Microwave Power Amplification Systems; 2.2.1 Nonlinear Systems without Memory; 2.2.2 Weakly Nonlinear and Quasi-Memoryless Systems; 2.2.3 Nonlinear System with Memory; 2.3 Baseband and Low-Pass Equivalent Signals; 2.4 Origins and Types of Memory Effects in Power Amplification Systems; 2.4.1 Origins of Memory Effects; 2.4.2 Electrical Memory Effects; 2.4.3 Thermal Memory Effects; 2.5 Volterra Series Models; References
Chapter 3 Model Performance Evaluation3.1 Introduction; 3.2 Behavioral Modeling versus Digital Predistortion; 3.3 Time Domain Metrics; 3.3.1 Normalized Mean Square Error; 3.3.2 Memory Effects Modeling Ratio; 3.4 Frequency Domain Metrics; 3.4.1 Frequency Domain Normalized Mean Square Error; 3.4.2 Adjacent Channel Error Power Ratio; 3.4.3 Weighted Error Spectrum Power Ratio; 3.4.4 Normalized Absolute Mean Spectrum Error; 3.5 Static Nonlinearity Cancelation Techniques; 3.5.1 Static Nonlinearity Pre-Compensation Technique; 3.5.2 Static Nonlinearity Post-Compensation Technique
3.5.3 Memory Effect Intensity3.6 Discussion and Conclusion; References; Chapter 4 Quasi-Memoryless Behavioral Models; 4.1 Introduction; 4.2 Modeling and Simulation of Memoryless/Quasi-Memoryless Nonlinear Systems; 4.3 Bandpass to Baseband Equivalent Transformation; 4.4 Look-Up Table Models; 4.4.1 Uniformly Indexed Loop-Up Tables; 4.4.2 Non-Uniformly Indexed Look-Up Tables; 4.5 Generic Nonlinear Amplifier Behavioral Model; 4.6 Empirical Analytical Based Models; 4.6.1 Polar Saleh Model; 4.6.2 Cartesian Saleh Model; 4.6.3 Frequency-Dependent Saleh Model; 4.6.4 Ghorbani Model
4.6.5 Berman and Mahle Phase Model4.6.6 Thomas-Weidner-Durrani Amplitude Model; 4.6.7 Limiter Model; 4.6.8 ARCTAN Model; 4.6.9 Rapp Model; 4.6.10 White Model; 4.7 Power Series Models; 4.7.1 Polynomial Model; 4.7.2 Bessel Function Based Model; 4.7.3 Chebyshev Series Based Model; 4.7.4 Gegenbauer Polynomials Based Model; 4.7.5 Zernike Polynomials Based Model; References; Chapter 5 Memory Polynomial Based Models; 5.1 Introduction; 5.2 Generic Memory Polynomial Model Formulation; 5.3 Memory Polynomial Model; 5.4 Variants of the Memory Polynomial Model; 5.4.1 Orthogonal Memory Polynomial Model
5.4.2 Sparse-Delay Memory Polynomial Model
Record Nr. UNINA-9910140643403321
Ghannouchi Fadhel M. <1958->  
Chichester, England : , : Wiley, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Behavioral modelling and predistortion of wideband wireless transmitters / / Fadhel Ghannouchi, Oualid Hammi, Mohamed Helaoui
Behavioral modelling and predistortion of wideband wireless transmitters / / Fadhel Ghannouchi, Oualid Hammi, Mohamed Helaoui
Autore Ghannouchi Fadhel M. <1958->
Edizione [1st edition]
Pubbl/distr/stampa Chichester, England : , : Wiley, , 2015
Descrizione fisica 1 online resource (272 p.)
