top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advanced materials for radiation detection / / edited by Krzysztof Iniewski
Advanced materials for radiation detection / / edited by Krzysztof Iniewski
Edizione [1st ed. 2022.]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (VII, 356 p. 150 illus., 119 illus. in color.)
Disciplina 539.77
Soggetto topico Biomedical materials - Imaging compatibility
Optical engineering
Microwaves
ISBN 3-030-76461-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter1. Radiation Detection Materials Introduction -- Chapter2. Inorganic Perovskite CsPbBr3 Gamma-ray Detector -- Chapter3. The Impact of Detection Volume on Hybrid Halide Perovskite-Based Radiation Detectors -- Chapter4. Cs-based Perovskite Thin Films For Neutron Detection -- Chapter5. Radiation Detection Technologies Enabled by Halide Perovskite Single Crystals -- Chapter6. Metal Halide Perovskites for High Energy Radiation Detection -- Chapter7. Thallium Based Materials for Radiation Detection -- Chapter8. CdZnTeSe: A promising material for radiation detector applications -- Chapter9. Radiation detection using n-type 4H-SiC Epitaxial Layer Surface Barrier Detectors -- Chapter10. Room-Temperature Radiation Detectors Based on Large-Volume CdZnTe Single Crystals -- Chapter11. Phase Diagram, Melt Growth and Characterization of Cd0.8Zn0.2Te Crystals for X-Ray Detector -- Chapter12. Melt growth of high resolution CdZnTe detectors -- Chapter13. Solution Growth of CdZnTe Crystals for X-Ray Detector -- Chapter14. Laser-Induced Transient Currents in Radiation Detector Materials -- Chapter15. Cadmium Zinc Telluride detectors for safeguards applications.
Record Nr. UNINA-9910523734703321
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Biomedical imaging : principles and applications / / edited by Reiner Salzer
Biomedical imaging : principles and applications / / edited by Reiner Salzer
Edizione [1st edition]
Pubbl/distr/stampa Hoboken, : John Wiley & Sons, 2012
Descrizione fisica 1 online resource (445 p.)
Disciplina 616.07/54
Altri autori (Persone) SalzerReiner <1942->
Soggetto topico Diagnostic imaging
Biomedical materials - Imaging compatibility
Spectrum analysis
ISBN 1-280-59183-8
9786613621665
1-118-27192-0
1-118-27193-9
1-118-27190-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto BIOMEDICAL IMAGING; CONTENTS; Preface; Contributors; 1 Evaluation of Spectroscopic Images; 1.1 Introduction; 1.2 Data Analysis; 1.2.1 Similarity Measures; 1.2.2 Unsupervised Pattern Recognition; 1.2.2.1 Partitional Clustering; 1.2.2.2 Hierarchical Clustering; 1.2.2.3 Density-Based Clustering; 1.2.3 Supervised Pattern Recognition; 1.2.3.1 Probability of Class Membership; 1.3 Applications; 1.3.1 Brain Tumor Diagnosis; 1.3.2 MRS Data Processing; 1.3.2.1 Removing MRS Artifacts; 1.3.2.2 MRS Data Quantitation; 1.3.3 MRI Data Processing; 1.3.3.1 Image Registration; 1.3.4 Combining MRI and MRS Data
1.3.4.1 Reference Data Set1.3.5 Probability of Class Memberships; 1.3.6 Class Membership of Individual Voxels; 1.3.7 Classification of Individual Voxels; 1.3.8 Clustering into Segments; 1.3.9 Classification of Segments; 1.3.10 Future Directions; References; 2 Evaluation of Tomographic Data; 2.1 Introduction; 2.2 Image Reconstruction; 2.3 Image Data Representation: Pixel Size and Image Resolution; 2.4 Consequences of Limited Spatial Resolution; 2.5 Tomographic Data Evaluation: Tasks; 2.5.1 Software Tools; 2.5.2 Data Access; 2.5.3 Image Processing; 2.5.3.1 Slice Averaging
2.5.3.2 Image Smoothing2.5.3.3 Coregistration and Resampling; 2.5.4 Visualization; 2.5.4.1 Maximum Intensity Projection (MIP); 2.5.4.2 Volume Rendering and Segmentation; 2.5.5 Dynamic Tomographic Data; 2.5.5.1 Parametric Imaging; 2.5.5.2 Compartment Modeling of Tomographic Data; 2.6 Summary; References; 3 X-Ray Imaging; 3.1 Basics; 3.1.1 History; 3.1.2 Basic Physics; 3.2 Instrumentation; 3.2.1 Components; 3.2.1.1 Beam Generation; 3.2.1.2 Reduction of Scattered Radiation; 3.2.1.3 Image Detection; 3.3 Clinical Applications; 3.3.1 Diagnostic Devices; 3.3.1.1 Projection Radiography
3.3.1.2 Mammography3.3.1.3 Fluoroscopy; 3.3.1.4 Angiography; 3.3.1.5 Portable Devices; 3.3.2 High Voltage and Image Quality; 3.3.3 Tomography/Tomosynthesis; 3.3.4 Dual Energy Imaging; 3.3.5 Computer Applications; 3.3.6 Interventional Radiology; 3.4 Radiation Exposure to Patients and Employees; References; 4 Computed Tomography; 4.1 Basics; 4.1.1 History; 4.1.2 Basic Physics and Image Reconstruction; 4.2 Instrumentation; 4.2.1 Gantry; 4.2.2 X-ray Tube and Generator; 4.2.3 MDCT Detector Design and Slice Collimation; 4.2.4 Data Rates and Data Transmission; 4.2.5 Dual Source CT
4.3 Measurement Techniques4.3.1 MDCT Sequential (Axial) Scanning; 4.3.2 MDCT Spiral (Helical) Scanning; 4.3.2.1 Pitch; 4.3.2.2 Collimated and Effective Slice Width; 4.3.2.3 Multislice Linear Interpolation and z-Filtering; 4.3.2.4 Three-Dimensional Backprojection and Adaptive Multiple Plane Reconstruction (AMPR); 4.3.2.5 Double z-Sampling; 4.3.3 ECG-Triggered and ECG-Gated Cardiovascular CT; 4.3.3.1 Principles of ECG-Triggering and ECG-Gating; 4.3.3.2 ECG-Gated Single-Segment and Multisegment Reconstruction; 4.4 Applications; 4.4.1 Clinical Applications of Computed Tomography
4.4.2 Radiation Dose in Typical Clinical Applications and Methods for Dose Reduction
Record Nr. UNINA-9910141264303321
Hoboken, : John Wiley & Sons, 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui