Bio-Based Materials : Contribution to Advancing Circular Economy / / Maya Jacob John, Sabu Thomas, editor
| Bio-Based Materials : Contribution to Advancing Circular Economy / / Maya Jacob John, Sabu Thomas, editor |
| Pubbl/distr/stampa | [Place of publication not identified] : , : MDPI - Multidisciplinary Digital Publishing Institute, , 2023 |
| Descrizione fisica | 1 online resource (252 pages) |
| Disciplina | 572 |
| Soggetto topico |
Biopolymers - Industrial applications
Circular economy |
| ISBN | 3-0365-6048-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | About the Editors -- Special Issue-"Bio-Based Materials: Contribution to Advancing Circular Economy" -- 3D Printing Parameter Optimization Using Taguchi Approach to Examine Acrylonitrile Styrene Acrylate (ASA) Mechanical Properties -- Towards a Circular Economy of Plastics: An Evaluation of the Systematic Transition to a New Generation of Bioplastics -- Effect of Prosopis Juliflora Thorns on Mechanical Properties of Plastic Waste Reinforced Epoxy Composites -- Mechanical and Dielectric Properties of Fly Ash Geopolymer/Sugarcane Bagasse Ash Composites -- Suberin Fatty Acid Hydrolysates from Outer Birch Bark for Hydrophobic Coating on Aspen Wood Surface -- Development and Characterization of Plantain (Musa paradisiaca) Flour-Based Biopolymer Films -- Investigating the Effects of Tobacco Lignin on Polypropylene -- Esterification of Cellulose with Long Fatty Acid Chain through Mechanochemical Method -- Physicomechanical Properties of Rice Husk/Coco Peat Reinforced Acrylonitrile Butadiene Styrene Blend Composites -- Morphology, Structural, Thermal, and Tensile Properties of Bamboo Microcrystalline Cellulose/Poly(Lactic Acid)/Poly(Butylene Succinate) Composites -- Characterization of Microcrystalline Cellulose Isolated from Conocarpus Fiber -- Chitosan: A Sustainable Material for Multifarious Applications -- Alginate-Induced Disease Resistance in Plants. |
| Altri titoli varianti | Bio-Based Materials |
| Record Nr. | UNINA-9910647228003321 |
| [Place of publication not identified] : , : MDPI - Multidisciplinary Digital Publishing Institute, , 2023 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Biodegradable and biobased polymers for environmental and biomedical applications / / edited by Susheel Kalia and Luc Avérous
| Biodegradable and biobased polymers for environmental and biomedical applications / / edited by Susheel Kalia and Luc Avérous |
| Pubbl/distr/stampa | Salem, Massachusetts ; ; Hoboken, New Jersey : , : Scrivener Publishing : , : Wiley, , 2016 |
| Descrizione fisica | 1 online resource |
| Disciplina | 572 |
| Soggetto topico |
Biopolymers - Industrial applications
Biodegradable plastics |
| ISBN |
1-119-11734-8
1-119-11736-4 1-119-11735-6 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910136253503321 |
| Salem, Massachusetts ; ; Hoboken, New Jersey : , : Scrivener Publishing : , : Wiley, , 2016 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Biodegradable and biobased polymers for environmental and biomedical applications / / edited by Susheel Kalia and Luc Avérous
| Biodegradable and biobased polymers for environmental and biomedical applications / / edited by Susheel Kalia and Luc Avérous |
| Pubbl/distr/stampa | Salem, Massachusetts ; ; Hoboken, New Jersey : , : Scrivener Publishing : , : Wiley, , 2016 |
| Descrizione fisica | 1 online resource |
| Disciplina | 572 |
| Soggetto topico |
Biopolymers - Industrial applications
Biodegradable plastics |
| ISBN |
1-119-11734-8
1-119-11736-4 1-119-11735-6 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910815059803321 |
| Salem, Massachusetts ; ; Hoboken, New Jersey : , : Scrivener Publishing : , : Wiley, , 2016 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