Disciplina 621.384131
Soggetto topico Wireless communication systems - Mathematical models
Broadband communication systems - Mathematical models
Signal theory (Telecommunication) - Mathematics
Telecommunication - Transmitters and transmission - Mathematics
Nonlinear systems - Mathematical models
Electric distortion - Mathematical models
ISBN 1-119-00444-6
1-119-00442-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Title Page; Copyright; Contents; About the Authors; Preface; Acknowledgments; Chapter 1 Characterization of Wireless Transmitter Distortions; 1.1 Introduction; 1.1.1 RF Power Amplifier Nonlinearity; 1.1.2 Inter-Modulation Distortion and Spectrum Regrowth; 1.2 Impact of Distortions on Transmitter Performances; 1.3 Output Power versus Input Power Characteristic; 1.4 AM/AM and AM/PM Characteristics; 1.5 1 dB Compression Point; 1.6 Third and Fifth Order Intercept Points; 1.7 Carrier to Inter-Modulation Distortion Ratio; 1.8 Adjacent Channel Leakage Ratio; 1.9 Error Vector Magnitude
ReferencesChapter 2 Dynamic Nonlinear Systems; 2.1 Classification of Nonlinear Systems; 2.1.1 Memoryless Systems; 2.1.2 Systems with Memory; 2.2 Memory in Microwave Power Amplification Systems; 2.2.1 Nonlinear Systems without Memory; 2.2.2 Weakly Nonlinear and Quasi-Memoryless Systems; 2.2.3 Nonlinear System with Memory; 2.3 Baseband and Low-Pass Equivalent Signals; 2.4 Origins and Types of Memory Effects in Power Amplification Systems; 2.4.1 Origins of Memory Effects; 2.4.2 Electrical Memory Effects; 2.4.3 Thermal Memory Effects; 2.5 Volterra Series Models; References
Chapter 3 Model Performance Evaluation3.1 Introduction; 3.2 Behavioral Modeling versus Digital Predistortion; 3.3 Time Domain Metrics; 3.3.1 Normalized Mean Square Error; 3.3.2 Memory Effects Modeling Ratio; 3.4 Frequency Domain Metrics; 3.4.1 Frequency Domain Normalized Mean Square Error; 3.4.2 Adjacent Channel Error Power Ratio; 3.4.3 Weighted Error Spectrum Power Ratio; 3.4.4 Normalized Absolute Mean Spectrum Error; 3.5 Static Nonlinearity Cancelation Techniques; 3.5.1 Static Nonlinearity Pre-Compensation Technique; 3.5.2 Static Nonlinearity Post-Compensation Technique
3.5.3 Memory Effect Intensity3.6 Discussion and Conclusion; References; Chapter 4 Quasi-Memoryless Behavioral Models; 4.1 Introduction; 4.2 Modeling and Simulation of Memoryless/Quasi-Memoryless Nonlinear Systems; 4.3 Bandpass to Baseband Equivalent Transformation; 4.4 Look-Up Table Models; 4.4.1 Uniformly Indexed Loop-Up Tables; 4.4.2 Non-Uniformly Indexed Look-Up Tables; 4.5 Generic Nonlinear Amplifier Behavioral Model; 4.6 Empirical Analytical Based Models; 4.6.1 Polar Saleh Model; 4.6.2 Cartesian Saleh Model; 4.6.3 Frequency-Dependent Saleh Model; 4.6.4 Ghorbani Model
4.6.5 Berman and Mahle Phase Model4.6.6 Thomas-Weidner-Durrani Amplitude Model; 4.6.7 Limiter Model; 4.6.8 ARCTAN Model; 4.6.9 Rapp Model; 4.6.10 White Model; 4.7 Power Series Models; 4.7.1 Polynomial Model; 4.7.2 Bessel Function Based Model; 4.7.3 Chebyshev Series Based Model; 4.7.4 Gegenbauer Polynomials Based Model; 4.7.5 Zernike Polynomials Based Model; References; Chapter 5 Memory Polynomial Based Models; 5.1 Introduction; 5.2 Generic Memory Polynomial Model Formulation; 5.3 Memory Polynomial Model; 5.4 Variants of the Memory Polynomial Model; 5.4.1 Orthogonal Memory Polynomial Model
5.4.2 Sparse-Delay Memory Polynomial Model
Record Nr. UNINA-9910821592603321
Ghannouchi Fadhel M. <1958->  
Chichester, England : , : Wiley, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Physics of multiantenna systems and broadband processing [[electronic resource] /] / Tapan K. Sarkar, Magdalena Salazar-Palma, Eric L. Mokole ; with contributions from: Santana Burintramart ... [et al.]
Physics of multiantenna systems and broadband processing [[electronic resource] /] / Tapan K. Sarkar, Magdalena Salazar-Palma, Eric L. Mokole ; with contributions from: Santana Burintramart ... [et al.]
Autore Sarkar Tapan (Tapan K.)
Pubbl/distr/stampa Hoboken, N.J., : John Wiley & Sons, c2008
Descrizione fisica 1 online resource (589 p.)
Disciplina 621.384/135
Altri autori (Persone) Salazar-PalmaMagdalena
MokoleEric L
BurintramartSantana
Collana Wiley series in microwave and optical engineering
Soggetto topico Antenna arrays - Mathematical models
MIMO systems - Mathematical models
Broadband communication systems - Mathematical models
ISBN 1-281-73253-2
9786611732530
0-470-28924-4
0-470-28923-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Physics of Multiantenna Systems and Broadband Processing; Contents; Preface; Acknowledgments; Chapter 1 What Is an Antenna and How Does It Work?; 1.0 Summary; 1.1 Historical Overview of Maxwell's Equations; 1.2 Review of Maxwell-Heaviside-Hertz Equations; 1.2.1 Faraday's Law; 1.2.2 Generalized Ampère's Law; 1.2.3 Generalized Gauss's Law of Electrostatics; 1.2.4 Generalized Gauss's Law of Magnetostatics; 1.2.5 Equation of Continuity; 1.3 Solution of Maxwell's Equations; 1.4 Radiation and Reception Properties of a Point Source Antenna in Frequency and in Time Domain
1.4.1 Radiation of Fields from Point Sources1.4.1.1 Far Field in Frequency Domain of a Point Radiator; 1.4.1.2 Far Field in Time Domain of a Point Radiator; 1.4.2 Reception Properties of a Point Receiver; 1.5 Radiation and Reception Properties of Finite-Sized Dipole-Like Structures in Frequency and in Time; 1.5.1 Radiation Fields from Wire-like Structures in the Frequency Domain; 1.5.2 Radiation Fields from Wire-like Structures in the Time Domain; 1.5.3 Induced Voltage on a Finite-Sized Receive Wire-like Structure Due to a Transient Incident Field; 1.6 Conclusion; References
Chapter 2 Fundamentals of Antenna Theory in the Frequency Domain2.0 Summary; 2.1 Field Produced by a Hertzian Dipole; 2.2 Concept of Near and Far Fields; 2.3 Field Radiated by a Small Circular Loop; 2.4 Field Produced by a Finite-Sized Dipole; 2.5 Radiation Field from a Linear Antenna; 2.6 Near- and Far-Field Properties of Antennas; 2.6.1 What Is Beamforming Using Antennas; 2.6.2 Use of Spatial Antenna Diversity; 2.7 The Mathematics and Physics of an Antenna Array; 2.8 Propagation Modeling in the Frequency Domain; 2.9 Conclusion; References
Chapter 3 Fundamentals of an Antenna in the Time Domain3.0 Summary; 3.1 Introduction; 3.2 UWB Input Pulse; 3.3 Travelling-Wave Antenna; 3.4 Reciprocity Relation Between Antennas; 3.5 Antenna Simulations; 3.6 Loaded Antennas; 3.6.1 Dipole; 3.6.2 Bicones; 3.6.3 TEM Horn; 3.6.4 Log-Periodic; 3.6.5 Spiral; 3.7 Conventional Wideband Antennas; 3.7.1 Volcano Smoke; 3.7.2 Diamond Dipole; 3.7.3 Monofilar Helix; 3.7.4 Conical Spiral; 3.7.5 Monoloop; 3.7.6 Quad-Ridged Circular Horn; 3.7.7 Bi-Blade with Century Bandwidth; 3.7.8 Cone-Blade; 3.7.9 Vivaldi; 3.7.10 Impulse Radiating Antenna (IRA)
3.7.11 Circular Disc Dipole3.7.12 Bow-Tie; 3.7.13 Planar Slot; 3.8 Experimental Verification of the Wideband Responses from Antennas; 3.9 Conclusion; References; Chapter 4 A Look at the Concept of Channel Capacity from a Maxwellian Viewpoint; 4.0 Summary; 4.1 Introduction; 4.2 History of Entropy and Its Evolution; 4.3 Different Formulations for the Channel Capacity; 4.4 Information Content of a Waveform; 4.5 Numerical Examples Illustrating the Relevance of the Maxwellian Physics in Characterizing the Channel Capacity
4.5.1 Matched Versus Unmatched Receiving Dipole Antenna with a Matched Transmitting Antenna Operating in Free Space
Record Nr. UNINA-9910144136803321
Sarkar Tapan (Tapan K.)  
Hoboken, N.J., : John Wiley & Sons, c2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Physics of multiantenna systems and broadband processing / / Tapan K. Sarkar, Magdalena Salazar-Palma, Eric L. Mokole ; with contributions from: Santana Burintramart ... [et al.]
Physics of multiantenna systems and broadband processing / / Tapan K. Sarkar, Magdalena Salazar-Palma, Eric L. Mokole ; with contributions from: Santana Burintramart ... [et al.]
Autore Sarkar Tapan (Tapan K.)
Edizione [1st ed.]
Pubbl/distr/stampa Hoboken, N.J., : John Wiley & Sons, c2008
Descrizione fisica 1 online resource (589 p.)
Disciplina 621.384/135
Altri autori (Persone) Salazar-PalmaMagdalena
MokoleEric L
BurintramartSantana
Collana Wiley series in microwave and optical engineering
Soggetto topico Antenna arrays - Mathematical models
MIMO systems - Mathematical models
Broadband communication systems - Mathematical models
ISBN 1-281-73253-2
9786611732530
0-470-28924-4
0-470-28923-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Physics of Multiantenna Systems and Broadband Processing; Contents; Preface; Acknowledgments; Chapter 1 What Is an Antenna and How Does It Work?; 1.0 Summary; 1.1 Historical Overview of Maxwell's Equations; 1.2 Review of Maxwell-Heaviside-Hertz Equations; 1.2.1 Faraday's Law; 1.2.2 Generalized Ampère's Law; 1.2.3 Generalized Gauss's Law of Electrostatics; 1.2.4 Generalized Gauss's Law of Magnetostatics; 1.2.5 Equation of Continuity; 1.3 Solution of Maxwell's Equations; 1.4 Radiation and Reception Properties of a Point Source Antenna in Frequency and in Time Domain
1.4.1 Radiation of Fields from Point Sources1.4.1.1 Far Field in Frequency Domain of a Point Radiator; 1.4.1.2 Far Field in Time Domain of a Point Radiator; 1.4.2 Reception Properties of a Point Receiver; 1.5 Radiation and Reception Properties of Finite-Sized Dipole-Like Structures in Frequency and in Time; 1.5.1 Radiation Fields from Wire-like Structures in the Frequency Domain; 1.5.2 Radiation Fields from Wire-like Structures in the Time Domain; 1.5.3 Induced Voltage on a Finite-Sized Receive Wire-like Structure Due to a Transient Incident Field; 1.6 Conclusion; References
Chapter 2 Fundamentals of Antenna Theory in the Frequency Domain2.0 Summary; 2.1 Field Produced by a Hertzian Dipole; 2.2 Concept of Near and Far Fields; 2.3 Field Radiated by a Small Circular Loop; 2.4 Field Produced by a Finite-Sized Dipole; 2.5 Radiation Field from a Linear Antenna; 2.6 Near- and Far-Field Properties of Antennas; 2.6.1 What Is Beamforming Using Antennas; 2.6.2 Use of Spatial Antenna Diversity; 2.7 The Mathematics and Physics of an Antenna Array; 2.8 Propagation Modeling in the Frequency Domain; 2.9 Conclusion; References
Chapter 3 Fundamentals of an Antenna in the Time Domain3.0 Summary; 3.1 Introduction; 3.2 UWB Input Pulse; 3.3 Travelling-Wave Antenna; 3.4 Reciprocity Relation Between Antennas; 3.5 Antenna Simulations; 3.6 Loaded Antennas; 3.6.1 Dipole; 3.6.2 Bicones; 3.6.3 TEM Horn; 3.6.4 Log-Periodic; 3.6.5 Spiral; 3.7 Conventional Wideband Antennas; 3.7.1 Volcano Smoke; 3.7.2 Diamond Dipole; 3.7.3 Monofilar Helix; 3.7.4 Conical Spiral; 3.7.5 Monoloop; 3.7.6 Quad-Ridged Circular Horn; 3.7.7 Bi-Blade with Century Bandwidth; 3.7.8 Cone-Blade; 3.7.9 Vivaldi; 3.7.10 Impulse Radiating Antenna (IRA)
3.7.11 Circular Disc Dipole3.7.12 Bow-Tie; 3.7.13 Planar Slot; 3.8 Experimental Verification of the Wideband Responses from Antennas; 3.9 Conclusion; References; Chapter 4 A Look at the Concept of Channel Capacity from a Maxwellian Viewpoint; 4.0 Summary; 4.1 Introduction; 4.2 History of Entropy and Its Evolution; 4.3 Different Formulations for the Channel Capacity; 4.4 Information Content of a Waveform; 4.5 Numerical Examples Illustrating the Relevance of the Maxwellian Physics in Characterizing the Channel Capacity
4.5.1 Matched Versus Unmatched Receiving Dipole Antenna with a Matched Transmitting Antenna Operating in Free Space
Record Nr. UNINA-9910813373003321
Sarkar Tapan (Tapan K.)  
Hoboken, N.J., : John Wiley & Sons, c2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Principles of broadband switching and networking / / Tony T. Lee and Soung C. Liew
Principles of broadband switching and networking / / Tony T. Lee and Soung C. Liew
Autore Lee Tony T. <1960->
Edizione [1st edition]
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, , c2010
Descrizione fisica 1 online resource (477 p.)
Disciplina 621.382/16
Altri autori (Persone) LiewSoung C. <1948->
Collana Wiley series in telecommunications and signal processing
Soggetto topico Broadband communication systems - Mathematical models
Telecommunication - Switching systems - Mathematical models
Integrated services digital networks - Mathematical models
Packet switching (Data transmission) - Mathematical models
Computer algorithms
ISBN 1-282-49174-1
9786612491740
0-470-59105-6
0-470-59104-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface -- About the Authors -- 1 Introduction and Overview -- 1.1 Switching and Transmission -- 1.1.1 Roles of Switching and Transmission -- 1.1.2 Telephone Network Switching and Transmission Hierarchy -- 1.2 Multiplexing and Concentration -- 1.3 Timescales of Information Transfer -- 1.3.1 Sessions and Circuits -- 1.3.2 Messages -- 1.3.3 Packets and Cells -- 1.4 Broadband Integrated Services Network -- Problems -- 2 Circuit Switch Design Principles -- 2.1 Space-Domain Circuit Switching -- 2.1.1 Nonblocking Properties -- 2.1.2 Complexity of Nonblocking Switches -- 2.1.3 Clos Switching Network -- 2.1.4 Benes Switching Network -- 2.1.5 Baseline and Reverse Baseline Networks -- 2.1.6 Cantor Switching Network -- 2.2 Time-Domain and Time-Space-Time Circuit Switching -- 2.2.1 Time-Domain Switching -- 2.2.2 Time-Space-Time Switching -- Problems -- 3 Fundamental Principles of Packet Switch Design -- 3.1 Packet Contention in Switches -- 3.2 Fundamental Properties of Interconnection Networks -- 3.2.1 Definition of Banyan Networks -- 3.2.2 Simple Switches Based on Banyan Networks -- 3.2.3 Combinatoric Properties of Banyan Networks -- 3.2.4 Nonblocking Conditions for the Banyan Network -- 3.3 Sorting Networks -- 3.3.1 Basic Concepts of Comparison Networks -- 3.3.2 Sorting Networks Based on Bitonic Sort -- 3.3.3 The Odd-Even Sorting Network -- 3.3.4 Switching and Contention Resolution in Sort-Banyan Network -- 3.4 Nonblocking and Self-Routing Properties of Clos Networks -- 3.4.1 Nonblocking Route Assignment -- 3.4.2 Recursiveness Property -- 3.4.3 Basic Properties of Half-Clos Networks -- 3.4.4 Sort-Clos Principle -- Problems -- 4 Switch Performance Analysis and Design Improvements -- 4.1 Performance of Simple Switch Designs -- 4.1.1 Throughput of an Internally Nonblocking Loss System -- 4.1.2 Throughput of an Input-Buffered Switch -- 4.1.3 Delay of an Input-Buffered Switch -- 4.1.4 Delay of an Output-Buffered Switch -- 4.2 Design Improvements for Input Queueing Switches -- 4.2.1 Look-Ahead Contention Resolution.
4.2.2 Parallel Iterative Matching -- 4.3 Design Improvements Based on Output Capacity Expansion -- 4.3.1 Speedup Principle -- 4.3.2 Channel-Grouping Principle -- 4.3.3 Knockout Principle -- 4.3.4 Replication Principle -- 4.3.5 Dilation Principle -- Problems -- 5 Advanced Switch Design Principles -- 5.1 Switch Design Principles Based on Deflection Routing -- 5.1.1 Tandem-Banyan Network -- 5.1.2 Shuffle-Exchange Network -- 5.1.3 Feedback Shuffle-Exchange Network -- 5.1.4 Feedback Bidirectional Shuffle-Exchange Network -- 5.1.5 Dual Shuffle-Exchange Network -- 5.2 Switching by Memory I/O -- 5.3 Design Principles for Scalable Switches -- 5.3.1 Generalized Knockout Principle -- 5.3.2 Modular Architecture -- Problems -- 6 Switching Principles for Multicast, Multirate, and Multimedia Services -- 6.1 Multicast Switching -- 6.1.1 Multicasting Based on Nonblocking Copy Networks -- 6.1.2 Performance Improvement of Copy Networks -- 6.1.3 Multicasting Algorithm for Arbitrary Network Topologies -- 6.1.4 Nonblocking Copy Networks Based on Broadcast Clos Networks -- 6.2 Path Switching -- 6.2.1 Basic Concept of Path Switching -- 6.2.2 Capacity and Route Assignments for Multirate Traffic -- 6.2.3 Trade-Off Between Performance and Complexity -- 6.2.4 Multicasting in Path Switching -- 6.A Appendix -- 6.A.1 A Formulation of Effective Bandwidth -- 6.A.2 Approximations of Effective Bandwidth Based on On / Off Source Model -- Problems -- 7 Basic Concepts of Broadband Communication Networks -- 7.1 Synchronous Transfer Mode -- 7.2 Delays in ATM Network -- 7.3 Cell Size Consideration -- 7.4 Cell Networking, Virtual Channels, and Virtual Paths -- 7.4.1 No Data Link Layer -- 7.4.2 Cell Sequence Preservation -- 7.4.3 Virtual-Circuit Hop-by-Hop Routing -- 7.4.4 Virtual Channels and Virtual Paths -- 7.4.5 Routing Using VCI and VPI -- 7.4.6 Motivations for VP/VC Two-Tier Hierarchy -- 7.5 ATM Layer, Adaptation Layer, and Service Class -- 7.6 Transmission Interface -- 7.7 Approaches Toward IP over ATM.
7.7.1 Classical IP over ATM -- 7.7.2 Next Hop Resolution Protocol -- 7.7.3 IP Switch and Cell Switch Router -- 7.7.4 ARIS and Tag Switching -- 7.7.5 Multiprotocol Label Switching -- Appendix 7.A ATM Cell Format -- 7.A.1 ATM Layer -- 7.A.2 Adaptation Layer -- Problems -- 8 Network Traffic Control and Bandwidth Allocation -- 8.1 Fluid-Flow Model: Deterministic Discussion -- 8.2 Fluid-Flow On-Off Source Model: Stochastic Treatment -- 8.3 Traffic Shaping and Policing -- 8.4 Open-Loop Flow Control and Scheduling -- 8.4.1 First-Come-First-Serve Scheduling -- 8.4.2 Fixed-Capacity Assignment -- 8.4.3 Round-Robin Scheduling -- 8.4.4 Weighted Fair Queueing -- 8.4.5 Delay Bound in Weighted Fair Queueing with Leaky-Bucket Access Control -- 8.5 Closed-Loop Flow Control -- Problems -- 9 Packet Switching and Information Transmission -- 9.1 Duality of Switching and Transmission -- 9.2 Parallel Characteristics of Contention and Noise -- 9.2.1 Pseudo Signal-to-Noise Ratio of Packet Switch -- 9.2.2 Clos Network with Random Routing as a Noisy Channel -- 9.3 Clos Network with Deflection Routing -- 9.3.1 Cascaded Clos Network -- 9.3.2 Analysis of Deflection Clos Network -- 9.4 Route Assignments and Error-Correcting Codes -- 9.4.1 Complete Matching in Bipartite Graphs -- 9.4.2 Graphical Codes -- 9.4.3 Route Assignments of Benes Network -- 9.5 Clos Network as Noiseless Channel-Path Switching -- 9.5.1 Capacity Allocation -- 9.5.2 Capacity Matrix Decomposition -- 9.6 Scheduling and Source Coding -- 9.6.1 Smoothness of Scheduling -- 9.6.2 Comparison of Scheduling Algorithms -- 9.6.3 Two-Dimensional Scheduling -- 9.7 Conclusion -- Bibliography.
Record Nr. UNINA-9910139363303321
Lee Tony T. <1960->  
Hoboken, New Jersey : , : John Wiley & Sons, , c2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Principles of broadband switching and networking / / Tony T. Lee and Soung C. Liew
Principles of broadband switching and networking / / Tony T. Lee and Soung C. Liew
Autore Lee Tony T. <1960->
Edizione [1st edition]
Pubbl/distr/stampa Hoboken, N.J., : John Wiley & Sons, 2010
Descrizione fisica 1 online resource (477 p.)
Disciplina 621.382/16
Altri autori (Persone) LiewSoung C. <1948->
Collana Wiley series in telecommunications and signal processing
Soggetto topico Broadband communication systems - Mathematical models
Telecommunication - Switching systems - Mathematical models
Integrated services digital networks - Mathematical models
Packet switching (Data transmission) - Mathematical models
Computer algorithms
ISBN 1-282-49174-1
9786612491740
0-470-59105-6
0-470-59104-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface -- About the Authors -- 1 Introduction and Overview -- 1.1 Switching and Transmission -- 1.1.1 Roles of Switching and Transmission -- 1.1.2 Telephone Network Switching and Transmission Hierarchy -- 1.2 Multiplexing and Concentration -- 1.3 Timescales of Information Transfer -- 1.3.1 Sessions and Circuits -- 1.3.2 Messages -- 1.3.3 Packets and Cells -- 1.4 Broadband Integrated Services Network -- Problems -- 2 Circuit Switch Design Principles -- 2.1 Space-Domain Circuit Switching -- 2.1.1 Nonblocking Properties -- 2.1.2 Complexity of Nonblocking Switches -- 2.1.3 Clos Switching Network -- 2.1.4 Benes Switching Network -- 2.1.5 Baseline and Reverse Baseline Networks -- 2.1.6 Cantor Switching Network -- 2.2 Time-Domain and Time-Space-Time Circuit Switching -- 2.2.1 Time-Domain Switching -- 2.2.2 Time-Space-Time Switching -- Problems -- 3 Fundamental Principles of Packet Switch Design -- 3.1 Packet Contention in Switches -- 3.2 Fundamental Properties of Interconnection Networks -- 3.2.1 Definition of Banyan Networks -- 3.2.2 Simple Switches Based on Banyan Networks -- 3.2.3 Combinatoric Properties of Banyan Networks -- 3.2.4 Nonblocking Conditions for the Banyan Network -- 3.3 Sorting Networks -- 3.3.1 Basic Concepts of Comparison Networks -- 3.3.2 Sorting Networks Based on Bitonic Sort -- 3.3.3 The Odd-Even Sorting Network -- 3.3.4 Switching and Contention Resolution in Sort-Banyan Network -- 3.4 Nonblocking and Self-Routing Properties of Clos Networks -- 3.4.1 Nonblocking Route Assignment -- 3.4.2 Recursiveness Property -- 3.4.3 Basic Properties of Half-Clos Networks -- 3.4.4 Sort-Clos Principle -- Problems -- 4 Switch Performance Analysis and Design Improvements -- 4.1 Performance of Simple Switch Designs -- 4.1.1 Throughput of an Internally Nonblocking Loss System -- 4.1.2 Throughput of an Input-Buffered Switch -- 4.1.3 Delay of an Input-Buffered Switch -- 4.1.4 Delay of an Output-Buffered Switch -- 4.2 Design Improvements for Input Queueing Switches -- 4.2.1 Look-Ahead Contention Resolution.
