An Act to Amend Title 35, United States Code, with Respect to Patents on Biotechnological Processes
| An Act to Amend Title 35, United States Code, with Respect to Patents on Biotechnological Processes |
| Pubbl/distr/stampa | [Washington, D.C.] : , : [U.S. Government Printing Office], , [1995] |
| Descrizione fisica | 1online resource (2 unnumbered pages) |
| Soggetto topico |
Patent laws and legislation - United States
Biotechnological process control |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910708281003321 |
| [Washington, D.C.] : , : [U.S. Government Printing Office], , [1995] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Bioprocess control / / edited by Denis Dochain
| Bioprocess control / / edited by Denis Dochain |
| Pubbl/distr/stampa | London, : ISTE |
| Descrizione fisica | 1 online resource (244 p.) |
| Disciplina | 660.6 |
| Altri autori (Persone) | DochainD <1956-> (Denis) |
| Collana | ISTE |
| Soggetto topico |
Biotechnological process control
Biotechnological process monitoring |
| ISBN |
1-282-16502-X
9786612165023 0-470-61112-X 0-470-39371-8 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Bioprocess Control; Contents; Chapter 1. What are the Challenges for the Control of Bioprocesses?; 1.1. Introduction; 1.2. Specific problems of bioprocess control; 1.3. A schematic view of monitoring and control of a bioprocess; 1.4. Modeling and identification of bioprocesses: some key ideas; 1.5. Software sensors: tools for bioprocess monitoring; 1.6. Bioprocess control: basic concepts and advanced control; 1.7. Bioprocess monitoring: the central issue; 1.8. Conclusions; 1.9. Bibliography; Chapter 2. Dynamic Models of Biochemical Processes: Properties of Models; 2.1. Introduction
2.2. Description of biochemical processes2.2.1. Micro-organisms and their use; 2.2.2. Types of bioreactors; 2.2.3. Three operating modes; 2.3. Mass balance modeling; 2.3.1. Introduction; 2.3.2. Reaction scheme; 2.3.3. Choice of reactions and variables; 2.3.4. Example 1; 2.4. Mass balance models; 2.4.1. Introduction; 2.4.2. Example 2; 2.4.3. Example 3; 2.4.4. Matrix representation; 2.4.4.1. Example 2 (continuation); 2.4.4.2. Example 1 (continuation); 2.4.5. Gaseous ow; 2.4.6. Electroneutrality and affinity constants; 2.4.7. Example 1 (continuation); 2.4.8. Conclusion; 2.5. Kinetics 2.5.1. Introduction2.5.2. Mathematical constraints; 2.5.2.1. Positivity of variables; 2.5.2.2. Variables necessary for the reaction; 2.5.2.3. Example 1 (continuation); 2.5.2.4. Phenomenological knowledge; 2.5.3. Specific growth rate; 2.5.4. Representation of kinetics by means of a neural network; 2.6. Validation of the model; 2.6.1. Introduction; 2.6.2. Validation of the reaction scheme; 2.6.2.1. Mathematical principle; 2.6.2.2. Example 4; 2.6.3. Qualitative validation of model; 2.6.4. Global validation of the model; 2.7. Properties of the models 2.7.1. Boundedness and positivity of variables2.7.2. Equilibrium points and local behavior; 2.7.2.1. Introduction; 2.8. Conclusion; 2.9. Bibliography; Chapter 3. Identification of Bioprocess Models; 3.1. Introduction; 3.2. Structural identifiability; 3.2.1. Development in Taylor series; 3.2.2. Generating series; 3.2.3. Examples for the application of the methods of development in series; 3.2.4. Some observations on the methods for testing structural identifiability; 3.3. Practical identifiability; 3.3.1. Theoretical framework; 3.3.2. Confidence interval of the estimated parameters 3.3.3. Sensitivity functions3.4. Optimum experiment design for parameter estimation (OED/PE); 3.4.1. Introduction; 3.4.2. Theoretical basis for the OED/PE; 3.4.3. Examples; 3.5. Estimation algorithms; 3.5.1. Choice of two datasets; 3.5.2. Elements of parameter estimation: least squares estimation in the linear case; 3.5.3. Overview of the parameter estimation algorithms; 3.6. A case study: identification of parameters for a process modeled for anaerobic digestion; 3.6.1. The model; 3.6.2. Experiment design; 3.6.3. Choice of data for calibration and validation; 3.6.4. Parameter identification 3.6.5. Analysis of the results |
| Record Nr. | UNINA-9910139468103321 |
| London, : ISTE | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Bioprocesses for value-added products from renewable resources [[electronic resource] ] : new technologies and applications / / edited by Shang-Tian Yang
| Bioprocesses for value-added products from renewable resources [[electronic resource] ] : new technologies and applications / / edited by Shang-Tian Yang |
| Pubbl/distr/stampa | Amsterdam ; ; Boston, MA, : Elsevier, 2006 |
| Descrizione fisica | 1 online resource (685 p.) |
| Disciplina | 660.6/3 |
| Altri autori (Persone) | YangShang-Tian |
| Soggetto topico |
Biochemical engineering
Biotechnological process control Renewable natural resources |
| Soggetto genere / forma | Electronic books. |
| ISBN |
1-280-72921-X
9786610729210 0-08-046671-0 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Front Cover; Preface; 2. Applications of genomic and proteomic analyses; 3. Bioprocess analysis and optimization guided by genomic and proteomic analyses: The example of microbial production of 1,3-propanediol; 4. Concluding remarks and outlook; References; 2. Directed evolution tools for diversity generation; 3. Applications of directed evolution tools; 4. Alternatives to directed evolution; 5. Conclusion; Acknowledgements; References; 2. Applications and some examples; 3. Metabolic engineering strategies and limitations; 4. Metabolic engineering methodologies and tools
5. Challenges and new approaches for metabolic engineering 6. Summary; References; 2. Amylase and cellulase classification and mechanisms; 3. Conclusions; Acknowledgment; References; 2. Various types of bioreactors; 3. Effects of process parameters on biological performances; 4. Industrial applications of bioreactors; 5. Trends in bioreactor engineering; Acknowledgments; References; 3. Microfiltration and ultrafiltration processes; 4. Membrane fouling; 5. Applications in biotechnology industries; 5.3. Other applications; 6. Outlook; References; 2. Bacteria; 3. Yeast 4. Fermentation products from bacteria and yeasts 5. Fermentation processes; 6. Conclusion and outlook; References; 2. Fungal cells as biofactories; 3. Hyphal growth and protein secretion; 4. Fungal growth in submerged culture; 5. Effects of cultivation conditions; 6. Effects of morphology on production and secretion; 7. Immobilized fungal cells; 8. Future of filamentous fungal cells as biofactories; References; 2. Production of macromolecules; 3. Production of small molecules; Acknowledgements; References; 2. Modes of micro-algal cultivation; 3. Thraustochytrids 4. High-value products from thraustochytrids 5. Other applications of thraustochytrids; 6. Utilization of renewable resources; 7. Safety issues; 8. Conclusions; 7 References; 2. Enzymatic treatment of biomass components; 3. Further processing of simple renewable molecules for value-added products; 4. New trends in enzymatic bioprocessing; 5. Summary; References; 3. Chiral molecules from hydrolase; 4. Chiral molecules from enzymes requiring cofactors; 5. Improving enantioselectivity by reaction engineering; 6. Improving chiral synthesis by directed evolution and metabolic engineering 7. Conclusions References; 2. Immobilization techniques; 3. Effects of cell immobilization; 4. Immobilized cell bioreactors; 5. Applications of immobilized cell technology; 6. Conclusion; References; 3. New process development; 4. Water-in-oil cultivation technology; 5. PH-sensitive surfactants for water-in-oil cultivation; 6. Conclusions; References; 2. Carboxylic acid fermentation; 3. Integrated fermentation-separation processes; 4. Summary and outlook; References; 3. Fungal metabolites; 4. Pathway manipulation; 5. Conclusions; References; 3. Advantages and unsolved problems; 4. SSF reactors 5. Conclusions |
| Altri titoli varianti | Bioprocesses for value added products from renewable resources |
| Record Nr. | UNINA-9910457247803321 |
| Amsterdam ; ; Boston, MA, : Elsevier, 2006 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Bioprocesses for value-added products from renewable resources [[electronic resource] ] : new technologies and applications / / edited by Shang-Tian Yang
| Bioprocesses for value-added products from renewable resources [[electronic resource] ] : new technologies and applications / / edited by Shang-Tian Yang |
| Pubbl/distr/stampa | Amsterdam ; ; Boston, MA, : Elsevier, 2006 |
| Descrizione fisica | 1 online resource (685 p.) |
| Disciplina | 660.6/3 |
| Altri autori (Persone) | YangShang-Tian |
| Soggetto topico |
Biochemical engineering
Biotechnological process control Renewable natural resources |
| ISBN |
1-280-72921-X
9786610729210 0-08-046671-0 |
| Classificazione | 58.31 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Front Cover; Preface; 2. Applications of genomic and proteomic analyses; 3. Bioprocess analysis and optimization guided by genomic and proteomic analyses: The example of microbial production of 1,3-propanediol; 4. Concluding remarks and outlook; References; 2. Directed evolution tools for diversity generation; 3. Applications of directed evolution tools; 4. Alternatives to directed evolution; 5. Conclusion; Acknowledgements; References; 2. Applications and some examples; 3. Metabolic engineering strategies and limitations; 4. Metabolic engineering methodologies and tools
5. Challenges and new approaches for metabolic engineering 6. Summary; References; 2. Amylase and cellulase classification and mechanisms; 3. Conclusions; Acknowledgment; References; 2. Various types of bioreactors; 3. Effects of process parameters on biological performances; 4. Industrial applications of bioreactors; 5. Trends in bioreactor engineering; Acknowledgments; References; 3. Microfiltration and ultrafiltration processes; 4. Membrane fouling; 5. Applications in biotechnology industries; 5.3. Other applications; 6. Outlook; References; 2. Bacteria; 3. Yeast 4. Fermentation products from bacteria and yeasts 5. Fermentation processes; 6. Conclusion and outlook; References; 2. Fungal cells as biofactories; 3. Hyphal growth and protein secretion; 4. Fungal growth in submerged culture; 5. Effects of cultivation conditions; 6. Effects of morphology on production and secretion; 7. Immobilized fungal cells; 8. Future of filamentous fungal cells as biofactories; References; 2. Production of macromolecules; 3. Production of small molecules; Acknowledgements; References; 2. Modes of micro-algal cultivation; 3. Thraustochytrids 4. High-value products from thraustochytrids 5. Other applications of thraustochytrids; 6. Utilization of renewable resources; 7. Safety issues; 8. Conclusions; 7 References; 2. Enzymatic treatment of biomass components; 3. Further processing of simple renewable molecules for value-added products; 4. New trends in enzymatic bioprocessing; 5. Summary; References; 3. Chiral molecules from hydrolase; 4. Chiral molecules from enzymes requiring cofactors; 5. Improving enantioselectivity by reaction engineering; 6. Improving chiral synthesis by directed evolution and metabolic engineering 7. Conclusions References; 2. Immobilization techniques; 3. Effects of cell immobilization; 4. Immobilized cell bioreactors; 5. Applications of immobilized cell technology; 6. Conclusion; References; 3. New process development; 4. Water-in-oil cultivation technology; 5. PH-sensitive surfactants for water-in-oil cultivation; 6. Conclusions; References; 2. Carboxylic acid fermentation; 3. Integrated fermentation-separation processes; 4. Summary and outlook; References; 3. Fungal metabolites; 4. Pathway manipulation; 5. Conclusions; References; 3. Advantages and unsolved problems; 4. SSF reactors 5. Conclusions |
| Altri titoli varianti | Bioprocesses for value added products from renewable resources |
| Record Nr. | UNINA-9910784597503321 |
| Amsterdam ; ; Boston, MA, : Elsevier, 2006 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Hybrid Modelling and Multi- Parametric Control of Bioprocesses / / edited by Christoph Herwig
| Hybrid Modelling and Multi- Parametric Control of Bioprocesses / / edited by Christoph Herwig |
| Pubbl/distr/stampa | Basel : , : MDPI - Multidisciplinary Digital Publishing Institute, , 2018 |
| Descrizione fisica | 1 online resource (148 pages) : illustrations |
| Disciplina | 660.6 |
| Soggetto topico | Biotechnological process control |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | About the Special Issue Editor -- Preface to "Hybrid Modelling and Multi-Parametric Control of Bioprocesses" -- Karen Schwab, Jennifer Lauber and Friedemann Hesse Fluorometric In Situ Monitoring of an Escherichia coli Cell Factory with Cytosolic Expression of Human Glycosyltransferase GalNAcT2: Prospects and Limitations -- Karen Schwab and Friedemann Hesse Estimating Extrinsic Dyes for Fluorometric Online Monitoring of Antibody Aggregation in CHO Fed-Batch Cultivations -- Maike Kuschel, Flora Siebler and Ralf Takors Lagrangian Trajectories to Predict the Formation of Population Heterogeneity in LargeScale Bioreactors -- Dominik Egger, Ivo Schwedhelm, Jan Hansmann and Cornelia Kasper Hypoxic Three-Dimensional Scaffold-Free Aggregate Cultivation of Mesenchymal Stem Cells in a Stirred Tank Reactor -- Dominik Egger, Monica Fischer, Andreas Clementi, Volker Ribitsch, Jan Hansmann and Cornelia Kasper Development and Characterization of a Parallelizable Perfusion Bioreactor for 3D Cell Culture -- Dennis Vier, Stefan Wambach, Volker Schnemann and Klaus-Uwe Gollmer Multivariate Curve Resolution and Carbon Balance Constraint to Unravel FTIR Spectra fromFed-Batch Fermentation Samples -- Julian Kopp, Christoph Slouka, Sophia Ulonska, Julian Kager, Jens Fricke, Oliver Spadiut and Christoph Herwig Impact of Glycerol as Carbon Source onto Specific Sugar and Inducer Uptake Rates and Inclusion Body Productivity in E. coli BL21(DE3) -- Rimvydas Simutis and Andreas L ¨ubbert Hybrid Approach to State Estimation for Bioprocess Control -- Thomas Zahel, Lukas Marschall, Sandra Abad, Elena Vasilieva, Daniel Maurer, Eric M. Mueller, Patrick Murphy, Thomas Natschlger, Ccile Brocard, Daniela Reinisch, Patrick Sagmeister and Christoph Herwig Workflow for Criticality Assessment Applied in Biopharmaceutical Process Validation Stage 1 -- Thomas Zahel, Stefan Hauer, Eric M. Mueller, Patrick Murphy, Sandra Abad, Elena Vasilieva, Daniel Maurer, C´ecile Brocard, Daniela Reinisch, Patrick Sagmeister and Christoph Herwig Integrated Process Modeling-A Process Validation Life Cycle Companion. |
| Record Nr. | UNINA-9910598170203321 |
| Basel : , : MDPI - Multidisciplinary Digital Publishing Institute, , 2018 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Hybrid modelling and multi-parametric control of bioprocesses / / edited by Christoph Herwig
| Hybrid modelling and multi-parametric control of bioprocesses / / edited by Christoph Herwig |
| Pubbl/distr/stampa | Basel, Switzerland : , : MDPI, , 2018 |
| Descrizione fisica | 1 online resource (148 pages) : illustrations |
| Disciplina | 660.6 |
| Soggetto topico | Biotechnological process control |
| ISBN | 3-03842-746-2 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | About the Special Issue Editor -- Preface to "Hybrid Modelling and Multi-Parametric Control of Bioprocesses" -- Karen Schwab, Jennifer Lauber and Friedemann Hesse Fluorometric In Situ Monitoring of an Escherichia coli Cell Factory with Cytosolic Expression of Human Glycosyltransferase GalNAcT2: Prospects and Limitations -- Karen Schwab and Friedemann Hesse Estimating Extrinsic Dyes for Fluorometric Online Monitoring of Antibody Aggregation in CHO Fed-Batch Cultivations -- Maike Kuschel, Flora Siebler and Ralf Takors Lagrangian Trajectories to Predict the Formation of Population Heterogeneity in LargeScale Bioreactors -- Dominik Egger, Ivo Schwedhelm, Jan Hansmann and Cornelia Kasper Hypoxic Three-Dimensional Scaffold-Free Aggregate Cultivation of Mesenchymal Stem Cells in a Stirred Tank Reactor -- Dominik Egger, Monica Fischer, Andreas Clementi, Volker Ribitsch, Jan Hansmann and Cornelia Kasper Development and Characterization of a Parallelizable Perfusion Bioreactor for 3D Cell Culture -- Dennis Vier, Stefan Wambach, Volker Schnemann and Klaus-Uwe Gollmer Multivariate Curve Resolution and Carbon Balance Constraint to Unravel FTIR Spectra fromFed-Batch Fermentation Samples -- Julian Kopp, Christoph Slouka, Sophia Ulonska, Julian Kager, Jens Fricke, Oliver Spadiut and Christoph Herwig Impact of Glycerol as Carbon Source onto Specific Sugar and Inducer Uptake Rates and Inclusion Body Productivity in E. coli BL21(DE3) -- Rimvydas Simutis and Andreas Lubbert Hybrid Approach to State Estimation for Bioprocess Control -- Thomas Zahel, Lukas Marschall, Sandra Abad, Elena Vasilieva, Daniel Maurer, Eric M. Mueller, Patrick Murphy, Thomas Natschlger, Ccile Brocard, Daniela Reinisch, Patrick Sagmeister and Christoph Herwig Workflow for Criticality Assessment Applied in Biopharmaceutical Process Validation Stage 1 -- Thomas Zahel, Stefan Hauer, Eric M. Mueller, Patrick Murphy, Sandra Abad, Elena Vasilieva, Daniel Maurer, C´ecile Brocard, Daniela Reinisch, Patrick Sagmeister and Christoph Herwig Integrated Process Modeling-A Process Validation Life Cycle Companion. |
| Record Nr. | UNINA-9910688423403321 |
| Basel, Switzerland : , : MDPI, , 2018 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Nonthermal Food Engineering Operations
| Nonthermal Food Engineering Operations |
| Autore | Kumar Nitin |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2024 |
| Descrizione fisica | 1 online resource (526 pages) |
| Altri autori (Persone) |
PanghalAnil
GargM. K |
| Soggetto topico |
Food science
Biotechnological process control |
| ISBN |
9781119776468
1119776465 9781119776451 1119776457 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Series Page -- Title Page -- Copyright Page -- Preface -- Chapter 1 Artificial Intelligence (AI) in Food Processing -- 1.1 Introduction -- 1.2 Evolution of Artificial Intelligence -- 1.3 Artificial Intelligence in Food Processing -- 1.4 Artificial Neural Network (ANN) -- 1.4.1 Fats & -- Oils Quality Evaluation -- 1.4.2 Fruits Quality Evaluation -- 1.4.3 Dairy Products Quality Evaluation -- 1.4.4 Solvent Extraction -- 1.4.5 Microwave Assisted Extraction (MAE) -- 1.4.6 Ultrasound-Assisted Extraction (UAE) -- 1.4.7 Microwave Drying -- 1.4.8 Tray Drying -- 1.4.9 Osmotic Dehydration -- 1.4.10 Other Drying Process -- 1.4.11 Extrusion Process -- 1.4.12 Baking -- 1.4.13 Storage of Food Grains -- 1.5 Fuzzy Logic System -- 1.5.1 Fuzzy Logic Systems in Liquid Foods Processing -- 1.5.2 Fuzzy Logic Systems in Solid Foods Processing -- 1.5.3 Semisolid Products -- 1.5.4 Drying Process -- 1.5.5 Baking Process -- 1.5.6 Dairy Process -- 1.5.7 Thermal Process -- 1.5.8 Fermentation -- 1.6 Knowledge.Based Expert System (ES) -- 1.6.1 Applications of ES in the Food Processing Sector -- 1.7 Machine Learning System (ML) -- 1.7.1 Detection of Defects and Mechanical Damage in Fruits -- 1.7.2 ML in Foreign Material Detection -- 1.7.3 ML in Food Quality Evaluation -- 1.8 Conclusion -- References -- Chapter 2 Advances in Ultrasound in Food Industry -- 2.1 Introduction -- 2.2 Background of Ultrasound -- 2.3 Ultrasonic Waves -- 2.4 Applications of Ultrasonics in the Food Industry -- 2.4.1 Food Preservation -- 2.4.2 Food Processing -- 2.5 Detection of Fruit Quality -- 2.6 Ultrasound in Dairy Sector -- 2.7 Conclusion -- References -- Chapter 3 Biosensors in Food Quality and Safety -- 3.1 Introduction -- 3.2 What is a Biosensor? -- 3.2.1 Components of a Biosensor Diagnostic Technique -- 3.2.1.1 Biological Element -- 3.2.1.2 Physicochemical Transducer.
3.2.1.3 Detector/Recognition of Signal -- 3.2.2 Basic Working Mechanism of Biosensors -- 3.2.3 Important Characteristics of Biosensors -- 3.3 Categorization of Biosensors -- 3.3.1 Calorimetric Biosensors -- 3.3.2 Electrochemical Biosensors -- 3.3.2.1 Amperometric Biosensors -- 3.3.2.2 Potentiometric Biosensors -- 3.3.2.3 Conductometric Biosensors -- 3.3.3 Optical Biosensors -- 3.3.4 Microbial-Based Biosensors -- 3.3.4.1 Electrochemical Microbial Biosensors -- 3.3.4.2 Optical Microbial Biosensors -- 3.3.5 Affinity Biosensors -- 3.3.6 Plant Tissue Biosensors -- 3.3.7 Surface Plasmon Resonance (SPR) Biosensors -- 3.3.8 Acoustic Sensors -- 3.3.9 Aptamers -- 3.3.10 Molecularly Imprinted Polymers -- 3.3.11 Immunosensors -- 3.4 Application of Biosensors -- 3.4.1 Scenario of Available Biosensors for the Detection of Various Compounds Present in Food Products -- 3.4.2 Electrochemical Biosensors for Food Products -- 3.4.3 Optical Biosensor -- 3.4.4 Microbial Biosensors -- 3.4.5 Plant Tissue Biosensors -- 3.5 Future Prospects -- References -- Chapter 4 Cold Plasma: Principles and Applications -- 4.1 Introduction -- 4.2 Physics of Plasma -- 4.3 Methods of Generation -- 4.3.1 Dielectric Barrier Discharge (DBD) -- 4.3.2 Glow Discharge -- 4.3.3 Plasma Jet -- 4.3.4 Corona Discharge -- 4.3.5 High Voltage Pulse Discharge -- 4.4 Principles of Cold Plasma Decontamination -- 4.5 Plasma Speciesf Role in Microbial Inactivation -- 4.5.1 Reactive Oxygen and Reactive Nitrogen Species -- 4.6 Cold Plasma Affecting Microbial Cells -- 4.6.1 Effect on Cell Morphology -- 4.6.2 Impact on the Cell Membrane -- 4.6.3 Effect on Nucleic Acids -- 4.6.4 Impact on Enzyme and Proteins Activity -- 4.7 Limitations -- 4.8 Conclusion and Future Prospects -- References -- Chapter 5 Food Extrusion: An Approach to Wholesome Product -- 5.1 Introduction. 5.2 Principle and Components of Extrusion Equipment -- 5.3 Types of Extruders -- 5.3.1 Single Screw Extruders -- 5.3.2 Twin Screw Extruders -- 5.4 Food Product Based on Extrusion Technology -- 5.5 Effect of Extrusion Cooking on Nutritional Aspects of Food -- 5.6 New Research Area of Byproduct Waste Utilization -- 5.7 Conclusion -- References -- Chapter 6 Image Processing Technology, Imaging Techniques, and Their Application in the Food Processing Sector -- 6.1 Introduction -- 6.2 Image Processing Technology -- 6.2.1 Image Acquisition -- 6.2.2 Image Pre-Processing -- 6.2.3 Image Segmentation -- 6.2.4 Feature Extraction -- 6.2.5 Classification -- 6.3 Machine Learning Algorithms -- 6.4 Industrial Applications -- 6.5 Novel Imaging Techniques and Their Applications -- 6.5.1 Near Infrared Imaging -- 6.5.2 Multispectral and Hyperspectral Imaging -- 6.5.3 Raman Imaging -- 6.5.4 Laser Light Backscattering Imaging -- 6.5.5 Structured-Illumination Reflectance Imaging -- 6.5.6 Optical Coherence Tomography -- 6.6 Challenges and Opportunities -- References -- Chapter 7 Active and Passive Modified Atmosphere Packaging: Recent Advances -- 7.1 Introduction -- 7.2 Modified Atmosphere Packaging -- 7.2.1 Passive MAP -- 7.2.1.1 Gases Utilised in Modified Atmosphere Packaging -- 7.2.2 Active MAP -- 7.2.2.1 Active Ingredients -- 7.2.2.2 Dynamics of MAP -- 7.2.2.3 Design of Modified Atmosphere Packaging -- 7.2.2.4 Packaging Materials Used in MAP -- 7.2.3 MAP Combined with Other Preservative Techniques -- 7.2.3.1 Heat Treatment -- 7.2.3.2 Irradiation -- 7.2.3.3 UV Light Radiation -- 7.2.3.4 Ozone Gas -- 7.2.3.5 Edible or Wax Coatings -- 7.2.4 Effect of MAP on Quality of Fresh Produce -- 7.3 Final Remarks -- References -- Chapter 8 Membrane Processing Techniques in Food Engineering -- 8.1 Introduction -- 8.2 Overview of Membranes -- 8.3 Types of Membrane Separation Processes. 8.3.1 Pressure-Driven Processes -- 8.3.2 Filtration Spectrum -- 8.4 Filtration Modes -- 8.4.1 Dead-End Filtration -- 8.4.2 Crossflow Filtration -- 8.4.3 Hybrid-Flow Filtration -- 8.5 Membrane Structure -- 8.6 Important Terms Related to Membrane Processes -- 8.7 Operational Requirements of Membranes -- 8.8 Theoretical Models for Membrane Processes -- 8.9 Factors Affecting the Separation Processes -- 8.10 Major Advantages of Membranes -- 8.11 Microfiltration -- 8.11.1 Microfiltration Applications by Industry -- 8.12 Ultrafiltration -- 8.12.1 UF Applications -- 8.13 Nanofiltration -- 8.13.1 Applications of Nanofiltration -- 8.14 Application of Membrane Separation in Food Industry -- 8.15 Conclusion -- References -- Chapter 9 Nano Technology in Food Packaging -- 9.1 Introduction -- 9.2 Nanomaterials -- 9.2.1 Silver Nanomaterial (AgNPs) -- 9.2.2 Titanium Dioxide (TiO2) -- 9.2.3 Montmorillonite Clay (Nanoclay) -- 9.2.4 Nano Zinc Oxide -- 9.2.5 Nano Silica -- 9.2.6 Carbon Nanotubes (CNTs) -- 9.2.7 Nano Starch -- 9.2.8 Nanocellulose -- 9.3 Use of Nanotechnology in Improved Packaging -- 9.3.1 Improving the Mechanical Strength and Permeability Properties -- 9.3.2 Improving Thermal Stability -- 9.3.3 Accelerating the Biodegradation Process -- 9.4 Use of Nanotechnology in Active Packaging -- 9.4.1 Antimicrobial Packaging -- 9.4.2 Nanoemulsion -- 9.4.3 Oxygen Scavengers -- 9.4.4 Immobilization of Enzymes -- 9.5 Use of Nanotechnology in Smart Packaging -- 9.5.1 Oxygen Sensors -- 9.5.2 Nanosensors for Detection of Pathogens -- 9.5.3 Freshness Indicators -- 9.5.4 Time Temperature Indicators -- 9.6 Toxicological Aspects, Safety Consideration, and Migration of Nanoparticles -- 9.7 Future Outlook and Conclusion -- References -- Chapter 10 Polysaccharide-Based Bionanocomposites for Food Packaging -- 10.1 Introduction -- 10.2 Classification of Polysaccharides. 10.2.1 Plant-Based Polysaccharides -- 10.2.1.1 Starch -- 10.2.1.2 Cellulose -- 10.2.1.3 Galactomannans -- 10.2.2 Animal-Based Polysaccharides -- 10.2.2.1 Chitosan -- 10.2.2.2 Carrageenan -- 10.2.3 Microorganism-Based Polysaccharides -- 10.2.3.1 Xanthan Gum -- 10.2.3.2 Gellan Gum -- 10.2.3.3 Pullulan -- 10.2.3.4 FucoPol -- 10.3 Extraction and Purification of Polysaccharides -- 10.3.1 Extraction of Polysaccharides -- 10.3.1.1 Hot Water Extraction -- 10.3.1.2 Sequential Extraction Method -- 10.3.1.3 Dilute Alkali-Water Extraction -- 10.3.1.4 Microwave-Assisted Extraction -- 10.3.1.5 Ultrasound-Assisted Extraction -- 10.3.1.6 Enzyme-Assisted Extraction -- 10.3.1.7 Subcritical Water Extraction -- 10.3.2 Purification Techniques -- 10.3.2.1 Fractional Precipitation -- 10.3.2.2 Chromatographic Techniques -- 10.4 Polysaccharide-Based Bionanocomposite Fabrication Techniques -- 10.4.1 Solution Intercalation -- 10.4.2 In Situ Intercalative Polymerization -- 10.4.3 Melt Intercalation -- 10.4.4 Extrusion -- 10.4.5 Electrospinning Technique -- 10.4.6 Freeze-Drying Technique -- 10.5 Polysaccharide-Based Nanocomposites: Classification and Food Applications -- 10.5.1 Polysaccharide-Based Nanocomposites with Graphene/Carbon Nanotubes -- 10.5.2 Polysaccharide-Based Nanocomposites with Metal Oxides -- 10.5.2.1 Silver-Based Nanoparticles -- 10.5.2.2 Zinc Oxide Nanoparticles -- 10.5.2.3 Copper Oxide Nanoparticles -- 10.5.2.4 Titanium Dioxide Nanoparticles -- 10.5.3 Polysaccharides-Based Nanocomposites with Other Reinforcement Materials -- 10.5.3.1 Bionanocomposites Based on Starch -- 10.5.3.2 Bionanocomposites Based on Chitosan -- 10.5.3.3 Bionanocomposites Based on Cellulose -- 10.6 Conclusions -- References -- Chapter 11 Smart, Intelligent, and Active Packaging Systems for Shelf-Life Extension of Foods -- 11.1 Introduction -- 11.2 Novel Types of Food Packaging. 11.3 Regulatory Framework. |
| Record Nr. | UNINA-9911019519603321 |
Kumar Nitin
|
||
| Newark : , : John Wiley & Sons, Incorporated, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||