A handbook of applied biopolymer technology : synthesis, degradation and applications / / edited by Sanjay K. Sharma, Ackmez Mudhoo
| A handbook of applied biopolymer technology : synthesis, degradation and applications / / edited by Sanjay K. Sharma, Ackmez Mudhoo |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Cambridge, : RSC Pub., 2011 |
| Descrizione fisica | 1 online resource (501 p.) |
| Disciplina | 572.33 |
| Altri autori (Persone) |
SharmaSanjay K
MudhooAckmez |
| Collana | RSC green chemistry |
| Soggetto topico |
Biopolymers
Biopolymers - Industrial applications Green chemistry |
| ISBN |
9781849733458
1849733457 9781621981411 162198141X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | i-iv; v-vi; vii-viii; ix-xvi; xvii-xviii; 1-21.PDF.pdf; 22-78; 79-101; 102-128; 129-148; 149-196; 197-242; 243-290; 291-310; 311-331; 332-364; 365-387; 388-418; 419-451; 452-472; 473-482 |
| Record Nr. | UNINA-9911004753403321 |
| Cambridge, : RSC Pub., 2011 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Handbook of bioplastics and biocomposites engineering applications [[electronic resource] /] / edited by Srikanth Pilla
| Handbook of bioplastics and biocomposites engineering applications [[electronic resource] /] / edited by Srikanth Pilla |
| Autore | Pilla Srikanth |
| Pubbl/distr/stampa | Hoboken, N.J., : Wiley |
| Descrizione fisica | 1 online resource (622 p.) |
| Disciplina | 620.1923 |
| Altri autori (Persone) | PillaSrikanth |
| Collana | Wiley-Scrivener |
| Soggetto topico |
Biopolymers - Industrial applications
Polymeric composites - Industrial applications Reinforced plastics |
| ISBN |
1-118-17704-5
1-283-40141-X 9786613401410 1-118-20369-0 1-61344-245-9 1-118-17703-7 |
| Classificazione | SCI013000 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Handbook of Bioplastics and Biocomposites Engineering Applications; Contents; Foreword; Preface; List of Contributors; 1. Engineering Applications of Bioplastics and Biocomposites - An Overview; 1.1 Introduction; 1.1.1 Bioplastics; 1.1.2 Biocomposites; 1.2 Engineering Applications of Bioplastics and Biocomposites; 1.2.1 Processing of Bioplastics and Biocomposites; 1.2.2 Packaging Applications of Bioplastics and Biocomposites; 1.2.3 Civil Engineering Applications of Bioplastics and Biocomposites; 1.2.4 Biomedical Applications of Bioplastics and Biocomposites
1.2.5 Automotive Applications of Bioplastics and Biocomposites1.2.6 General Engineering Applications of Bioplastics and Biocomposites; 1.3 Conclusions; References; Part 1: Processing of Bioplastics and Biocomposites; 2. The Handling of Various Forms of Dry Ingredients in Bioplastics Manufacturing and Processing Applications; 2.1 Introduction; 2.2 Ingredient Properties Affecting Feedrates and Dry Ingredients Handling; 2.2.1 Name; 2.2.2 Bulk Density; 2.2.3 Compressibility; 2.2.4 Particle Form; 2.2.5 Particle Size; 2.2.6 Angle of Repose; 2.2.7 Angle of Slide; 2.2.8 Packing and Compaction 2.2.8.1 Packing, By Pressure2.2.8.2 Compacting, By Vibration; 2.2.9 Moisture Content; 2.3 Storage Hoppers and Ingredient Activation; 2.3.1 Vibration; 2.3.2 Internal Stirring Agitation; 2.3.3 Concentric Screw Agitation; 2.3.4 External Agitation (Flexible Hopper); 2.4 Volumetric Feeders; 2.4.1 Single Screw Feeders - Sizing and Feed Rate Calculation; 2.4.1.1 Screw Sizing; 2.4.1.2 Screw Fill Efficiency; 2.4.1.3 Feed Rate Calculation; 2.4.1.4 Feeder Selection; 2.4.1.5 Spiral Screw; 2.4.1.6 Blade Screw; 2.4.2 Twin Screw Feeders; 2.4.2.1 Twin Concave Screws; 2.5 Vibrating Tray Feeders 2.6 Belt Feeders2.7 Loss-In-Weight Feeders; 2.7.1 Scale; 2.7.2 Feed Device; 2.7.3 Weigh Hopper; 2.7.4 Feeder Controller; 2.7.5 Refill Device; 2.7.6 Principle of Operation-Continuous Feeding from a Loss-In Weight Feeder; 2.7.7 Loss-In-Weight Feeding Helpful Comments; 2.7.7.1 Refilling a Loss-In-Weight Feeder; 2.7.7.2 Venting a Loss-In-Weigh Feeder; 2.7.7.3 In Plant Vibration Effects on Feeder Performance; 2.7.7.4 Temperature Effects in Feeder Performance; 2.7.7.5 Scale Stabilization Time; 2.7.7.6 Flexible Connections; 2.8 Special Feeders for BioPlastics Ingredients 2.8.1 Bio Ingredients-Typical Physical Characteristics2.8.2 The Physical Characteristics Aggravate Controlled Rate Feeding; 2.8.3 Fibers Need to be Tested in Feeders to Determine How They Can Be Fed; 2.8.3.1 Start with a Traditional Feeding Device, Example a Screw Feeder; 2.8.4 Feeder Control and Checking the Feed Rate; 2.8.5 Ingredient Storage and Keeping the Feeder Full; 2.9 Conclusions; 3. Modeling the Processing of Natural Fiber Composites Made Using Liquid Composite Molding; 3.1 Introduction to Liquid Composite Molding (LCM) Processes 3.2 Introduction to the Use of Bio-fibers and Bio-resins in Polymer Composites |
| Record Nr. | UNINA-9910141226603321 |
Pilla Srikanth
|
||
| Hoboken, N.J., : Wiley | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Handbook of bioplastics and biocomposites engineering applications / / edited by Inamuddin and Tariq Altalhi
| Handbook of bioplastics and biocomposites engineering applications / / edited by Inamuddin and Tariq Altalhi |
| Edizione | [Second edition.] |
| Pubbl/distr/stampa | Hoboken, New Jersey ; ; Beverly, Massachusetts : , : Wiley : , : Scrivener Publishing, , [2023] |
| Descrizione fisica | 1 online resource (683 pages) |
| Disciplina | 620.192323 |
| Soggetto topico |
Biodegradable plastics
Polymeric composites Biopolymers - Industrial applications |
| ISBN |
1-119-16014-6
1-119-16018-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Part I: Bioplastics, Synthesis and Process Technology -- Chapter 1 An Introduction to Engineering Applications of Bioplastics -- 1.1 Introduction -- 1.2 Classification of Bioplastics -- 1.3 Physical Properties -- 1.3.1 Rheological Properties -- 1.3.2 Optical Properties -- 1.3.3 Mechanical and Thermal Properties -- 1.3.4 Electrical Properties -- 1.4 Applications of Bioplastics in Engineering -- 1.4.1 Bioplastics Applications in Sensors -- 1.4.2 Bioplastics Applications in Energy Sector -- 1.4.3 Bioplastics Applications in Bioengineering -- 1.4.4 Bioplastics Applications in "Green" Electronics -- 1.5 Conclusions -- Acknowledgement -- Dedication -- References -- Chapter 2 Biobased Materials: Types and Sources -- 2.1 Introduction -- 2.2 Biodegradable Biobased Material -- 2.2.1 Polysaccharides -- 2.2.2 Starch -- 2.2.3 Polylactic Acid -- 2.2.4 Cellulose -- 2.2.5 Esters -- 2.2.6 Ether -- 2.2.7 Chitosan -- 2.2.8 Alginate -- 2.2.9 Proteins -- 2.2.10 Gluten -- 2.2.11 Gelatine -- 2.2.12 Casein -- 2.2.13 Lipid -- 2.2.14 Polyhydroxyalkanoates (PHA) -- 2.3 Nonbiodegradable Biobased Material -- 2.3.1 Polyethylene (PE) -- 2.3.2 Polyethylene Terephthalate (PET) -- 2.3.3 Polyamide (PA) -- 2.4 Conclusion -- Acknowledgment -- References -- Chapter 3 Bioplastic From Renewable Biomass -- 3.1 Introduction -- 3.2 Plastics and Bioplastics -- 3.2.1 Plastics -- 3.2.2 Bioplastics -- 3.3 Classification of Bioplastics -- 3.4 Bioplastic Production -- 3.4.1 Biowaste to Bioplastic -- 3.4.1.1 Lipid Rich Waste -- 3.4.2 Milk Industry Waste -- 3.4.3 Sugar Industry Waste -- 3.4.4 Spent Coffee Beans Waste -- 3.4.5 Bioplastic Agro-Forestry Residue -- 3.4.6 Bioplastic from Microorganism -- 3.4.7 Biomass-Based Polymers -- 3.4.7.1 Biomass-Based Monomers for Polymerization Process -- 3.5 Characterization of Bioplastics.
3.6 Applications of Bioplastics -- 3.6.1 Food Packaging -- 3.6.2 Agricultural Applications -- 3.6.3 Biomedical Applications -- 3.7 Bioplastic Waste Management Strategies -- 3.7.1 Recycling of Poly(Lactic Acid ) (PLA) -- 3.7.1.1 Mechanical Recycling of PLA -- 3.7.1.2 Chemical Recycling of PLA -- 3.7.2 Recycling of Poly Hydroxy Alkanoates (PHAs) -- 3.7.3 Landfill -- 3.7.4 Incineration -- 3.7.5 Composting -- 3.7.6 Anaerobic Digestion -- 3.7.6.1 Anaerobic Digestion of Poly(Hydroxyalkanoates) -- 3.7.6.2 Anaerobic Digestion of Poly(Lactic Acid) -- 3.8 Conclusions and Future Prospects -- References -- Chapter 4 Modeling of Natural Fiber-Based Biocomposites -- 4.1 Introduction -- 4.2 Generality of Biocomposites -- 4.2.1 Natural Matrix -- 4.2.2 Natural Reinforcement -- 4.2.3 Natural Fiber Classification -- 4.2.4 Biocomposites Processing -- 4.2.4.1 Extrusion and Injection -- 4.2.4.2 Compression Molding -- 4.2.5 RTM-Resin Transfer Molding -- 4.2.6 Hand Lay-Up Technique -- 4.3 Parameters Affecting the Biocomposites Properties -- 4.3.1 Fiber's Aspect Ratio -- 4.3.2 Fiber/Matrix Interfacial Adhesion -- 4.3.3 Fibers Orientation and Dispersion -- 4.3.3.1 Short Fibers Orientation -- 4.3.3.2 Fiber's Orientation in Simple Shear Flow -- 4.3.3.3 Fiber's Orientation in Elongational Flow -- 4.4 Process Molding of Biocomposites -- 4.4.1 Unidirectional Fibers -- 4.4.1.1 Classical Laminate Theory -- 4.4.1.2 Rule of Mixture -- 4.4.1.3 Halpin-Tsai Model -- 4.4.1.4 Hui-Shia Model -- 4.4.2 Random Fibers -- 4.4.2.1 Hirsch Model -- 4.4.2.2 Self-Consistent Approach (Modified Hirsch Model) -- 4.4.2.3 Tsai-Pagano Model -- 4.5 Conclusion -- References -- Chapter 5 Process Modeling in Biocomposites -- 5.1 Introduction -- 5.2 Biopolymer Composites -- 5.2.1 Natural Fiber-Based Biopolymer Composites -- 5.2.2 Applications of Biopolymer Composites -- 5.2.3 Properties of Biopolymer Composites. 5.3 Classification of Biocomposites -- 5.3.1 PLA Biocomposites -- 5.3.2 Nanobiocomposites -- 5.3.3 Hybrid Biocomposites -- 5.3.4 Natural Fiber-Based Composites -- 5.4 Process Modeling of Biocomposite Models -- 5.4.1 Compression Moulding -- 5.4.2 Injection Moulding -- 5.4.3 Extrusion Method -- 5.5 Formulation of Models -- 5.5.1 Types of Model -- 5.6 Conclusion -- References -- Chapter 6 Microbial Technology in Bioplastic Production and Engineering -- 6.1 Introduction -- 6.2 Fundamental Principles of Microbial Bioplastic Production -- 6.3 Bioplastics Obtained Directly from Microorganisms -- 6.3.1 PHA -- 6.3.2 Poly (ƒÁ-Glutamic Acid) (PGA) -- 6.4 Bioplastics from Microbial Monomers -- 6.4.1 Bioplastics from Aliphatic Monomers -- 6.4.1.1 PLA -- 6.4.1.2 Poly (Butylene Succinate) -- 6.4.1.3 Biopolyamides (Nylons) -- 6.4.1.4 1, 3-Propanediol (PDO) -- 6.4.2 Bioplastics from Aromatic Monomers -- 6.5 Lignocellulosic Biomass for Bioplastic Production -- 6.6 Conclusion -- References -- Chapter 7 Synthesis of Green Bioplastics -- 7.1 Introduction -- 7.2 Bioplastic -- 7.2.1 Polyhydroxyalkanoates (PHAs) -- 7.2.2 Poly(lactic acid) (PLA) -- 7.2.3 Cellulose -- 7.2.4 Starch -- 7.3 Renewable Raw Material to Produce Bioplastic -- 7.3.1 Raw Material from Agriculture -- 7.3.2 Organic Waste as Resources for Bioplastic Production -- 7.3.3 Algae as Resources for Bioplastic Production -- 7.3.4 Wastewater as Resources for Bioplastic Production -- 7.4 Bioplastics Applications -- 7.4.1 Food Industry -- 7.4.2 Agricultural Applications -- 7.4.3 Medical Applications -- 7.4.4 Other Applications -- 7.5 Conclusions -- References -- Chapter 8 Natural Oil-Based Sustainable Materials for a Green Strategy -- 8.1 Introduction -- 8.2 Methodology -- 8.2.1 Entropy Methodology -- 8.2.2 Copras Methodology -- 8.3 Conclusions -- References. Part II: Applications of Bioplastics in Health and Hygiene -- Chapter 9 Biomedical Applications of Bioplastics -- 9.1 Introduction -- 9.2 Synthesis of Bioplastics -- 9.2.1 Starch-Based Bioplastics -- 9.2.2 Cellulose-Based Bioplastics -- 9.2.3 Chitin and Chitosan -- 9.2.4 Polyhydroxyalkanoates (PHA) -- 9.2.5 Polylactic Acid (PLA) -- 9.2.6 Bioplastics from Microalgae -- 9.3 Properties of Bioplastics -- 9.3.1 Material Strength -- 9.3.2 Electrical, Mechanical, and Optical Behavior of Bioplastic -- 9.4 Biological Properties of Bioplastics -- 9.5 Biomedical Applications of Bioplastics -- 9.5.1 Antimicrobial Property -- 9.5.2 Biocontrol Agents -- 9.5.3 Pharmaceutical Applications of Bioplastics -- 9.5.4 Implantation -- 9.5.5 Tissue Engineering Applications -- 9.5.6 Memory Enhancer -- 9.6 Limitations -- 9.7 Conclusion -- References -- Chapter 10 Applications of Bioplastics in Hygiene Cosmetic -- 10.1 Introduction -- 10.2 The Need to Find an Alternative to Plastic -- 10.3 Bioplastics -- 10.3.1 Characteristic of Bioplastics -- 10.3.2 Types (Classification) -- 10.3.3 Uses of Bioplastics -- 10.4 Resources of Bioplastic -- 10.4.1 Polysaccharides -- 10.4.2 Starch or Amylum -- 10.4.3 Cellulose -- 10.4.3.1 Source of Cellulose -- 10.5 Use of Biodegradable Materials in Packaging -- 10.6 Bionanocomposite -- 10.7 Hygiene Cosmetic Packaging -- 10.8 Conclusion -- References -- Chapter 11 Biodegradable Polymers in Drug Delivery -- 11.1 Introduction -- 11.2 Biodegradable Polymer (BP) -- 11.2.1 Natural -- 11.2.1.1 Polysaccharides -- 11.2.1.2 Proteins -- 11.2.2 Synthetic -- 11.2.2.1 Polyesters -- 11.2.2.2 Polyanhydrides -- 11.2.2.3 Polycarbonates -- 11.2.2.4 Polyphosphazenes -- 11.2.2.5 Polyurethanes -- 11.3 Device Types -- 11.3.1 Three-Dimensional Printing Devices -- 11.3.1.1 Implants -- 11.3.1.2 Tablets -- 11.3.1.3 Microneedles -- 11.3.1.4 Nanofibers -- 11.3.2 Nanocarriers. 11.3.2.1 Nanoparticles -- 11.3.2.2 Dendrimers -- 11.3.2.3 Hydrogels -- 11.4 Applications -- 11.4.1 Intravenous -- 11.4.2 Transdermal -- 11.4.3 Oral -- 11.4.4 Ocular -- 11.5 Existing Materials in the Market -- 11.6 Conclusions and Future Projections -- References -- Chapter 12 Microorganism-Derived Bioplastics for Clinical Applications -- 12.1 Introduction -- 12.2 Types of Bioplastics -- 12.2.1 Poly(3-hydroxybutyrate) (PHB) -- 12.2.2 Polyhydroxyalkanoate -- 12.2.3 Poly-Lactic Acid -- 12.2.4 Poly Lactic-co-Glycolic Acid (PLGA) -- 12.2.5 Poly (.-caprolactone) (PCL) -- 12.3 Properties of Bioplastics -- 12.3.1 Physiochemical, Mechanical, and Biological Properties of Bioplastics -- 12.3.1.1 Polylactic Acid -- 12.3.1.2 Poly Lactic-co-Glycolic Acid -- 12.3.1.3 Polycaprolactone -- 12.3.1.4 Polyhydroxyalkanoates -- 12.3.1.5 Polyethylene Glycol (PEG) -- 12.4 Applications -- 12.4.1 Tissue Engineering -- 12.4.2 Drug Delivery System -- 12.4.3 Implants and Prostheses -- 12.5 Conclusion -- References -- Chapter 13 Biomedical Applications of Biocomposites Derived From Cellulose -- 13.1 Introduction -- 13.2 Importance of Cellulose in the Field of Biocomposite -- 13.3 Classification of Cellulose -- 13.4 Synthesis of Cellulose in Different Form -- 13.4.1 Mechanical Extraction -- 13.4.2 Electrochemical Method -- 13.4.3 Chemical Extraction -- 13.4.4 Enzymatic Hydrolysis -- 13.4.5 Bacterial Production of Cellulose -- 13.5 Formation of Biocomposite Using Different Form of Cellulose -- 13.6 Biocomposites Derived from Cellulose and Their Application -- 13.6.1 Tissue Engineering -- 13.6.2 Wound Dressing -- 13.6.3 Drug Delivery -- 13.6.4 Dental Applications -- 13.6.5 Other Applications -- 13.7 Conclusion -- References -- Chapter 14 Biobased Materials for Biomedical Engineering -- 14.1 Introduction -- 14.2 Biomaterials. 14.3 Biobased Materials for Implants and Tissue Engineering. |
| Record Nr. | UNINA-9910676647403321 |
| Hoboken, New Jersey ; ; Beverly, Massachusetts : , : Wiley : , : Scrivener Publishing, , [2023] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Handbook of bioplastics and biocomposites engineering applications / / edited by Srikanth Pilla
| Handbook of bioplastics and biocomposites engineering applications / / edited by Srikanth Pilla |
| Pubbl/distr/stampa | Hoboken, N.J., : Wiley |
| Descrizione fisica | 1 online resource (622 p.) |
| Disciplina | 620.1923 |
| Altri autori (Persone) | PillaSrikanth |
| Collana | Wiley-Scrivener |
| Soggetto topico |
Biopolymers - Industrial applications
Polymeric composites - Industrial applications Reinforced plastics |
| ISBN |
1-118-17704-5
1-283-40141-X 9786613401410 1-118-20369-0 1-61344-245-9 1-118-17703-7 |
| Classificazione | SCI013000 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Handbook of Bioplastics and Biocomposites Engineering Applications; Contents; Foreword; Preface; List of Contributors; 1. Engineering Applications of Bioplastics and Biocomposites - An Overview; 1.1 Introduction; 1.1.1 Bioplastics; 1.1.2 Biocomposites; 1.2 Engineering Applications of Bioplastics and Biocomposites; 1.2.1 Processing of Bioplastics and Biocomposites; 1.2.2 Packaging Applications of Bioplastics and Biocomposites; 1.2.3 Civil Engineering Applications of Bioplastics and Biocomposites; 1.2.4 Biomedical Applications of Bioplastics and Biocomposites