4.2.2 Parallel Iterative Matching -- 4.3 Design Improvements Based on Output Capacity Expansion -- 4.3.1 Speedup Principle -- 4.3.2 Channel-Grouping Principle -- 4.3.3 Knockout Principle -- 4.3.4 Replication Principle -- 4.3.5 Dilation Principle -- Problems -- 5 Advanced Switch Design Principles -- 5.1 Switch Design Principles Based on Deflection Routing -- 5.1.1 Tandem-Banyan Network -- 5.1.2 Shuffle-Exchange Network -- 5.1.3 Feedback Shuffle-Exchange Network -- 5.1.4 Feedback Bidirectional Shuffle-Exchange Network -- 5.1.5 Dual Shuffle-Exchange Network -- 5.2 Switching by Memory I/O -- 5.3 Design Principles for Scalable Switches -- 5.3.1 Generalized Knockout Principle -- 5.3.2 Modular Architecture -- Problems -- 6 Switching Principles for Multicast, Multirate, and Multimedia Services -- 6.1 Multicast Switching -- 6.1.1 Multicasting Based on Nonblocking Copy Networks -- 6.1.2 Performance Improvement of Copy Networks -- 6.1.3 Multicasting Algorithm for Arbitrary Network Topologies -- 6.1.4 Nonblocking Copy Networks Based on Broadcast Clos Networks -- 6.2 Path Switching -- 6.2.1 Basic Concept of Path Switching -- 6.2.2 Capacity and Route Assignments for Multirate Traffic -- 6.2.3 Trade-Off Between Performance and Complexity -- 6.2.4 Multicasting in Path Switching -- 6.A Appendix -- 6.A.1 A Formulation of Effective Bandwidth -- 6.A.2 Approximations of Effective Bandwidth Based on On / Off Source Model -- Problems -- 7 Basic Concepts of Broadband Communication Networks -- 7.1 Synchronous Transfer Mode -- 7.2 Delays in ATM Network -- 7.3 Cell Size Consideration -- 7.4 Cell Networking, Virtual Channels, and Virtual Paths -- 7.4.1 No Data Link Layer -- 7.4.2 Cell Sequence Preservation -- 7.4.3 Virtual-Circuit Hop-by-Hop Routing -- 7.4.4 Virtual Channels and Virtual Paths -- 7.4.5 Routing Using VCI and VPI -- 7.4.6 Motivations for VP/VC Two-Tier Hierarchy -- 7.5 ATM Layer, Adaptation Layer, and Service Class -- 7.6 Transmission Interface -- 7.7 Approaches Toward IP over ATM.
7.7.1 Classical IP over ATM -- 7.7.2 Next Hop Resolution Protocol -- 7.7.3 IP Switch and Cell Switch Router -- 7.7.4 ARIS and Tag Switching -- 7.7.5 Multiprotocol Label Switching -- Appendix 7.A ATM Cell Format -- 7.A.1 ATM Layer -- 7.A.2 Adaptation Layer -- Problems -- 8 Network Traffic Control and Bandwidth Allocation -- 8.1 Fluid-Flow Model: Deterministic Discussion -- 8.2 Fluid-Flow On-Off Source Model: Stochastic Treatment -- 8.3 Traffic Shaping and Policing -- 8.4 Open-Loop Flow Control and Scheduling -- 8.4.1 First-Come-First-Serve Scheduling -- 8.4.2 Fixed-Capacity Assignment -- 8.4.3 Round-Robin Scheduling -- 8.4.4 Weighted Fair Queueing -- 8.4.5 Delay Bound in Weighted Fair Queueing with Leaky-Bucket Access Control -- 8.5 Closed-Loop Flow Control -- Problems -- 9 Packet Switching and Information Transmission -- 9.1 Duality of Switching and Transmission -- 9.2 Parallel Characteristics of Contention and Noise -- 9.2.1 Pseudo Signal-to-Noise Ratio of Packet Switch -- 9.2.2 Clos Network with Random Routing as a Noisy Channel -- 9.3 Clos Network with Deflection Routing -- 9.3.1 Cascaded Clos Network -- 9.3.2 Analysis of Deflection Clos Network -- 9.4 Route Assignments and Error-Correcting Codes -- 9.4.1 Complete Matching in Bipartite Graphs -- 9.4.2 Graphical Codes -- 9.4.3 Route Assignments of Benes Network -- 9.5 Clos Network as Noiseless Channel-Path Switching -- 9.5.1 Capacity Allocation -- 9.5.2 Capacity Matrix Decomposition -- 9.6 Scheduling and Source Coding -- 9.6.1 Smoothness of Scheduling -- 9.6.2 Comparison of Scheduling Algorithms -- 9.6.3 Two-Dimensional Scheduling -- 9.7 Conclusion -- Bibliography.
Record Nr. UNINA-9910827392003321
Lee Tony T. <1960->  
Hoboken, N.J., : John Wiley & Sons, 2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui