Analysis and implementation of isogeometric boundary elements for electromagnetism / / Felix Wolf |
Autore | Wolf Felix |
Edizione | [1st ed. 2021.] |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2021] |
Descrizione fisica | 1 online resource (XX, 128 p. 38 illus., 25 illus. in color.) |
Disciplina | 537.0151 |
Collana | Springer Theses |
Soggetto topico |
Electromagnetism - Mathematics
Boundary element methods |
ISBN | 3-030-61939-7 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Foundations -- Isogeometric Boundary Elements -- Algorithmic Considerations for Matrix Assembly -- The Discrete Eigenvalue Problem. |
Record Nr. | UNINA-9910484267303321 |
Wolf Felix
![]() |
||
Cham, Switzerland : , : Springer, , [2021] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
The boundary element method for engineers and scientists : theory and applications / / John T. Katsikadelis |
Autore | Katsikadelis John T. |
Edizione | [Second edition.] |
Pubbl/distr/stampa | Amsterdam, [Netherlands] : , : Academic Press, , 2016 |
Descrizione fisica | 1 online resource (466 pages) : illustrations |
Disciplina | 620.00151535 |
Soggetto topico | Boundary element methods |
ISBN |
0-12-802010-5
0-12-804493-4 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910583034103321 |
Katsikadelis John T.
![]() |
||
Amsterdam, [Netherlands] : , : Academic Press, , 2016 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Boundary element methods in applied mechanics : proceedings of the First Joint Japan/US Symposium on Boundary Element Methods, University of Tokyo, Tokyo, Japan, 3-6 October 1988 / / editors, Masataka Tanaka, Thomas A. Cruse |
Edizione | [First edition.] |
Pubbl/distr/stampa | Oxford, England : , : Pergamon Press plc, , 1988 |
Descrizione fisica | 1 online resource (571 p.) |
Disciplina | 620.1001535 |
Soggetto topico |
Boundary element methods
Mechanics, Applied |
ISBN | 1-4832-8696-7 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Front Cover; Boundary Element Methods in Applied Mechanics; Copyright Page; Table of Contents; Preface; COMMITTEES; ORGANIZING COMMITTEE; LOCAL ORGANIZING COMMITTEE; SCIENTIFIC ADVISORY COMMITTEE; PART 1: MATHEMATICAL ASPECTS; Chapter 1. Heat Conduction Analysis Using Single Layer Heat Potential; 1. INTRODUCTION; 2. DIRICHLET PROBLEM IN A NON-SMOOTH DOMAIN; 3. BOUNDARY INTEGRAL EQUATION OF THE FIRST KIND; 4. APPROXIMATION ON THE BOUNDARY; 5. APPROXIMATION IN TIME; ACKNOWLEDGEMENTS; REFERENCES; Chapter 2. A Variational Approach to Boundary Element Methods; INTRODUCTION
THE ELASTOSTATIC PROBLEMTHE ELASTODYNAMIC PROBLEM; CONCLUSION; Acknowledgement.; REFERENCES; APPENDIX; Chapter 3. BEM Formulations for Body Forces Using Particular Integrals; ABSTRACT; INTRODUCTION; CENTRIFUGAL FORCES AND SELF-WEIGHT; FREE-VIBRATION ANALYSIS; ACOOSTIC EKETFRBCUENCY ANALYSIS; THERMAL STRESS ANALYSIS; HLASTOPLASTIC ANALYSIS; CONCLUSIONS; REFERENCES; PART 2: NUMERICAL ASPECTS; Chapter 4. The Error Estimation of the Boundary Element Method on the Multi-regional and Non-linear Potential Problems; INTRODUCTION; THE METHOD OF THE ESTIMATING THE ERROR OF SOLUTION THE EVALUATION OF THE DIFFERENCE ηu ON 3-DIMENSIONAL POTENTIAL PROBLEMSPOISSON EQUATION; NONLINEAR POISSON TYPE EQUATION; CONCLUSIONS; REFERENCES; Chapter 5. The Use of Continuous Finite Elements in Electron Optics; ABSTRACT; KEYWORDS; INTRODUCTION; THEORETICAL BACKGROUND; CONCLUSION; REFERENCES; Chapter 6. Comparison of the Boundary Collocation and the Boundary Element Methods; INTRODUCTION; TEST PROBLEMS WITH ANALYTICAL SOLUTIONS AND ERROR CRITERIA; THE BOUNDARY COLLOCATION METHOD; THE BOUNDARY ELEMENT METHOD; COMPARISON OF RESULTS AND CONCLUSIONS; REFERENCES Chapter 7. Efficient Numerical Integration for Boundary Integral Methods in Two-dimensional and Axisymmetric Potential ProblemsINTRODUCTION; BOUNDARY INTEGRAL METHOD; NUMERICAL INTEGRATION; COMPUTATION PROCEDURE AND RESULTS; CONCLUSION; REFERENCES; Chapter 8. Improved Galerkin Methods for Integral Equations on Polygons and Polyhedral Surfaces; Acknowledgements; REFERENCES; Chapter 9. A Self-adaptive Boundary Element Technique for 2-D Potential Analysis; ABSTRACT; 1. INTRODUCTION; 2. ERROR ESTIVATION AND REFINEMENT ALGORITHM; 3. NUMERICAL APPLICATIONS; 4. CONCLUSIONS; 5. ACKNOWLEDGEMENTS 6. REFERENCESChapter 10. BEASY - An Advanced Boundary Element Analysis System; 1. INTRODUCTION; 2. IMPROVED ELEMENT PERFORMANCE; 3. VOLUME INTEGRALS AND POINT SOURCES; 4. PRE AND POST PROCESSING FOR BEM; 5. CONCLUSIONS; REFERENCES; PART 3: POTENTIAL PROBLEMS; Chapter 11. An Analysis of the Axisymmetric Modified Heimholte Equation by Using the Boundary Element Method; INTRODUCTION; FUNDAMENTAL SOLUTION; INTEGRAL EQUATION METHOD; NUMERICAL PROPERTIES; NUMERICAL RESULTS; CONCLUSIONS; REFERENCES; PART4: ELASTICITY Chapter 12. Application of Advanced BEM Code to Three-dimensional Stress Analysis and Fracture Mechanics Analysis |
Record Nr. | UNINA-9910789590703321 |
Oxford, England : , : Pergamon Press plc, , 1988 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Boundary element methods in applied mechanics : proceedings of the First Joint Japan/US Symposium on Boundary Element Methods, University of Tokyo, Tokyo, Japan, 3-6 October 1988 / / editors, Masataka Tanaka, Thomas A. Cruse |
Edizione | [First edition.] |
Pubbl/distr/stampa | Oxford, England : , : Pergamon Press plc, , 1988 |
Descrizione fisica | 1 online resource (571 p.) |
Disciplina | 620.1001535 |
Soggetto topico |
Boundary element methods
Mechanics, Applied |
ISBN | 1-4832-8696-7 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Front Cover; Boundary Element Methods in Applied Mechanics; Copyright Page; Table of Contents; Preface; COMMITTEES; ORGANIZING COMMITTEE; LOCAL ORGANIZING COMMITTEE; SCIENTIFIC ADVISORY COMMITTEE; PART 1: MATHEMATICAL ASPECTS; Chapter 1. Heat Conduction Analysis Using Single Layer Heat Potential; 1. INTRODUCTION; 2. DIRICHLET PROBLEM IN A NON-SMOOTH DOMAIN; 3. BOUNDARY INTEGRAL EQUATION OF THE FIRST KIND; 4. APPROXIMATION ON THE BOUNDARY; 5. APPROXIMATION IN TIME; ACKNOWLEDGEMENTS; REFERENCES; Chapter 2. A Variational Approach to Boundary Element Methods; INTRODUCTION
THE ELASTOSTATIC PROBLEMTHE ELASTODYNAMIC PROBLEM; CONCLUSION; Acknowledgement.; REFERENCES; APPENDIX; Chapter 3. BEM Formulations for Body Forces Using Particular Integrals; ABSTRACT; INTRODUCTION; CENTRIFUGAL FORCES AND SELF-WEIGHT; FREE-VIBRATION ANALYSIS; ACOOSTIC EKETFRBCUENCY ANALYSIS; THERMAL STRESS ANALYSIS; HLASTOPLASTIC ANALYSIS; CONCLUSIONS; REFERENCES; PART 2: NUMERICAL ASPECTS; Chapter 4. The Error Estimation of the Boundary Element Method on the Multi-regional and Non-linear Potential Problems; INTRODUCTION; THE METHOD OF THE ESTIMATING THE ERROR OF SOLUTION THE EVALUATION OF THE DIFFERENCE ηu ON 3-DIMENSIONAL POTENTIAL PROBLEMSPOISSON EQUATION; NONLINEAR POISSON TYPE EQUATION; CONCLUSIONS; REFERENCES; Chapter 5. The Use of Continuous Finite Elements in Electron Optics; ABSTRACT; KEYWORDS; INTRODUCTION; THEORETICAL BACKGROUND; CONCLUSION; REFERENCES; Chapter 6. Comparison of the Boundary Collocation and the Boundary Element Methods; INTRODUCTION; TEST PROBLEMS WITH ANALYTICAL SOLUTIONS AND ERROR CRITERIA; THE BOUNDARY COLLOCATION METHOD; THE BOUNDARY ELEMENT METHOD; COMPARISON OF RESULTS AND CONCLUSIONS; REFERENCES Chapter 7. Efficient Numerical Integration for Boundary Integral Methods in Two-dimensional and Axisymmetric Potential ProblemsINTRODUCTION; BOUNDARY INTEGRAL METHOD; NUMERICAL INTEGRATION; COMPUTATION PROCEDURE AND RESULTS; CONCLUSION; REFERENCES; Chapter 8. Improved Galerkin Methods for Integral Equations on Polygons and Polyhedral Surfaces; Acknowledgements; REFERENCES; Chapter 9. A Self-adaptive Boundary Element Technique for 2-D Potential Analysis; ABSTRACT; 1. INTRODUCTION; 2. ERROR ESTIVATION AND REFINEMENT ALGORITHM; 3. NUMERICAL APPLICATIONS; 4. CONCLUSIONS; 5. ACKNOWLEDGEMENTS 6. REFERENCESChapter 10. BEASY - An Advanced Boundary Element Analysis System; 1. INTRODUCTION; 2. IMPROVED ELEMENT PERFORMANCE; 3. VOLUME INTEGRALS AND POINT SOURCES; 4. PRE AND POST PROCESSING FOR BEM; 5. CONCLUSIONS; REFERENCES; PART 3: POTENTIAL PROBLEMS; Chapter 11. An Analysis of the Axisymmetric Modified Heimholte Equation by Using the Boundary Element Method; INTRODUCTION; FUNDAMENTAL SOLUTION; INTEGRAL EQUATION METHOD; NUMERICAL PROPERTIES; NUMERICAL RESULTS; CONCLUSIONS; REFERENCES; PART4: ELASTICITY Chapter 12. Application of Advanced BEM Code to Three-dimensional Stress Analysis and Fracture Mechanics Analysis |
Record Nr. | UNINA-9910820716803321 |
Oxford, England : , : Pergamon Press plc, , 1988 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Boundary element methods in engineering and sciences [[electronic resource] /] / M.H. Aliabadi, P.H. Wen |
Autore | Aliabadi M. H |
Pubbl/distr/stampa | London, : Imperial College Press, 2011 |
Descrizione fisica | 1 online resource (450 p.) |
Disciplina | 620.00151535 |
Altri autori (Persone) | WenP. H |
Collana | Computational and experimental methods in structures |
Soggetto topico |
Boundary element methods
Engineering mathematics |
Soggetto genere / forma | Electronic books. |
ISBN |
1-283-14342-9
9786613143426 1-84816-580-3 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
PREFACE; CONTENTS; Chapter 1 THE BOUNDARY ELEMENT METHOD FOR GEOMETRICALLY NON-LINEAR ANALYSES OF PLATES AND SHELLS; Chapter 2 TIME-DOMAIN BEM TECHNIQUES; Chapter 3 THE BOUNDARY ELEMENT METHOD FOR THE FRACTURE ANALYSIS OF THE GENERAL PIEZOELECTRIC SOLIDS; Chapter 4 BOUNDARY INTEGRAL ANALYSIS FOR THREE-DIMENSIONAL EXPONENTIALLY GRADED ELASTICITY; Chapter 5 FAST HIERARCHICAL BOUNDARY ELEMENT METHOD FOR LARGE-SCALE 3-D ELASTIC PROBLEMS; Chapter 6 MODELLING OF PLATES AND SHALLOW SHELLS BY MESHLESS LOCAL INTEGRAL EQUATION METHOD
Chapter 7 BOUNDARY ELEMENT TECHNIQUE FOR SLOW VISCOUS FLOWS ABOUT PARTICLES Chapter 8 BIT FOR FREE SURFACE FLOWS; Chapter 9 SIMULATION OF CAVITATING AND FREE SURFACE FLOWS USING BEM; Chapter 10 CONDITION NUMBERS AND LOCAL ERRORS IN THE BOUNDARY ELEMENT METHOD |
Record Nr. | UNINA-9910463925503321 |
Aliabadi M. H
![]() |
||
London, : Imperial College Press, 2011 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Boundary element methods in engineering and sciences [[electronic resource] /] / M.H. Aliabadi, P.H. Wen |
Autore | Aliabadi M. H |
Pubbl/distr/stampa | London, : Imperial College Press, 2011 |
Descrizione fisica | 1 online resource (450 p.) |
Disciplina | 620.00151535 |
Altri autori (Persone) | WenP. H |
Collana | Computational and experimental methods in structures |
Soggetto topico |
Boundary element methods
Engineering mathematics |
ISBN |
1-283-14342-9
9786613143426 1-84816-580-3 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
PREFACE; CONTENTS; Chapter 1 THE BOUNDARY ELEMENT METHOD FOR GEOMETRICALLY NON-LINEAR ANALYSES OF PLATES AND SHELLS; Chapter 2 TIME-DOMAIN BEM TECHNIQUES; Chapter 3 THE BOUNDARY ELEMENT METHOD FOR THE FRACTURE ANALYSIS OF THE GENERAL PIEZOELECTRIC SOLIDS; Chapter 4 BOUNDARY INTEGRAL ANALYSIS FOR THREE-DIMENSIONAL EXPONENTIALLY GRADED ELASTICITY; Chapter 5 FAST HIERARCHICAL BOUNDARY ELEMENT METHOD FOR LARGE-SCALE 3-D ELASTIC PROBLEMS; Chapter 6 MODELLING OF PLATES AND SHALLOW SHELLS BY MESHLESS LOCAL INTEGRAL EQUATION METHOD
Chapter 7 BOUNDARY ELEMENT TECHNIQUE FOR SLOW VISCOUS FLOWS ABOUT PARTICLES Chapter 8 BIT FOR FREE SURFACE FLOWS; Chapter 9 SIMULATION OF CAVITATING AND FREE SURFACE FLOWS USING BEM; Chapter 10 CONDITION NUMBERS AND LOCAL ERRORS IN THE BOUNDARY ELEMENT METHOD |
Record Nr. | UNINA-9910788566103321 |
Aliabadi M. H
![]() |
||
London, : Imperial College Press, 2011 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Boundary elements [e-book] : theory and applications / John T. Katsikadelis. |
Autore | Katsikadelis, John T. |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Amsterdam ; New York : Elsevier, 2002 |
Descrizione fisica | xiv, 336 p. : ill. ; 25 cm. + 1 CD-ROM (4 3/4 in.) |
Disciplina | 620/.001/51535 |
Soggetto topico | Boundary element methods |
Soggetto genere / forma | Electronic books. |
ISBN |
9780080441078
0080441076 |
Formato | Risorse elettroniche ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Introduction. Preliminary mathematical concepts. The BEM for potential problems in two dimensions. Numerical implementation of the BEM. Boundary element technology. Applications. The BEM for two-dimensional elastostatic problems. |
Record Nr. | UNISALENTO-991003231459707536 |
Katsikadelis, John T.
![]() |
||
Amsterdam ; New York : Elsevier, 2002 | ||
![]() | ||
Lo trovi qui: Univ. del Salento | ||
|
Boundary integral equations / / George C. Hsiao, Wolfgang L. Wendland |
Autore | Hsiao G. C (George C.) |
Edizione | [Second edition.] |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2021] |
Descrizione fisica | 1 online resource (xx, 783 pages) : illustrations |
Disciplina | 620.00151535 |
Collana | Applied mathematical sciences |
Soggetto topico |
Boundary element methods
Integral equations Problemes de contorn Equacions integrals |
Soggetto genere / forma | Llibres electrònics |
ISBN | 3-030-71127-7 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface to the Second Edition -- Preface to the First Edition -- Acknowledgements -- Table of Contents -- 1. Introduction -- 1.1 The Green Representation Formula -- 1.2 Boundary Potentials and Calderón's Projector -- 1.3 Boundary Integral Equations -- 1.3.1 The Dirichlet Problem -- 1.3.2 The Neumann Problem -- 1.4 Exterior Problems -- 1.4.1 The Exterior Dirichlet Problem -- 1.4.2 The Exterior Neumann Problem -- 1.5 Remarks -- 2. Boundary Integral Equations -- 2.1 The Helmholtz Equation -- 2.1.1 Low Frequency Behaviour -- 2.2 The Lamé System -- 2.2.1 The Interior Displacement Problem -- 2.2.2 The Interior Traction Problem -- 2.2.3 Some Exterior Fundamental Problems -- 2.2.4 The Incompressible Material -- 2.3 The Stokes Equations -- 2.3.1 Hydrodynamic Potentials -- 2.3.2 The Stokes Boundary Value Problems -- 2.3.3 The Incompressible Material - Revisited -- 2.4 The Biharmonic Equation -- 2.4.1 Calderón's Projector -- 2.4.2 Boundary Value Problems and Boundary Integral Equations -- 2.5 Remarks -- 3. Representation Formulae, Local Coordinates and Direct Boundary Integral Equations -- 3.1 Classical Function Spaces and Distributions -- 3.2 Hadamard's Finite Part Integrals -- 3.3 Local Coordinates -- 3.4 Short Excursion to Elementary Differential Geometry -- 3.4.1 Second Order Differential Operators in Divergence Form -- 3.5 Distributional Derivatives and Abstract Green's Second Formula -- 3.6 The Green Representation Formula -- 3.7 Green's Representation Formulae in Local Coordinates -- 3.8 Multilayer Potentials -- 3.9 Direct Boundary Integral Equations -- 3.9.1 Boundary Value Problems -- 3.9.2 Transmission Problems -- 3.10 Remarks -- 4. Sobolev Spaces -- 4.1 The Spaces Hs(Ω) -- 4.2 The Trace Spaces Hs(Γ) -- 4.2.1 Trace Spaces for Periodic Functions on a Smooth Curve in IR -- 4.2.2 Trace Spaces on Curved Polygons in IR.
4.3 The Trace Spaces on an Open Surface -- 4.4 The Weighted Sobolev Spaces Hm(Ωc -- λ) and Hm(IRn -- λ) -- 4.5 Function Spaces H( div ,Ω) and H( curl,Ω) -- 5. Variational Formulations -- 5.1 Partial Differential Equations of Second Order -- 5.1.1 Interior Problems -- 5.1.2 Exterior Problems -- 5.1.3 Transmission Problems -- 5.2 Abstract Existence Theorems for Variational Problems -- 5.2.1 The Lax-Milgram Theorem -- 5.3 The Fredholm-Nikolski Theorems -- 5.3.1 Fredholm's Alternative -- 5.3.2 The Riesz-Schauder and the Nikolski Theorems -- 5.3.3 Fredholm's Alternative for Sesquilinear Forms -- 5.3.4 Fredholm Operators -- 5.4 Gårding's Inequality for Boundary Value Problems -- 5.4.1 Gårding's Inequality for Second Order Strongly Elliptic Equations in Ω -- 5.4.2 The Stokes System -- 5.4.3 Gårding's Inequality for Exterior Second Order Problems -- 5.4.4 Gårding's Inequality for Second Order Transmission Problems -- 5.5 Existence of Solutions to Strongly Elliptic Boundary Value Problems -- 5.5.1 Interior Boundary Value Problems -- 5.5.2 Exterior Boundary Value Problems -- 5.5.3 Transmission Problems -- 5.6 Solutions of Certain Boundary Integral Equations and Associated Boundary Value Problems -- 5.6.1 The Generalized Representation Formula for Second Order Systems -- 5.6.2 Continuity of Some Boundary Integral Operators -- 5.6.3 Continuity Based on Finite Regions -- 5.6.4 Continuity of Hydrodynamic Potentials -- 5.6.5 The Equivalence Between Boundary Value Problems and Integral Equations -- 5.6.6 Variational Formulation of Direct Boundary Integral Equations -- 5.6.7 Positivity and Contraction of Boundary Integral Operators -- 5.6.8 The Solvability of Direct Boundary Integral Equations -- 5.6.9 Positivity of the Boundary Integral Operators of the Stokes System -- 5.7 Partial Differential Equations of Higher Order -- 5.8 Remarks -- 5.8.1 Assumptions on Γ. 5.8.2 Higher Regularity of Solutions -- 5.8.3 Mixed Boundary Conditions and Crack Problem -- 6. Electromagnetic Fields -- 6.1 Introduction -- 6.2 Maxwell Equations -- 6.3 Constitutive Equations -- 6.4 Time Harmonic Fields -- 6.4.1 Plane waves -- 6.5 Electromagnetic potentials -- 6.6 Transmission and Boundary Conditions -- 6.7 Boundary Value Problems -- 6.7.1 Scattering problems -- 6.7.2 Eddy current problems -- 6.8 Uniqueness -- 6.8.1 The cavity problem -- 6.8.2 Exterior problems -- 6.8.3 The transmission problem -- 6.9 Representation Formulae -- 6.10 Boundary Integral Equations for Electromagnetic fields -- 6.10.1 The Calderon projector and the capacity operators -- 6.10.2 Weak solutions for a fundamental problem -- 6.10.2.1 Interior Dirichlet problem in Ω. -- 6.10.2.2 A reduction to boundary integral equations. -- 6.11 Application of the Electromagnetic Potentials to Eddy Current Problems -- 6.11.1 The '(A, ϕ) − (A) − (ψ)' formulation in the bounded domain -- 6.11.2 The '(A, ϕ) − (ψ)' formulation in an unbounded domain -- 6.11.3 Electric field in the dielectric domain ΩD. -- 6.11.4 Vector potentials - revisited -- 6.12 Applications of boundary integral equations to scattering problems -- 6.12.1 Scattering by a perfect electric conductor, EFIE and MFIE -- 6.12.2 Scattering by a dielectric body -- 6.12.3 Scattering by objects with impedance boundary conditions -- 7. Introduction to Pseudodifferential Operators -- 7.1 Basic Theory of Pseudodifferential Operators -- 7.2 Elliptic Pseudodifferential Operators on Ω ⊂ IRn -- 7.2.1 Systems of Pseudodifferential Operators -- 7.2.2 Parametrix and Fundamental Solution -- 7.2.3 Levi Functions for Scalar Elliptic Equations -- 7.2.4 Levi Functions for Elliptic Systems -- 7.2.5 Strong Ellipticity and Gårding's Inequality -- 7.3 Review on Fundamental Solutions -- 7.3.1 Local Fundamental Solutions. 7.3.2 Fundamental Solutions in IRn for Operators with Constant Coefficients -- 7.3.3 Existing Fundamental Solutions in Applications -- 8. Pseudodifferential Operators as Integral Operators -- 8.1 Pseudohomogeneous Kernels -- 8.1.1 Integral Operators as Pseudodifferential Operators of Negative Order -- 8.1.2 Non-Negative Order Pseudodifferential Operators as Hadamard Finite Part Integral Operators -- 8.1.3 Parity Conditions -- 8.1.4 A Summary of the Relations between Kernels and Symbols -- 8.2 Coordinate Changes and Pseudohomogeneous Kernels -- 8.2.1 The Transformation of General Hadamard Finite Part Integral Operators under Change of Coordinates -- 8.2.2 The Class of Invariant Hadamard Finite Part Integral Operators under Change of Coordinates -- 9. Pseudodifferential and Boundary Integral Operators -- 9.1 Pseudodifferential Operators on Boundary Manifolds -- 9.1.1 Ellipticity on Boundary Manifolds -- 9.1.2 Schwartz Kernels on Boundary Manifolds -- 9.2 Boundary Operators Generated by Domain Pseudodifferential Operators -- 9.3 Surface Potentials on the Plane IRn−1 -- 9.4 Pseudodifferential Operators with Symbols of Rational Type -- 9.5 Surface Potentials on the Boundary Manifold Γ -- 9.6 Volume Potentials -- 9.7 Strong Ellipticity and Fredholm Properties -- 9.8 Strong Ellipticity of Boundary Value Problems and Associated Boundary Integral Equations -- 9.8.1 The Boundary Value and Transmission Problems -- 9.8.2 The Associated Boundary Integral Equations of the First Kind -- 9.8.3 The Transmission Problem and Gårding's inequality -- 9.9 Remarks -- 10. Integral Equations on Γ ⊂ IR3 Recast as Pseudodifferential Equations -- 10.1 Newton Potential Operators for Elliptic Partial Differential Equations and Systems -- 10.1.1 Generalized Newton Potentials for the Helmholtz Equation -- 10.1.2 The Newton Potential for the Lamé System. 10.1.3 The Newton Potential for the Stokes System -- 10.2 Surface Potentials for Second Order Equations -- 10.2.1 Strongly Elliptic Differential Equations -- 10.2.2 Surface Potentials for the Helmholtz Equation -- 10.2.3 Surface Potentials for the Lamé System -- 10.2.4 Surface Potentials for the Stokes System -- 10.3 Invariance of Boundary Pseudodifferential Operators -- 10.3.1 The Hypersingular Boundary Integral Operators for the Helmholtz Equation -- 10.3.2 The Hypersingular Operator for the Lamé System -- 10.3.3 The Hypersingular Operator for the Stokes System -- 10.4 Derivatives of Boundary Potentials -- 10.4.1 Derivatives of the Solution to the Helmholtz Equation -- 10.4.2 Computation of Stress and Strain on the Boundary for the Lamé System -- 10.5 Remarks -- 11. Boundary Integral Equations on Curves in IR2 -- 11.1 Representation of the basic operators for the 2D-Laplacian in terms of Fourier series -- 11.2 The Fourier Series Representation of Periodic Operators A ∈ L m cl(Γ) -- 11.3 Ellipticity Conditions for Periodic Operators on Γ -- 11.3.1 Scalar Equations -- 11.3.2 Systems of Equations -- 11.3.3 Multiply Connected Domains -- 11.4 Fourier Series Representation of some Particular Operators -- 11.4.1 The Helmholtz Equation -- 11.4.2 The Lamé System -- 11.4.3 The Stokes System -- 11.4.4 The Biharmonic Equation -- 11.5 Remarks -- 12. Remarks on Pseudodifferential Operators Related to the Time Harmonic Maxwell Equations -- 12.1 Introduction -- 12.2 Symbols of P and the corresponding Newton potentials -- 12.3 Representation formulae -- 12.4 Symbols of the Electromagnetic Boundary Potentials -- 12.5 Symbols of boundary integral operators -- 12.6 Symbols of the Capacity Operators -- 12.7 Boundary Integral Operators for the Fundamental Boundary Value Problems -- 12.8 Coerciveness and Strong Ellipticity. 12.9 Gårding's inequality for the sesquilinear form A in (6.12.23). |
Record Nr. | UNISA-996466567503316 |
Hsiao G. C (George C.)
![]() |
||
Cham, Switzerland : , : Springer, , [2021] | ||
![]() | ||
Lo trovi qui: Univ. di Salerno | ||
|
Boundary integral equations / / George C. Hsiao, Wolfgang L. Wendland |
Autore | Hsiao G. C (George C.) |
Edizione | [Second edition.] |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2021] |
Descrizione fisica | 1 online resource (xx, 783 pages) : illustrations |
Disciplina | 620.00151535 |
Collana | Applied mathematical sciences |
Soggetto topico |
Boundary element methods
Integral equations Problemes de contorn Equacions integrals |
Soggetto genere / forma | Llibres electrònics |
ISBN | 3-030-71127-7 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface to the Second Edition -- Preface to the First Edition -- Acknowledgements -- Table of Contents -- 1. Introduction -- 1.1 The Green Representation Formula -- 1.2 Boundary Potentials and Calderón's Projector -- 1.3 Boundary Integral Equations -- 1.3.1 The Dirichlet Problem -- 1.3.2 The Neumann Problem -- 1.4 Exterior Problems -- 1.4.1 The Exterior Dirichlet Problem -- 1.4.2 The Exterior Neumann Problem -- 1.5 Remarks -- 2. Boundary Integral Equations -- 2.1 The Helmholtz Equation -- 2.1.1 Low Frequency Behaviour -- 2.2 The Lamé System -- 2.2.1 The Interior Displacement Problem -- 2.2.2 The Interior Traction Problem -- 2.2.3 Some Exterior Fundamental Problems -- 2.2.4 The Incompressible Material -- 2.3 The Stokes Equations -- 2.3.1 Hydrodynamic Potentials -- 2.3.2 The Stokes Boundary Value Problems -- 2.3.3 The Incompressible Material - Revisited -- 2.4 The Biharmonic Equation -- 2.4.1 Calderón's Projector -- 2.4.2 Boundary Value Problems and Boundary Integral Equations -- 2.5 Remarks -- 3. Representation Formulae, Local Coordinates and Direct Boundary Integral Equations -- 3.1 Classical Function Spaces and Distributions -- 3.2 Hadamard's Finite Part Integrals -- 3.3 Local Coordinates -- 3.4 Short Excursion to Elementary Differential Geometry -- 3.4.1 Second Order Differential Operators in Divergence Form -- 3.5 Distributional Derivatives and Abstract Green's Second Formula -- 3.6 The Green Representation Formula -- 3.7 Green's Representation Formulae in Local Coordinates -- 3.8 Multilayer Potentials -- 3.9 Direct Boundary Integral Equations -- 3.9.1 Boundary Value Problems -- 3.9.2 Transmission Problems -- 3.10 Remarks -- 4. Sobolev Spaces -- 4.1 The Spaces Hs(Ω) -- 4.2 The Trace Spaces Hs(Γ) -- 4.2.1 Trace Spaces for Periodic Functions on a Smooth Curve in IR -- 4.2.2 Trace Spaces on Curved Polygons in IR.
4.3 The Trace Spaces on an Open Surface -- 4.4 The Weighted Sobolev Spaces Hm(Ωc -- λ) and Hm(IRn -- λ) -- 4.5 Function Spaces H( div ,Ω) and H( curl,Ω) -- 5. Variational Formulations -- 5.1 Partial Differential Equations of Second Order -- 5.1.1 Interior Problems -- 5.1.2 Exterior Problems -- 5.1.3 Transmission Problems -- 5.2 Abstract Existence Theorems for Variational Problems -- 5.2.1 The Lax-Milgram Theorem -- 5.3 The Fredholm-Nikolski Theorems -- 5.3.1 Fredholm's Alternative -- 5.3.2 The Riesz-Schauder and the Nikolski Theorems -- 5.3.3 Fredholm's Alternative for Sesquilinear Forms -- 5.3.4 Fredholm Operators -- 5.4 Gårding's Inequality for Boundary Value Problems -- 5.4.1 Gårding's Inequality for Second Order Strongly Elliptic Equations in Ω -- 5.4.2 The Stokes System -- 5.4.3 Gårding's Inequality for Exterior Second Order Problems -- 5.4.4 Gårding's Inequality for Second Order Transmission Problems -- 5.5 Existence of Solutions to Strongly Elliptic Boundary Value Problems -- 5.5.1 Interior Boundary Value Problems -- 5.5.2 Exterior Boundary Value Problems -- 5.5.3 Transmission Problems -- 5.6 Solutions of Certain Boundary Integral Equations and Associated Boundary Value Problems -- 5.6.1 The Generalized Representation Formula for Second Order Systems -- 5.6.2 Continuity of Some Boundary Integral Operators -- 5.6.3 Continuity Based on Finite Regions -- 5.6.4 Continuity of Hydrodynamic Potentials -- 5.6.5 The Equivalence Between Boundary Value Problems and Integral Equations -- 5.6.6 Variational Formulation of Direct Boundary Integral Equations -- 5.6.7 Positivity and Contraction of Boundary Integral Operators -- 5.6.8 The Solvability of Direct Boundary Integral Equations -- 5.6.9 Positivity of the Boundary Integral Operators of the Stokes System -- 5.7 Partial Differential Equations of Higher Order -- 5.8 Remarks -- 5.8.1 Assumptions on Γ. 5.8.2 Higher Regularity of Solutions -- 5.8.3 Mixed Boundary Conditions and Crack Problem -- 6. Electromagnetic Fields -- 6.1 Introduction -- 6.2 Maxwell Equations -- 6.3 Constitutive Equations -- 6.4 Time Harmonic Fields -- 6.4.1 Plane waves -- 6.5 Electromagnetic potentials -- 6.6 Transmission and Boundary Conditions -- 6.7 Boundary Value Problems -- 6.7.1 Scattering problems -- 6.7.2 Eddy current problems -- 6.8 Uniqueness -- 6.8.1 The cavity problem -- 6.8.2 Exterior problems -- 6.8.3 The transmission problem -- 6.9 Representation Formulae -- 6.10 Boundary Integral Equations for Electromagnetic fields -- 6.10.1 The Calderon projector and the capacity operators -- 6.10.2 Weak solutions for a fundamental problem -- 6.10.2.1 Interior Dirichlet problem in Ω. -- 6.10.2.2 A reduction to boundary integral equations. -- 6.11 Application of the Electromagnetic Potentials to Eddy Current Problems -- 6.11.1 The '(A, ϕ) − (A) − (ψ)' formulation in the bounded domain -- 6.11.2 The '(A, ϕ) − (ψ)' formulation in an unbounded domain -- 6.11.3 Electric field in the dielectric domain ΩD. -- 6.11.4 Vector potentials - revisited -- 6.12 Applications of boundary integral equations to scattering problems -- 6.12.1 Scattering by a perfect electric conductor, EFIE and MFIE -- 6.12.2 Scattering by a dielectric body -- 6.12.3 Scattering by objects with impedance boundary conditions -- 7. Introduction to Pseudodifferential Operators -- 7.1 Basic Theory of Pseudodifferential Operators -- 7.2 Elliptic Pseudodifferential Operators on Ω ⊂ IRn -- 7.2.1 Systems of Pseudodifferential Operators -- 7.2.2 Parametrix and Fundamental Solution -- 7.2.3 Levi Functions for Scalar Elliptic Equations -- 7.2.4 Levi Functions for Elliptic Systems -- 7.2.5 Strong Ellipticity and Gårding's Inequality -- 7.3 Review on Fundamental Solutions -- 7.3.1 Local Fundamental Solutions. 7.3.2 Fundamental Solutions in IRn for Operators with Constant Coefficients -- 7.3.3 Existing Fundamental Solutions in Applications -- 8. Pseudodifferential Operators as Integral Operators -- 8.1 Pseudohomogeneous Kernels -- 8.1.1 Integral Operators as Pseudodifferential Operators of Negative Order -- 8.1.2 Non-Negative Order Pseudodifferential Operators as Hadamard Finite Part Integral Operators -- 8.1.3 Parity Conditions -- 8.1.4 A Summary of the Relations between Kernels and Symbols -- 8.2 Coordinate Changes and Pseudohomogeneous Kernels -- 8.2.1 The Transformation of General Hadamard Finite Part Integral Operators under Change of Coordinates -- 8.2.2 The Class of Invariant Hadamard Finite Part Integral Operators under Change of Coordinates -- 9. Pseudodifferential and Boundary Integral Operators -- 9.1 Pseudodifferential Operators on Boundary Manifolds -- 9.1.1 Ellipticity on Boundary Manifolds -- 9.1.2 Schwartz Kernels on Boundary Manifolds -- 9.2 Boundary Operators Generated by Domain Pseudodifferential Operators -- 9.3 Surface Potentials on the Plane IRn−1 -- 9.4 Pseudodifferential Operators with Symbols of Rational Type -- 9.5 Surface Potentials on the Boundary Manifold Γ -- 9.6 Volume Potentials -- 9.7 Strong Ellipticity and Fredholm Properties -- 9.8 Strong Ellipticity of Boundary Value Problems and Associated Boundary Integral Equations -- 9.8.1 The Boundary Value and Transmission Problems -- 9.8.2 The Associated Boundary Integral Equations of the First Kind -- 9.8.3 The Transmission Problem and Gårding's inequality -- 9.9 Remarks -- 10. Integral Equations on Γ ⊂ IR3 Recast as Pseudodifferential Equations -- 10.1 Newton Potential Operators for Elliptic Partial Differential Equations and Systems -- 10.1.1 Generalized Newton Potentials for the Helmholtz Equation -- 10.1.2 The Newton Potential for the Lamé System. 10.1.3 The Newton Potential for the Stokes System -- 10.2 Surface Potentials for Second Order Equations -- 10.2.1 Strongly Elliptic Differential Equations -- 10.2.2 Surface Potentials for the Helmholtz Equation -- 10.2.3 Surface Potentials for the Lamé System -- 10.2.4 Surface Potentials for the Stokes System -- 10.3 Invariance of Boundary Pseudodifferential Operators -- 10.3.1 The Hypersingular Boundary Integral Operators for the Helmholtz Equation -- 10.3.2 The Hypersingular Operator for the Lamé System -- 10.3.3 The Hypersingular Operator for the Stokes System -- 10.4 Derivatives of Boundary Potentials -- 10.4.1 Derivatives of the Solution to the Helmholtz Equation -- 10.4.2 Computation of Stress and Strain on the Boundary for the Lamé System -- 10.5 Remarks -- 11. Boundary Integral Equations on Curves in IR2 -- 11.1 Representation of the basic operators for the 2D-Laplacian in terms of Fourier series -- 11.2 The Fourier Series Representation of Periodic Operators A ∈ L m cl(Γ) -- 11.3 Ellipticity Conditions for Periodic Operators on Γ -- 11.3.1 Scalar Equations -- 11.3.2 Systems of Equations -- 11.3.3 Multiply Connected Domains -- 11.4 Fourier Series Representation of some Particular Operators -- 11.4.1 The Helmholtz Equation -- 11.4.2 The Lamé System -- 11.4.3 The Stokes System -- 11.4.4 The Biharmonic Equation -- 11.5 Remarks -- 12. Remarks on Pseudodifferential Operators Related to the Time Harmonic Maxwell Equations -- 12.1 Introduction -- 12.2 Symbols of P and the corresponding Newton potentials -- 12.3 Representation formulae -- 12.4 Symbols of the Electromagnetic Boundary Potentials -- 12.5 Symbols of boundary integral operators -- 12.6 Symbols of the Capacity Operators -- 12.7 Boundary Integral Operators for the Fundamental Boundary Value Problems -- 12.8 Coerciveness and Strong Ellipticity. 12.9 Gårding's inequality for the sesquilinear form A in (6.12.23). |
Record Nr. | UNINA-9910483092503321 |
Hsiao G. C (George C.)
![]() |
||
Cham, Switzerland : , : Springer, , [2021] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Boundary layer analysis [[electronic resource] /] / Joseph A. Schetz, Rodney D. W. Bowersox |
Autore | Schetz Joseph A |
Edizione | [2nd ed.] |
Pubbl/distr/stampa | Reston, VA, : American Institute of Aeronautics and Astronautics, c2011 |
Descrizione fisica | 1 online resource (678 p.) |
Disciplina | 620.1/064 |
Altri autori (Persone) | BowersoxRodney D. W |
Collana | AIAA education series |
Soggetto topico |
Boundary layer
Turbulent boundary layer Laminar boundary layer Viscous flow Boundary element methods |
Soggetto genere / forma | Electronic books. |
ISBN | 1-60086-825-8 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""Cover""; ""Title""; ""Copyright""; ""Dedication""; ""Contents""; ""Preface""; ""Nomenclature""; ""Chapter 1 Introduction to Viscous Flows""; ""Chapter 2 Integral Boundary Layer Equations and Solutions for Laminar Flow""; ""Chapter 3 Differential Boundary Layer Equations of Motion for Laminar Flow""; ""Chapter 4 Exact and Numerical Solutions for Laminar,Incompressible Boundary Layer Flows""; ""Chapter 5 Compressible Laminar Boundary Layers""; ""Chapter 6 Transition toTurbulent Flow""; ""Chapter 7 Wall-Bounded,Incompressible External Turbulent Flows""; ""Chapter 8 Internal Flows""
""Chapter 9 Free Shear Flows""""Chapter 10 Wall-Bounded Turbulent Flows with Variable Density and Heat and MassTransfer""; ""Chapter 11 Three-Dimensional External Boundary Layer Flows""; ""Chapter 12 Introduction to Navier-Stokes Computational Fluid Dynamics""; ""Appendix LaminarThermophysical Properties of Selected Fluids""; ""References""; ""Figure Credits""; ""Index""; ""Supporting Materials"" |
Record Nr. | UNINA-9910462533403321 |
Schetz Joseph A
![]() |
||
Reston, VA, : American Institute of Aeronautics and Astronautics, c2011 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|