top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Applied biomechatronics using mathematical models / / Jorge Garza-Ulloa
Applied biomechatronics using mathematical models / / Jorge Garza-Ulloa
Autore Garza-Ulloa Jorge
Pubbl/distr/stampa London, England : , : Elsevier, , [2018]
Descrizione fisica 1 online resource (664 pages)
Disciplina 621
Soggetto topico Mechatronics - Mathematical models
Biomedical engineering - Mathematical models
ISBN 0-12-812595-0
0-12-812594-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910583028603321
Garza-Ulloa Jorge  
London, England : , : Elsevier, , [2018]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Biomedical imaging : principles of radiography, tomography and medical physics / / Tim Salditt, Timo Aspelmeier, Sebastian Aeffner
Biomedical imaging : principles of radiography, tomography and medical physics / / Tim Salditt, Timo Aspelmeier, Sebastian Aeffner
Autore Salditt Tim
Pubbl/distr/stampa Berlin, [Germany] ; ; Boston, [Massachusetts] : , : De Gruyter, , 2017
Descrizione fisica 1 online resource (348 pages) : illustrations, tables
Disciplina 616.07/54
Collana De Gruyter Graduate
Soggetto topico Diagnostic imaging - Methodology
Diagnostic imaging - Data processing
Biomedical engineering - Mathematical models
Medical physics
Soggetto genere / forma Electronic books.
ISBN 3-11-042351-0
3-11-042669-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Frontmatter -- Contents -- Preface and acknowledgements -- 1. