The complete dimension theory of partially ordered systems with equivalence and orthogonality / / K.R. Goodearl, F. Wehrung
| The complete dimension theory of partially ordered systems with equivalence and orthogonality / / K.R. Goodearl, F. Wehrung |
| Autore | Goodearl K. R. |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [2005] |
| Descrizione fisica | 1 online resource (134 p.) |
| Disciplina |
510 s
511.3/3 |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico |
Lattice theory
Boolean rings Partial algebras Modules (Algebra) |
| Soggetto genere / forma | Electronic books. |
| ISBN | 1-4704-0432-X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
""Contents""; ""Chapter 1. Introduction""; ""1-1. Background""; ""1-2. Results and methods""; ""1-3. Notation and terminology""; ""Chapter 2. Partial commutative monoids""; ""2-1. Basic results about partial commutative monoids""; ""2-2. Direct decompositions of partial refinement monoids""; ""2-3. Projections of partial refinement monoids""; ""2-4. General comparability""; ""2-5. Boolean-valued partial refinement monoids""; ""2-6. Least and largest difference functions""; ""Chapter 3. Continuous dimension scales""; ""3-1. Basic properties
the monoids Z[sub(γ)], R[sub(γ)], and 2[sub(γ)]""""3-2. Dedekind complete lattice-ordered groups""; ""3-3. Continuous functions on extremally disconnected topological spaces""; ""3-4. Completeness of the Boolean algebra of projections""; ""3-5. The elements (p | α)""; ""3-6. The dimension function Î?""; ""3-7. Projections on the directly finite elements""; ""3-8. Embedding arbitrary continuous dimension scales""; ""3-9. Uniqueness of the canonical embedding""; ""3-10. Continuous dimension scales which are proper classes""; ""Chapter 4. Espaliers""; ""4-1. The axioms"" ""4-2. Purely infinite elements trim sequences""; ""4-3. Axiom (M6)""; ""4-4. D-universal classes of espaliers""; ""4-5. Existence of large constants""; ""Chapter 5. Classes of espaliers""; ""5-1. Abstract measure theory; Boolean espaliers""; ""5-2. Conditionally complete, meet-continuous, relatively complemented, modular lattices""; ""5-3. Self-injective regular rings and nonsingular injective modules""; ""5-4. Projection lattices of W*- and AW*-algebras""; ""5-5. Concluding remarks""; ""Bibliography""; ""Index""; ""A""; ""B""; ""C""; ""D""; ""E""; ""F""; ""G""; ""H""; ""I""; ""J""; ""K"" ""L""""M""; ""N""; ""O""; ""P""; ""R""; ""S""; ""T""; ""U""; ""V""; ""W""; ""X""; ""Z"" |
| Record Nr. | UNINA-9910481015803321 |
Goodearl K. R.
|
||
| Providence, Rhode Island : , : American Mathematical Society, , [2005] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
The complete dimension theory of partially ordered systems with equivalence and orthogonality / / K.R. Goodearl, F. Wehrung
| The complete dimension theory of partially ordered systems with equivalence and orthogonality / / K.R. Goodearl, F. Wehrung |
| Autore | Goodearl K. R. |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [2005] |
| Descrizione fisica | 1 online resource (134 p.) |
| Disciplina |
510 s
511.3/3 |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico |
Lattice theory
Boolean rings Partial algebras Modules (Algebra) |
| ISBN | 1-4704-0432-X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
""Contents""; ""Chapter 1. Introduction""; ""1-1. Background""; ""1-2. Results and methods""; ""1-3. Notation and terminology""; ""Chapter 2. Partial commutative monoids""; ""2-1. Basic results about partial commutative monoids""; ""2-2. Direct decompositions of partial refinement monoids""; ""2-3. Projections of partial refinement monoids""; ""2-4. General comparability""; ""2-5. Boolean-valued partial refinement monoids""; ""2-6. Least and largest difference functions""; ""Chapter 3. Continuous dimension scales""; ""3-1. Basic properties
the monoids Z[sub(γ)], R[sub(γ)], and 2[sub(γ)]""""3-2. Dedekind complete lattice-ordered groups""; ""3-3. Continuous functions on extremally disconnected topological spaces""; ""3-4. Completeness of the Boolean algebra of projections""; ""3-5. The elements (p | α)""; ""3-6. The dimension function Î?""; ""3-7. Projections on the directly finite elements""; ""3-8. Embedding arbitrary continuous dimension scales""; ""3-9. Uniqueness of the canonical embedding""; ""3-10. Continuous dimension scales which are proper classes""; ""Chapter 4. Espaliers""; ""4-1. The axioms"" ""4-2. Purely infinite elements trim sequences""; ""4-3. Axiom (M6)""; ""4-4. D-universal classes of espaliers""; ""4-5. Existence of large constants""; ""Chapter 5. Classes of espaliers""; ""5-1. Abstract measure theory; Boolean espaliers""; ""5-2. Conditionally complete, meet-continuous, relatively complemented, modular lattices""; ""5-3. Self-injective regular rings and nonsingular injective modules""; ""5-4. Projection lattices of W*- and AW*-algebras""; ""5-5. Concluding remarks""; ""Bibliography""; ""Index""; ""A""; ""B""; ""C""; ""D""; ""E""; ""F""; ""G""; ""H""; ""I""; ""J""; ""K"" ""L""""M""; ""N""; ""O""; ""P""; ""R""; ""S""; ""T""; ""U""; ""V""; ""W""; ""X""; ""Z"" |
| Record Nr. | UNINA-9910788749403321 |
Goodearl K. R.
|
||
| Providence, Rhode Island : , : American Mathematical Society, , [2005] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
The complete dimension theory of partially ordered systems with equivalence and orthogonality / / K.R. Goodearl, F. Wehrung
| The complete dimension theory of partially ordered systems with equivalence and orthogonality / / K.R. Goodearl, F. Wehrung |
| Autore | Goodearl K. R. |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [2005] |
| Descrizione fisica | 1 online resource (134 p.) |
| Disciplina |
510 s
511.3/3 |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico |
Lattice theory
Boolean rings Partial algebras Modules (Algebra) |
| ISBN | 1-4704-0432-X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
""Contents""; ""Chapter 1. Introduction""; ""1-1. Background""; ""1-2. Results and methods""; ""1-3. Notation and terminology""; ""Chapter 2. Partial commutative monoids""; ""2-1. Basic results about partial commutative monoids""; ""2-2. Direct decompositions of partial refinement monoids""; ""2-3. Projections of partial refinement monoids""; ""2-4. General comparability""; ""2-5. Boolean-valued partial refinement monoids""; ""2-6. Least and largest difference functions""; ""Chapter 3. Continuous dimension scales""; ""3-1. Basic properties
the monoids Z[sub(γ)], R[sub(γ)], and 2[sub(γ)]""""3-2. Dedekind complete lattice-ordered groups""; ""3-3. Continuous functions on extremally disconnected topological spaces""; ""3-4. Completeness of the Boolean algebra of projections""; ""3-5. The elements (p | α)""; ""3-6. The dimension function Î?""; ""3-7. Projections on the directly finite elements""; ""3-8. Embedding arbitrary continuous dimension scales""; ""3-9. Uniqueness of the canonical embedding""; ""3-10. Continuous dimension scales which are proper classes""; ""Chapter 4. Espaliers""; ""4-1. The axioms"" ""4-2. Purely infinite elements trim sequences""; ""4-3. Axiom (M6)""; ""4-4. D-universal classes of espaliers""; ""4-5. Existence of large constants""; ""Chapter 5. Classes of espaliers""; ""5-1. Abstract measure theory; Boolean espaliers""; ""5-2. Conditionally complete, meet-continuous, relatively complemented, modular lattices""; ""5-3. Self-injective regular rings and nonsingular injective modules""; ""5-4. Projection lattices of W*- and AW*-algebras""; ""5-5. Concluding remarks""; ""Bibliography""; ""Index""; ""A""; ""B""; ""C""; ""D""; ""E""; ""F""; ""G""; ""H""; ""I""; ""J""; ""K"" ""L""""M""; ""N""; ""O""; ""P""; ""R""; ""S""; ""T""; ""U""; ""V""; ""W""; ""X""; ""Z"" |
| Record Nr. | UNINA-9910827772403321 |
Goodearl K. R.
|
||
| Providence, Rhode Island : , : American Mathematical Society, , [2005] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||