1.2.5 Automotive Applications of Bioplastics and Biocomposites1.2.6 General Engineering Applications of Bioplastics and Biocomposites; 1.3 Conclusions; References; Part 1: Processing of Bioplastics and Biocomposites; 2. The Handling of Various Forms of Dry Ingredients in Bioplastics Manufacturing and Processing Applications; 2.1 Introduction; 2.2 Ingredient Properties Affecting Feedrates and Dry Ingredients Handling; 2.2.1 Name; 2.2.2 Bulk Density; 2.2.3 Compressibility; 2.2.4 Particle Form; 2.2.5 Particle Size; 2.2.6 Angle of Repose; 2.2.7 Angle of Slide; 2.2.8 Packing and Compaction 2.2.8.1 Packing, By Pressure2.2.8.2 Compacting, By Vibration; 2.2.9 Moisture Content; 2.3 Storage Hoppers and Ingredient Activation; 2.3.1 Vibration; 2.3.2 Internal Stirring Agitation; 2.3.3 Concentric Screw Agitation; 2.3.4 External Agitation (Flexible Hopper); 2.4 Volumetric Feeders; 2.4.1 Single Screw Feeders - Sizing and Feed Rate Calculation; 2.4.1.1 Screw Sizing; 2.4.1.2 Screw Fill Efficiency; 2.4.1.3 Feed Rate Calculation; 2.4.1.4 Feeder Selection; 2.4.1.5 Spiral Screw; 2.4.1.6 Blade Screw; 2.4.2 Twin Screw Feeders; 2.4.2.1 Twin Concave Screws; 2.5 Vibrating Tray Feeders 2.6 Belt Feeders2.7 Loss-In-Weight Feeders; 2.7.1 Scale; 2.7.2 Feed Device; 2.7.3 Weigh Hopper; 2.7.4 Feeder Controller; 2.7.5 Refill Device; 2.7.6 Principle of Operation-Continuous Feeding from a Loss-In Weight Feeder; 2.7.7 Loss-In-Weight Feeding Helpful Comments; 2.7.7.1 Refilling a Loss-In-Weight Feeder; 2.7.7.2 Venting a Loss-In-Weigh Feeder; 2.7.7.3 In Plant Vibration Effects on Feeder Performance; 2.7.7.4 Temperature Effects in Feeder Performance; 2.7.7.5 Scale Stabilization Time; 2.7.7.6 Flexible Connections; 2.8 Special Feeders for BioPlastics Ingredients 2.8.1 Bio Ingredients-Typical Physical Characteristics2.8.2 The Physical Characteristics Aggravate Controlled Rate Feeding; 2.8.3 Fibers Need to be Tested in Feeders to Determine How They Can Be Fed; 2.8.3.1 Start with a Traditional Feeding Device, Example a Screw Feeder; 2.8.4 Feeder Control and Checking the Feed Rate; 2.8.5 Ingredient Storage and Keeping the Feeder Full; 2.9 Conclusions; 3. Modeling the Processing of Natural Fiber Composites Made Using Liquid Composite Molding; 3.1 Introduction to Liquid Composite Molding (LCM) Processes 3.2 Introduction to the Use of Bio-fibers and Bio-resins in Polymer Composites |
| Record Nr. | UNINA-9910816199303321 |
| Hoboken, N.J., : Wiley | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Modern biopolymer science : bridging the divide between fundamental treatise and industrial application / / edited by Stefan Kasapis, Ian T. Norton, Johan B. Ubbink
| Modern biopolymer science : bridging the divide between fundamental treatise and industrial application / / edited by Stefan Kasapis, Ian T. Norton, Johan B. Ubbink |
| Pubbl/distr/stampa | Amsterdam, : Elsevier |
| Descrizione fisica | 1 online resource (639 p.) |
| Disciplina |
660.63 22
664 660.63 |
| Altri autori (Persone) |
KasapisStefan
NortonIan T UbbinkJohan B |
| Soggetto topico |
Biopolymers
Biopolymers - Biotechnology Biopolymers - Industrial applications |
| ISBN |
1-282-28549-1
9786612285493 0-08-092114-0 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Front cover; MODERN BIOPOLYMER SCIENCE; Copyright; Contents; Contributors; Preface; CHAPTER 1 Biopolymer Network Assembly:Measurement and Theory; 1.1 Biopolymer Networks and Gels; 1.2 Rheological Characterization of Biopolymer Gels; 1.3 Theoretical Aspects; 1.4 Conclusions; Acknowledgments; References; CHAPTER 2Gelation: Principles, Models and Applications to Proteins; 2.1Introduction; 2.2Modeling gel networks and their rheological behavior; 2.3 Molecular mechanisms causing aggregation/gelation; 2.4Gel structure type
2.5Gel Texture: oral processing, rheology/fracture, microstructure and sensory ANALYSIS2.6Concluding remarks and future challenges; Acknowledgments; References; CHAPTER 3 Antifreeze Proteins:Their Structure,Binding and Use; 3.1Antifreeze Proteins; 3.2AFP Properties; 3.3AFP Mechanism ofnbspFunction; 3.4Applications of AFP; References; CHAPTER 4Biopolymers in Food Emulsions; 4.1Introduction; 4.2Emulsion Science And Technology Terminology; 4.3Emulsion Droplet Characteristics; 4.4Production Of Food Emulsions; 4.5Emulsion Stability; 4.6Physicochemical Properties of Food Emulsions 4.7Biopolymer Emulsifiers4.8Biopolymer Texture Modifiers; 4.9Conclusions; References; CHAPTER 5Functional Interactions in Gelling Biopolymer Mixtures; 5.1Introduction; 5.2Applicability of Polymer Blending Laws tonbspBiphasic Networks; 5.3Phase Composition; 5.4Blending Law Analyses of Gelatin-Calcium Pectinate Co-Gels; 5.5Co-Gelation of Whey Protein Isolate (WPI) With Crosslinked Starch; 5.6Associative Interactions; 5.7Segregative Interactions in Single-Phase Mixtures; 5.8Current Understanding and Future Challenges; Acknowledgments; References CHAPTER 6Effect of Processing on Biopolymer Interactions6.1Introduction; 6.2Fluid/Sheared Gels; 6.3Water-In-Water Emulsions; 6.4 Processing Inside People; 6.5The Future; Acknowledgments; References; CHAPTER 7Unified Application of the Materials-Science Approach to the Structural Properties of Biopolymer Co-Gels throughout the Industrially Relevant Level of Solids; 7.1Introduction and Overview of Product Development Concerns That Necessitated Work In Phase-Separated Biopolymer Gels; 7.2Experimental Methods of Pinpointing Phase-Separation Phenomena in Mixed Gels 7.3 Utilization Of Reaction Kinetics To Identify Phase-Separation Phenomena In Biopolymer Mixtures7.4Quantitative Analysis Of The Structural Properties Of Binary Composite Gels; 7.5Bridging The Divide Between The Low- And High-Solid Analyses In Binary Co-Gels; 7.6Molecular Dynamics Of Bioactive Compounds In A High-Solids Carbohydrate Matrix; 7.7Structural Properties Of Non-Aqueous Systems Used In Controlled Topical Delivery; 7.8 Concluding Remarks; Acknowledgments; References; CHAPTER 8Mapping the Different States of Food Components Using State Diagrams; 8.1 Introduction; 8.2 Glass transition 8.3 Glass formation |
| Record Nr. | UNINA-9911006776903321 |
| Amsterdam, : Elsevier | ||
| Lo trovi qui: Univ. Federico II | ||
| ||