Agrochemicals in soil and environment : impacts and remediation / / edited by M. Naeem [and three others]
| Agrochemicals in soil and environment : impacts and remediation / / edited by M. Naeem [and three others] |
| Pubbl/distr/stampa | Singapore : , : Springer, , [2022] |
| Descrizione fisica | 1 online resource (616 pages) |
| Disciplina | 016.016 |
| Soggetto topico |
Agricultural chemicals
Bioremediació Química agrícola |
| Soggetto genere / forma | Llibres electrònics |
| ISBN | 981-16-9310-2 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910735392403321 |
| Singapore : , : Springer, , [2022] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Bioremediation and Biotechnology, Vol 2 : Degradation of Pesticides and Heavy Metals / / edited by Rouf Ahmad Bhat, Khalid Rehman Hakeem, Moonisa Aslam Dervash
| Bioremediation and Biotechnology, Vol 2 : Degradation of Pesticides and Heavy Metals / / edited by Rouf Ahmad Bhat, Khalid Rehman Hakeem, Moonisa Aslam Dervash |
| Edizione | [1st ed. 2020.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 |
| Descrizione fisica | 1 online resource (XVI, 278 p. 38 illus., 30 illus. in color.) |
| Disciplina | 628.5 |
| Soggetto topico |
Conservation biology
Ecology Environmental engineering Biotechnology Water quality Water - Pollution Sustainable development Applied ecology Agriculture Conservation Biology/Ecology Environmental Engineering/Biotechnology Water Quality/Water Pollution Sustainable Development Applied Ecology Contaminació Bioremediació Protecció ambiental |
| Soggetto genere / forma | Llibres electrònics |
| ISBN | 3-030-40333-5 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Preface -- 1. Causes and Effects of Pesticide and Metal Pollution on Different Ecosystems -- 2. Ecotoxicology of Heavy Metals: Sources, Effects and Toxicity -- 3. Role of Modern Innovative Techniques for Assessing and Monitoring Heavy Metal and Pesticide Pollution in Different Environments -- 4. Global Scenario of Remediation Techniques to Combat Pesticide Pollution -- 5. Mycoremediation: A Sustainable Approach for Pesticide Pollution Abatement -- 6. Bio-pesticides: Application and Possible Mechanism of Action -- 7. Values of Biofertilizers for Sustainable Management in Agricultural Industries -- 8.Role of Macrophytes in Spontaneous Lacustrine Phytofiltration -- 9. Phytoremediation of Heavy Metals Using Salix (Willows) -- 10. Photo catalysis: An Effective Tool for Treatment of Dyes Contaminated Wastewater -- 11. Removal of dyes from waste water by Micellar Enhanced Ultrafiltration -- 12. Biofilm: an innovative modern technology for aquatic pollution remediation -- 13. Heavy Metal Soil Contamination and Bioremediation -- 14. Environmental Biotechnology: For Sustainable Future -- 15. Global Environmental Regulations for Management of Pesticides -- Index. |
| Record Nr. | UNINA-9910409695403321 |
| Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Bioremediation and Biotechnology, Vol 3 : Persistent and Recalcitrant Toxic Substances / / edited by Rouf Ahmad Bhat, Khalid Rehman Hakeem, Najla Bint Saud Al-Saud
| Bioremediation and Biotechnology, Vol 3 : Persistent and Recalcitrant Toxic Substances / / edited by Rouf Ahmad Bhat, Khalid Rehman Hakeem, Najla Bint Saud Al-Saud |
| Edizione | [1st ed. 2020.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 |
| Descrizione fisica | 1 online resource (XVIII, 360 p. 36 illus., 20 illus. in color.) |
| Disciplina | 628.5 |
| Soggetto topico |
Conservation biology
Ecology Environmental engineering Biotechnology Water quality Water - Pollution Sustainable development Applied ecology Agriculture Conservation Biology/Ecology Environmental Engineering/Biotechnology Water Quality/Water Pollution Sustainable Development Applied Ecology Bioremediació Contaminació Enginyeria ambiental Protecció ambiental |
| Soggetto genere / forma | Llibres electrònics |
| ISBN | 3-030-46075-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910416109603321 |
| Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Biotechnological innovations for environmental bioremediation / / Sudipti Arora [and three others], editors
| Biotechnological innovations for environmental bioremediation / / Sudipti Arora [and three others], editors |
| Pubbl/distr/stampa | Singapore : , : Springer, , [2022] |
| Descrizione fisica | 1 online resource (1072 pages) |
| Disciplina | 628.5 |
| Soggetto topico |
Bioremediation
Bioremediació |
| Soggetto genere / forma | Llibres electrònics |
| ISBN | 981-16-9001-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Foreword -- Preface -- Part I: Environmental Remediation -- Part II: Phytoremediation -- Part III: Environmental Safety, Health, and Risk Assessment -- Acknowledgements -- Introduction -- Part I: Environmental Remediation -- Part II: Phytoremediation -- Part III: Environmental Safety, Health, and Risk Assessments -- Contents -- Editors and Contributors -- Part I: Environmental Remediation -- 1: Ecosystem Engineers: A Sustainable Catalyst for Environmental Remediation -- 1.1 Introduction -- 1.2 Green Technologies for the Sustainable Development -- 1.3 Bioremediation: An Effective Tool to Manage Pollution -- 1.3.1 Ecosystem Engineers -- 1.3.2 Conventional Bioremediation Approaches for Pollutant Mitigation: Micro-Remediation -- 1.3.3 Mechanism behind Degradation -- 1.3.4 Sustainable Enzyme Technology for Environmental Remediation -- 1.3.4.1 Hydrolases (EC3) -- 1.3.4.2 Esterases (EC 3.1) -- 1.3.4.3 Nitrilases (EC 3.5.5.1) -- 1.3.4.4 Peroxidases (EC1) Ligninolytic Peroxidases -- 1.3.4.5 Lignin Peroxidase -- 1.3.4.6 Manganese Peroxidase (EC 1.11.1.13) -- 1.3.4.7 Cytochrome p450 Monooxygenase (EC 1.14.14.1) -- 1.4 Entomo-remediation -- 1.4.1 The Role of Earthworms in Pollutant Degradation -- 1.4.2 The Significance of Gut Produced Enzymes in Degradation Processes -- 1.5 Conclusions: A Road Ahead Towards Sustainable Development -- References -- 2: Microbial Nanobiotechnology in Environmental Pollution Management: Prospects and Challenges -- 2.1 Environmental Pollution -- 2.1.1 Types of Environmental Pollution -- 2.1.1.1 Air Pollution -- 2.1.1.2 Water Pollution -- 2.1.1.3 Soil Pollution -- 2.1.2 Effects of Pollution -- 2.2 Microbial Nanobiotechnology in Pollution Management -- 2.2.1 Microorganisms Important in Nanobiotechnological Management of Pollution -- 2.2.1.1 Bacteria -- 2.2.1.2 Fungi -- 2.2.1.3 Microalgae.
2.2.2 Secretion and Importance of Microbial Nanoparticle in Pollution Management -- 2.2.2.1 Gold Nanoparticle -- 2.2.2.2 Silver Nanoparticle -- 2.2.2.3 Titanium Oxide Nanoparticles -- 2.3 Principles of Nanotechnology in Pollution Management -- 2.3.1 Adsorption -- 2.3.2 Nanofiltration -- 2.3.3 Photocatalysis -- 2.4 Current Advances in Nanotechnological Management of Pollution -- 2.4.1 Pollution Bioremediation -- 2.4.2 Pollution Biosensory -- 2.4.3 Pollution Prevention -- 2.5 Risk Assessment and Sustainability of Nanotechnology in Pollution Management -- 2.6 Challenges and Recommendations -- 2.6.1 Challenges -- 2.6.2 Recommendations -- 2.7 Concluding Remarks -- References -- 3: Soil Microbiome: A Key Player in Conservation of Soil Health Under Changing Climatic Conditions -- 3.1 Introduction -- 3.2 Soil Microbiome -- 3.3 Function of Soil Microbiome for Improving Soil Health Under Changing Climate -- 3.4 Characteristics of the Microbiome of Soil -- 3.5 Factors Determining the Composition and Role of Soil Microbiome -- 3.6 Direct Impacts of Climate Change on Soil Communities and Plants -- 3.7 Climate Change Secondary Impacts on Plants and Soil Microbiome -- 3.8 Determination of Microbiome by Host Genotype -- 3.9 Alteration of Host Pathways Signaling -- 3.10 Alteration in Root Secretions -- 3.11 Targeted Engineering of Plant Microbiomes -- 3.12 Developing Areas in Microbiome Engineering -- 3.13 Utilizing Organic Soil Amendments and Root Exudates to Attract and Maintain Beneficial Microbiomes -- 3.14 Artificial Microbial Consortia -- 3.15 Microbiome Breeding and Transplantation -- 3.16 Microbiome Preservation -- 3.17 Methods of Microbiome Preservation -- 3.17.1 Cell Alive System (CAS) Technique for Intact Microbiome Preservation -- 3.17.2 Cryopreservation and Lyophilization in Microbiome Preservation -- 3.17.3 Gelatine Disk Method: Preservation of Sample. 3.17.4 Cellular Immobilization or Entrapment -- 3.17.5 Electrospinning and Electrospraying (Microencapsulation) in Microbiome Preservation -- 3.17.5.1 Prospective Contribution from Genome to Phenome on the Host of the Soil Microbiome -- 3.18 Sustainable Agriculture and Food Safety Due to Consequences of the Soil Microbiome -- 3.19 Conclusion -- References -- 4: Anaerobic Digestion for Climate Change Mitigation: A Review -- 4.1 Introduction -- 4.2 Anaerobic Digestion -- 4.2.1 Pretreatment Methods -- 4.2.1.1 Wastewater Treatment -- 4.2.1.2 Microbial Pretreatment -- 4.3 Methane -- 4.4 Methanogens -- 4.4.1 Phylogeny and Habitats of Methanogens -- 4.5 Methanogenesis -- 4.5.1 Hydrogenotrophic Archaea -- 4.5.2 Methylotrophic Methanogens -- 4.5.3 Aceticlastic Methanogens -- 4.6 Improvement in Methane Production -- 4.6.1 Nano-Biochar -- 4.6.2 Bioaugmentation -- 4.6.3 Ultrasound Pretreatment -- 4.6.4 Micro-Oxygenic Treatment -- 4.6.5 Role of Temperature -- 4.6.5.1 Mesophilic and Thermophilic Temperature -- 4.6.5.2 Psychrophilic Temperature -- 4.6.6 Effects of Silver Nanoparticles -- 4.7 Biotechnology of Archaea -- 4.7.1 Synthetic Genes for Industrial Products Production -- 4.8 Extracellular Electron -- 4.8.1 Mineralization -- 4.8.2 Biomineralization: Microbiologically Influenced Corrosion (MIC) -- 4.8.3 Direct Interspecies Electron Transfer (DIET) -- 4.9 Applications -- 4.9.1 Sweet Sorghum as a Source of Hydrogen and Methane -- 4.9.2 Anaerobic Digestion -- 4.9.3 Clostridium butyricum -- 4.9.4 Reactor System -- 4.9.5 Biogas -- 4.10 Discussion -- 4.11 Conclusion -- References -- 5: Mitigation of Microbially Influenced Corrosion of Concrete Sewers Using Nitrite -- 5.1 Introduction -- 5.2 Sewer System and Concrete Corrosion -- 5.2.1 Sewer System -- 5.2.1.1 Overview of the Sewer System -- 5.2.1.2 Sulfide in Sewers -- 5.2.2 Concrete Corrosion in Sewers. 5.2.2.1 Overview of Sewer Concrete Corrosion -- 5.2.2.2 Corrosion Layer Conditions -- 5.3 Applications of Nitrite in Sewer Systems -- 5.3.1 Reducing H2S Production in Anaerobic Sewers -- 5.3.2 Mitigating the Corrosion Development of Existing Corroding Sewers -- 5.3.3 Increasing the Corrosion Resistance of Nitrite Admixed Concrete -- References -- 6: Metabolic Engineering and Synthetic and Semi-Synthetic Pathways: Biofuel Production for Climate Change Mitigation -- 6.1 Introduction -- 6.2 Systems and Synthetic Biology -- 6.3 The CRISPR/Cas Revolution -- 6.4 The Role of Synthetic Biology in Atmospheric Greenhouse Gas Reduction -- 6.5 Synthetic Biology Tools to Engineer and Control Microbial Communities -- 6.5.1 Applications of Plant Synthetic Biology -- 6.5.2 Production of Functional Biomaterials -- 6.5.3 The Potential of Synthetic Microbial Consortia in Bioprocesses of the Future -- 6.5.4 Synthetic Antibody Could Prevent and Treat COVID-19 -- 6.5.5 Artemisinin -- 6.5.6 Resveratrol -- 6.6 Renewable Energy -- 6.6.1 Biomass and Biofuels -- 6.6.2 C3 and C4 Plants -- 6.7 Lignocellulosic Biofuels -- 6.8 Lignin Biosynthesis -- 6.9 Metabolic Engineering -- 6.10 Bio-Based Platform for Industrial Products -- 6.11 Biochemicals Derived from the Shikimate Pathway -- 6.12 Biochemicals Derived from the Isoprenoid Pathways -- 6.13 Agri-Waste to Value-Added Products -- 6.14 Discussion -- 6.15 Future Directions and Concluding Remarks -- References -- 7: Handmade Paper Industry: A Green and Sustainable Enterprise and Its Challenges -- 7.1 Introduction -- 7.2 National/International Demand -- 7.3 Composition of Wood -- 7.3.1 Cellulose -- 7.3.2 Hemicellulose -- 7.3.3 Lignin -- 7.4 Easily Availability of Machine/Equipment -- 7.5 Disadvantages of Using Nonwood Fiber (Bajpai 2018) -- 7.6 Challenges for Handmade Paper Manufacturing Process -- 7.6.1 Challenges for Raw Material. 7.6.2 Strengthening of Handmade Paper -- 7.6.3 The Degree of Difficulty in the Performance of Fiber Materials During Pulping -- 7.6.4 Challenges in Pulping -- 7.7 Environmental Effect -- 7.8 Economic Effect -- 7.9 Societal Impact -- 7.10 Significance of Handmade Paper -- 7.11 Future Research Areas -- 7.12 Conclusions -- References -- 8: Bioremediation Approaches and the Role of Microbes in the Bio-sustainable Rehabilitation of Polluted Sites -- 8.1 Introduction -- 8.2 The Principle of Bioremediation -- 8.2.1 Factors Affecting Bioremediation -- 8.2.1.1 Nutrients and Environmental Requirements -- 8.2.1.2 Energy Sources -- 8.2.1.3 Bioavailability and Bioactivity -- 8.3 Methods of Bioremediation -- 8.3.1 In Situ Bioremediation -- 8.3.2 Ex Situ Bioremediation -- 8.3.3 Phytoremediation -- 8.3.3.1 Phytoextraction or Phytoaccumulation -- 8.3.3.2 Phytostabilization or Phyto-immobilization -- 8.3.3.3 Phytotransformation or Phytodegradation -- 8.4 Microbes That Assist in the Bioremediation Processes -- 8.5 Advantages and Disadvantages of Bioremediation -- 8.6 Conclusion -- References -- 9: Recent Bioremediation Techniques for the Removal of Industrial Wastes -- 9.1 Introduction -- 9.2 Recent Bioremediation Methods for Mitigating Various Industrial Wastes -- 9.2.1 Microbial Bioremediation -- 9.2.2 Genetically Modified Microbes for Enhanced Bioremediation -- 9.2.3 Phytoremediation -- 9.2.4 Phytobial -- 9.2.5 Electro-bioremediation Technique -- 9.2.6 Electrokinetic-Phytoremediation Technique -- 9.2.7 Microbial Fuel Cells for Bioremediation -- 9.2.8 Nano-bioremediation Technique -- 9.2.9 Constructed Wetlands -- 9.3 Limitations, Prospects and Conclusion -- References -- 10: Pesticides: Indian Scenario on Environmental Concerns and Future Alternatives -- 10.1 Introduction -- 10.2 Consumption of Pesticides in India -- 10.3 Impact of Chemical Pesticides. 10.3.1 Regulations and Quality Control. |
| Record Nr. | UNINA-9910586592703321 |
| Singapore : , : Springer, , [2022] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Biotechnology for sustainable environment / / Sanket J. Joshi, Arvind Deshmukh and Hemen Sarma (editors)
| Biotechnology for sustainable environment / / Sanket J. Joshi, Arvind Deshmukh and Hemen Sarma (editors) |
| Pubbl/distr/stampa | Gateway East, Singapore : , : Springer, , [2021] |
| Descrizione fisica | 1 online resource (417 pages) |
| Disciplina | 628.5 |
| Soggetto topico |
Bioremediation
Bioremediació |
| Soggetto genere / forma | Llibres electrònics |
| ISBN | 981-16-1955-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Preface -- Contents -- About the Editors -- 1: Environmental Biotechnology: Toward a Sustainable Future -- 1.1 Introduction to Environmental Biotechnology -- 1.2 Worldwide Environmental Problems -- 1.2.1 Environmental Contamination -- 1.2.2 Global Warming -- 1.2.3 The Depletion of the Ozone Layer -- 1.2.4 Acid Rain -- 1.2.5 Depletion of Natural Resources -- 1.2.6 Overpopulation -- 1.2.7 Waste Disposal -- 1.2.8 Deforestation -- 1.2.9 Loss of Biodiversity -- 1.3 Bioremediation -- 1.3.1 Nano-Bioremediation Technologies for Sustainable Environment -- 1.4 Biotechnology to Control and Clear Air Pollution -- 1.4.1 Control Methods of Odor and Volatile Organic Compounds (VOCs) -- 1.5 Soil Management and Contamination -- 1.5.1 Sources of Soil Pollution -- 1.5.2 The Available Options for the Integrated Management of Contaminated Soils -- 1.5.2.1 Controlling Pollutant Entry into the Soil -- 1.5.2.2 Use of Physical and Chemical Means to Decontaminate Soil -- 1.5.2.3 Soil Contaminants Bioremediation -- 1.6 Effective Treatment of Wastewater -- 1.6.1 Choice of Methods for Wastewater Treatment -- 1.6.1.1 Small-Scale Wastewater Treatment -- 1.6.1.2 Large-Scale Wastewater Treatment -- 1.6.2 Biological Approach to Wastewater Treatment -- 1.7 Biotechnology Application to Industrial Sustainability -- 1.7.1 Fine Chemicals -- 1.7.2 Intermediate Chemicals -- 1.7.3 Polymers -- 1.7.4 Food Processing -- 1.7.5 Fiber Processing -- 1.7.6 Biotechnology Can Create a Source of Renewable Energy -- 1.8 Microorganisms in the Environment -- 1.8.1 Bio-Inputs for Global Sustainability -- 1.8.2 Antibiotics Are Used to Protect Plants -- 1.9 Further Biotechnological Aspects -- 1.9.1 Eco-Friendly Fuels -- 1.9.1.1 Biofuel Sources -- 1.10 Biopesticides -- 1.10.1 Microbial Pesticides -- 1.10.2 Biochemical Pesticides -- 1.10.2.1 Benefits of Biochemical Pesticides.
1.10.2.2 Limitations of Biochemical Pesticides -- 1.11 Biofertilizers -- 1.11.1 Microbial Biofertilizers -- 1.12 Bioleaching -- 1.12.1 Bioleaching Uses -- 1.12.2 Mechanism of Bioleaching -- 1.13 Bioplastic -- 1.13.1 Merits of Bioplastics Over Conventional Plastics -- 1.13.1.1 Biodegradable -- 1.13.1.2 Eco-Friendly -- 1.14 Conclusion -- References -- 2: The Mystery of Methanogenic Archaea for Sustainable Development of Environment -- 2.1 Introduction -- 2.2 Microbiological Facets of Methanogens -- 2.2.1 Archaebacteria -- 2.2.2 Definitive Characteristics of Methanogenic Archaea -- 2.2.3 Anaerobiosis -- 2.2.4 A Diminutive Historical View of Methanogenic Archaea -- 2.2.5 Habitat -- 2.2.6 Methanogenic Phylogeny -- 2.2.6.1 Methanobacteriales -- 2.2.6.2 Methanococcales -- 2.2.6.3 Methanomicrobiales -- 2.2.6.4 Methanosarcinales -- 2.2.6.5 Methanopyrales -- 2.2.6.6 Methanocellales -- 2.2.6.7 Methanoplasmatales (Thermoplasmatales) -- 2.3 Morphological, Ecological, and Biological View of Methanogenic Archaea -- 2.3.1 Cell Shape, Motility, and Gas Vesicles -- 2.3.2 Gram Reaction -- 2.3.3 Methanogens as Syntrophs -- 2.3.4 Cell Envelope, Lipid Composition, and Antibiotic Resistance -- 2.4 Growth Parameters -- 2.4.1 Temperature, pH, Pressure, and Salinity -- 2.4.2 Substrate Range -- 2.4.2.1 Acetoclastic Methanogens -- 2.4.2.2 Hydrogenotrophic Methanogens -- 2.4.2.3 Methylotrophic Methanogens -- 2.5 Bioeconomy-Based Technologies for Environmental Sustainability -- 2.5.1 Bio-Based Carbon Dioxide Capture, Sequestration, Utilization, and Conversion (CCSUC) Technology -- 2.5.2 Anaerobic Digestion -- 2.5.2.1 Microbial Food Chains of Anaerobic Digestion -- 2.5.2.2 Methanogenesis -- 2.5.3 Energy Pool: Biofuel -- 2.5.4 MEOR: A Combining Hand of Biodegradation and Biotransformation -- 2.5.5 Microbially Enhanced Coal Bed Methane (MECoM) -- 2.5.6 Electromethanogenesis. 2.5.7 Corrosion Prevention -- 2.5.8 Waste Management -- 2.5.9 Bio-Hydrogen Production -- 2.5.10 Other Active Applications -- 2.6 Conclusion and Future Perspectives -- References -- 3: Chitosan Coating Biotechnology for Sustainable Environment -- 3.1 Introduction -- 3.2 Coating Technology -- 3.3 Chitosan -- 3.4 Chitosan-Based Coatings -- 3.4.1 Chitosan-Based Polyester (CHI-PE) -- 3.4.1.1 Synthesis -- 3.4.1.2 Fourier Transform Infrared Spectroscopy (FTIR) -- 3.4.1.3 X-Ray Diffraction (XRD) -- 3.4.1.4 Scanning Electron Microscope (SEM) -- 3.4.1.5 Swelling Performance -- 3.4.1.6 Antibacterial Activity -- 3.4.2 Chitosan-Based Polyurethane (CHI-PU) -- 3.4.2.1 Synthesis -- 3.4.2.2 Fourier Transform Infrared Spectroscopy (FTIR) -- 3.4.2.3 X-Ray Diffraction (XRD) -- 3.4.2.4 Scanning Electron Microscope (SEM) -- 3.4.2.5 Wettability -- 3.4.2.6 Antibacterial Activity -- 3.4.3 Chitosan-Based Polyvinyl Acetate (CHI-PVA) -- 3.4.3.1 Synthesis -- 3.4.3.2 Fourier Transform Infrared Spectroscopy (FTIR) -- 3.4.3.3 X-Ray Diffraction (XRD) -- 3.4.3.4 Morphology -- 3.4.3.5 Swelling Performance -- 3.4.3.6 Conductivity -- 3.4.4 Chitosan-Based Carboxymethyl Cellulose (CHI-CMC) -- 3.4.4.1 Synthesis -- 3.4.4.2 Fourier Transform Infrared Spectroscopy (FTIR) -- 3.4.4.3 X-Ray Diffraction (XRD) -- 3.4.4.4 Swelling Performance -- 3.4.4.5 Antimicrobial Activity -- 3.5 Summary -- 3.6 Future Perspectives -- References -- 4: Bacterial Biodegradation of Bisphenol A (BPA) -- 4.1 Introduction -- 4.2 Xenobiotic Metabolism and Biodegradation -- 4.2.1 Bisphenol A -- 4.2.1.1 Production and Uses of BPA -- 4.2.2 Hazards of BPA -- 4.2.3 Microorganisms Involved in BPA Degradation -- 4.2.4 BPA Degradation Pathway and Intermediates -- 4.3 Case Study -- 4.3.1 Determination of Enzyme Activity -- 4.3.2 Observations -- 4.3.3 Bisphenol A Degradation -- 4.4 Conclusion and Future Prospects -- References. 5: Microbial Degradation of Marine Plastics: Current State and Future Prospects -- 5.1 Introduction -- 5.1.1 Plastics: The Marvel and The Global Problem -- 5.2 The Oceans Plastic Problem -- 5.2.1 Impacts of Plastic on Marine Life -- 5.3 Plastic Degradation -- 5.3.1 Abiotic Factors Influencing the Degradation of Plastic -- 5.3.2 The Potential for Microbially Mediated Plastic Degradation -- 5.4 Methods and Techniques Applied in the Assessment of Polymer Biodegradation -- 5.4.1 Methods to Evaluate Biodegradation -- 5.4.2 Colonization of Prokaryotes and Eukaryotes on Marine Plastic -- 5.4.2.1 Prokaryotic Colonizers on Marine Plastic -- 5.4.2.2 Eukaryotes as Plastic Colonizers and Degraders -- 5.5 Enzymatic Potential of Microbes -- 5.5.1 General Considerations -- 5.5.2 Extracellular Biodegradation -- 5.5.3 Intracellular Biodegradation -- 5.6 Valorization and Applications -- References -- 6: Mechanism and Pretreatment Effect of Fungal Biomass on the Removal of Heavy Metals -- 6.1 Introduction -- 6.2 Natural and Anthropogenic Sources of Heavy Metals -- 6.3 Passive and Active Biosorption -- 6.4 Fungal Biomass Generated from the Fermentation Industries -- 6.5 Fungal Cell Wall Structure -- 6.5.1 Advantages of Fungi as Biosorbents -- 6.5.2 Fungi as Biosorbents -- 6.6 Factors Affecting Biosorption Process -- 6.7 Effect of Pretreatment of Fungal Biomass on the Removal of Heavy Metals -- 6.8 Physical and Chemical Methods of Pretreatment of Fungal Biomass for the Removal of Heavy Metals -- 6.8.1 Physical Methods -- 6.8.2 Pretreatment Using Acids (Das et al. 2007) -- 6.8.3 Pretreatment Using Alkali (Das et al. 2007) -- 6.8.4 Pretreatment Using Organic Solvents (Das et al. 2007) -- 6.9 Mechanism of the Removal of Heavy Metals by the Fungal Biomass -- 6.9.1 Presence of Functional Groups on the Fungal Biomass -- 6.9.2 Direct Adherence on the Fungal Cell Wall. 6.9.3 Functional Group on Chitosan -- 6.10 Immobilization of Fungal Biomass for Biosorption -- 6.11 Conclusions -- 6.12 Future Prospects -- References -- 7: Metal Bioremediation, Mechanisms, Kinetics and Role of Marine Bacteria in the Bioremediation Technology -- 7.1 Introduction -- 7.2 Heavy Metals and Their Sources -- 7.3 Mechanisms of Metal Bioremediation -- 7.3.1 Solubilization -- 7.3.1.1 Bioleaching -- 7.3.2 Immobilization -- 7.3.2.1 Bioaccumulation -- 7.3.2.2 Biosorption -- 7.3.3 Mechanisms of Biosorption -- 7.3.3.1 Cell Surface Adsorption -- 7.3.3.2 Extracellular Accumulation -- 7.3.3.3 Intracellular Accumulation -- 7.3.3.4 Precipitation -- 7.3.3.5 Transformation of Metals -- 7.4 Marine Bacteria -- 7.5 Marine Bacteria in Biosorption of Metals -- 7.6 Use of Genetically Modified Microorganisms in Biosorption -- 7.7 Factors Affecting Biosorption -- 7.8 Biosorption Isotherm Models -- 7.9 Biosorption Kinetics -- 7.10 Analytical Techniques to Analyse Biosorption Process -- 7.11 Living and Non-living Systems for Metal Sorption -- 7.12 Desorption and Metal Recovery -- 7.13 Future Work -- 7.14 Conclusion -- References -- 8: Biofilm-Associated Metal Bioremediation -- 8.1 Introduction -- 8.2 Heavy Metals and Their Toxicity -- 8.3 Biofilm: Composition and Structure -- 8.3.1 Composition -- 8.3.2 EPS Synthesis -- 8.3.3 Biofilm Structure and Its Formation -- 8.4 Biofilm-Producing Microbiota -- 8.4.1 Bacteria in Bioremediation of Heavy Metals -- 8.4.2 Fungi in Bioremediation of Heavy Metals: Mycoremediation -- 8.4.3 Algae in Bioremediation of Heavy Metals: Phycoremediation -- 8.5 Metal-Microbe Interaction and EPS-Mediated Strategies for Remediation -- 8.5.1 EPS-Mediated Metal Biosorption: Mechanism, Advantages, and Disadvantages -- 8.5.2 Strategies of Heavy-Metal and EPS Interaction and Its Remediation -- 8.5.3 Types of EPS and Its Remediation Strategies. 8.5.3.1 Dead Biomass EPS. |
| Record Nr. | UNINA-9910488696003321 |
| Gateway East, Singapore : , : Springer, , [2021] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Environmental biotechnology . Volume 4 / / edited by K. M. Gothandam [and four others]
| Environmental biotechnology . Volume 4 / / edited by K. M. Gothandam [and four others] |
| Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2021] |
| Descrizione fisica | 1 online resource (269 pages) |
| Disciplina | 628.5 |
| Collana | Environmental Chemistry for a Sustainable World |
| Soggetto topico |
Bioremediation
Bioremediació |
| Soggetto genere / forma | Llibres electrònics |
| ISBN | 3-030-77795-2 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910768458503321 |
| Cham, Switzerland : , : Springer, , [2021] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Environmental Geology : Encyclopedia of Sustainability Science and Technology / / edited by James W. LaMoreaux
| Environmental Geology : Encyclopedia of Sustainability Science and Technology / / edited by James W. LaMoreaux |
| Edizione | [Second Edition] |
| Pubbl/distr/stampa | New York, NY : , : Springer US : , : Imprint : Springer, , 2019 |
| Descrizione fisica | 1 recurs electrònic (475 pàgines) : 231 il·lustracions, 32 taules, gràfics, color |
| Disciplina | 550 |
| Soggetto topico |
Enginyeria geotècnica
Enginyeria ambienta Biotecnologia Bioremediació Geografia física |
| ISBN | 9781493987870 (eBook) |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Introduction to Environmental Geology -- Geologic Carbon Sequestration: Sustainability and Environmental Risk -- Dam Engineering and its Environmental Aspects -- Desertification and Impact on Human Systems -- Dredging Practices and Environmental Considerations -- Groundwater salinity due to urban growth -- Construction Planning, Environmental Impact of Foundation Studies and Earthquake Issues -- Geochemical Modeling in Environmental and Geological Studies -- Earthquake faulting, Ground motions and deformations -- Marine life associated with offshore drilling, pipelines, and platforms -- Mining and its Environmental Impacts -- Groundwater Impacts of Radioactive Wastes and Associated Environmental Modeling Assessment -- Land Subsidence in Urban environment -- Natural resource flows and sustainability in urban areas -- Volcanoes of Mexico -- Karst Terrane and Transportation Issues. |
| Record Nr. | UNINA-9910337887303321 |
| New York, NY : , : Springer US : , : Imprint : Springer, , 2019 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Enzymes for Pollutant Degradation / / edited by Sikandar I. Mulla, R. N. Bharagava
| Enzymes for Pollutant Degradation / / edited by Sikandar I. Mulla, R. N. Bharagava |
| Edizione | [1st ed. 2022.] |
| Pubbl/distr/stampa | Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2022 |
| Descrizione fisica | 1 online resource (340 pages) |
| Disciplina | 628.5 |
| Collana | Microorganisms for Sustainability |
| Soggetto topico |
Microbiology
Cytology Biotechnology Enzymology Cell Biology Bioremediació Enzims |
| Soggetto genere / forma | Llibres electrònics |
| ISBN |
981-16-4573-6
981-16-4574-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | 1 Oxidoreductases for removal of environmental pollutants -- 2 Synthesis of industrial enzymes from lignocellulosic fractions -- 3 Pleurotus-derived laccases, immobilization, and bioremediation applications -- 4 Microbial lipases for polyester degradation -- 5 Application of Microbial Biofilms in Biocatalysis and Biodegradation -- 6 Pyrethroid-degrading microorganisms and their potential application for the bioremediation of contaminated environments -- 7 Bacterial Biodegradation of Phenolic Hydrocarbons -- 8 Biosorption of Industrial wastewater by microalgae -- 9 Plastic degradation and utilization by microbes: Challenges and scope -- 10 Marine Microorganisms: From pollutant degradation to added-value products -- 11 Biodegradation of pesticides used in the agriculture by soil microorganisms -- 12 Probiotic enzymes in biodegradation and value-added products -- 13 Current state, challenges and perspectives on microbial degradation of dioxine and furan -- 14 The Management of Crude Oil Spill by Bioremediation Technique -- 15 Bacterial Pigments- an Untapped Colorful Microbial World -- 16 Bioinoculants for rapid production of vermicompost -- 17 Microbial-mediated mechanism to improve rock phosphate solubilization and its agronomic implications. |
| Record Nr. | UNINA-9910743218303321 |
| Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2022 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Impact of plastic waste on the marine biota / / edited by Mohd. Shahnawaz [and three others]
| Impact of plastic waste on the marine biota / / edited by Mohd. Shahnawaz [and three others] |
| Pubbl/distr/stampa | Gateway East, Singapore : , : Springer, , [2022] |
| Descrizione fisica | 1 online resource (327 pages) |
| Disciplina | 363.7384 |
| Soggetto topico |
Marine ecosystem health
Marine microbial ecology Bioremediation Plàstics Ecologia marina Contaminació del mar Bioremediació |
| Soggetto genere / forma | Llibres electrònics |
| ISBN |
981-16-5402-6
981-16-5403-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910743234403321 |
| Gateway East, Singapore : , : Springer, , [2022] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Laccases in Bioremediation and Waste Valorisation / / edited by Dietmar Schlosser
| Laccases in Bioremediation and Waste Valorisation / / edited by Dietmar Schlosser |
| Edizione | [1st ed. 2020.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 |
| Descrizione fisica | 1 online resource (244 pages) |
| Disciplina | 612.0151 |
| Collana | Microbiology Monographs |
| Soggetto topico |
Enzymology
Microbiology Bacteriology Microbial ecology Applied Microbiology Eukaryotic Microbiology Microbial Ecology Enzims Microbiologia Bioremediació Eliminació de residus |
| Soggetto genere / forma | Llibres electrònics |
| ISBN | 3-030-47906-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Fungal Laccases and Their Potential in Bioremediation Applications -- Bacterial Laccases: Some Recent Advances and Applications -- Old Enzymes at the Forefront of Lignocellulosic Waste Valorisation -- Laccases in the Context of Potentially Cooperating Enzymes -- Immobilized Laccase: A Promising Bioremediation Tool for the Removal of Organic Contaminants in Wastewater -- Challenges in Applying Cross-Linked Laccase Aggregates in Bioremediation of Emerging Contaminants from Municipal Wastewater -- Laccase-Assisted Cues: State-of-the-Art Analytical Modalities for Detection, Quantification, and Redefining “Removal” of Environmentally-Related Contaminants of High Concern -- Laccase Engineering by Directed and Computational Evolution -- Laccases from Extremophiles. |
| Record Nr. | UNINA-9910416096303321 |
| Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||