Advanced materials for radiation detection / / edited by Krzysztof Iniewski |
Edizione | [1st ed. 2022.] |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2021] |
Descrizione fisica | 1 online resource (VII, 356 p. 150 illus., 119 illus. in color.) |
Disciplina | 539.77 |
Soggetto topico |
Biomedical materials - Imaging compatibility
Optical engineering Microwaves |
ISBN | 3-030-76461-3 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Chapter1. Radiation Detection Materials Introduction -- Chapter2. Inorganic Perovskite CsPbBr3 Gamma-ray Detector -- Chapter3. The Impact of Detection Volume on Hybrid Halide Perovskite-Based Radiation Detectors -- Chapter4. Cs-based Perovskite Thin Films For Neutron Detection -- Chapter5. Radiation Detection Technologies Enabled by Halide Perovskite Single Crystals -- Chapter6. Metal Halide Perovskites for High Energy Radiation Detection -- Chapter7. Thallium Based Materials for Radiation Detection -- Chapter8. CdZnTeSe: A promising material for radiation detector applications -- Chapter9. Radiation detection using n-type 4H-SiC Epitaxial Layer Surface Barrier Detectors -- Chapter10. Room-Temperature Radiation Detectors Based on Large-Volume CdZnTe Single Crystals -- Chapter11. Phase Diagram, Melt Growth and Characterization of Cd0.8Zn0.2Te Crystals for X-Ray Detector -- Chapter12. Melt growth of high resolution CdZnTe detectors -- Chapter13. Solution Growth of CdZnTe Crystals for X-Ray Detector -- Chapter14. Laser-Induced Transient Currents in Radiation Detector Materials -- Chapter15. Cadmium Zinc Telluride detectors for safeguards applications. |
Record Nr. | UNINA-9910523734703321 |
Cham, Switzerland : , : Springer, , [2021] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Biomedical imaging : principles and applications / / edited by Reiner Salzer |
Edizione | [1st edition] |
Pubbl/distr/stampa | Hoboken, : John Wiley & Sons, 2012 |
Descrizione fisica | 1 online resource (445 p.) |
Disciplina | 616.07/54 |
Altri autori (Persone) | SalzerReiner <1942-> |
Soggetto topico |
Diagnostic imaging
Biomedical materials - Imaging compatibility Spectrum analysis |
ISBN |
9786613621665
9781280591839 1280591838 9781118271926 1118271920 9781118271933 1118271939 9781118271902 1118271904 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
BIOMEDICAL IMAGING; CONTENTS; Preface; Contributors; 1 Evaluation of Spectroscopic Images; 1.1 Introduction; 1.2 Data Analysis; 1.2.1 Similarity Measures; 1.2.2 Unsupervised Pattern Recognition; 1.2.2.1 Partitional Clustering; 1.2.2.2 Hierarchical Clustering; 1.2.2.3 Density-Based Clustering; 1.2.3 Supervised Pattern Recognition; 1.2.3.1 Probability of Class Membership; 1.3 Applications; 1.3.1 Brain Tumor Diagnosis; 1.3.2 MRS Data Processing; 1.3.2.1 Removing MRS Artifacts; 1.3.2.2 MRS Data Quantitation; 1.3.3 MRI Data Processing; 1.3.3.1 Image Registration; 1.3.4 Combining MRI and MRS Data
1.3.4.1 Reference Data Set1.3.5 Probability of Class Memberships; 1.3.6 Class Membership of Individual Voxels; 1.3.7 Classification of Individual Voxels; 1.3.8 Clustering into Segments; 1.3.9 Classification of Segments; 1.3.10 Future Directions; References; 2 Evaluation of Tomographic Data; 2.1 Introduction; 2.2 Image Reconstruction; 2.3 Image Data Representation: Pixel Size and Image Resolution; 2.4 Consequences of Limited Spatial Resolution; 2.5 Tomographic Data Evaluation: Tasks; 2.5.1 Software Tools; 2.5.2 Data Access; 2.5.3 Image Processing; 2.5.3.1 Slice Averaging 2.5.3.2 Image Smoothing2.5.3.3 Coregistration and Resampling; 2.5.4 Visualization; 2.5.4.1 Maximum Intensity Projection (MIP); 2.5.4.2 Volume Rendering and Segmentation; 2.5.5 Dynamic Tomographic Data; 2.5.5.1 Parametric Imaging; 2.5.5.2 Compartment Modeling of Tomographic Data; 2.6 Summary; References; 3 X-Ray Imaging; 3.1 Basics; 3.1.1 History; 3.1.2 Basic Physics; 3.2 Instrumentation; 3.2.1 Components; 3.2.1.1 Beam Generation; 3.2.1.2 Reduction of Scattered Radiation; 3.2.1.3 Image Detection; 3.3 Clinical Applications; 3.3.1 Diagnostic Devices; 3.3.1.1 Projection Radiography 3.3.1.2 Mammography3.3.1.3 Fluoroscopy; 3.3.1.4 Angiography; 3.3.1.5 Portable Devices; 3.3.2 High Voltage and Image Quality; 3.3.3 Tomography/Tomosynthesis; 3.3.4 Dual Energy Imaging; 3.3.5 Computer Applications; 3.3.6 Interventional Radiology; 3.4 Radiation Exposure to Patients and Employees; References; 4 Computed Tomography; 4.1 Basics; 4.1.1 History; 4.1.2 Basic Physics and Image Reconstruction; 4.2 Instrumentation; 4.2.1 Gantry; 4.2.2 X-ray Tube and Generator; 4.2.3 MDCT Detector Design and Slice Collimation; 4.2.4 Data Rates and Data Transmission; 4.2.5 Dual Source CT 4.3 Measurement Techniques4.3.1 MDCT Sequential (Axial) Scanning; 4.3.2 MDCT Spiral (Helical) Scanning; 4.3.2.1 Pitch; 4.3.2.2 Collimated and Effective Slice Width; 4.3.2.3 Multislice Linear Interpolation and z-Filtering; 4.3.2.4 Three-Dimensional Backprojection and Adaptive Multiple Plane Reconstruction (AMPR); 4.3.2.5 Double z-Sampling; 4.3.3 ECG-Triggered and ECG-Gated Cardiovascular CT; 4.3.3.1 Principles of ECG-Triggering and ECG-Gating; 4.3.3.2 ECG-Gated Single-Segment and Multisegment Reconstruction; 4.4 Applications; 4.4.1 Clinical Applications of Computed Tomography 4.4.2 Radiation Dose in Typical Clinical Applications and Methods for Dose Reduction |
Record Nr. | UNINA-9910141264303321 |
Hoboken, : John Wiley & Sons, 2012 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|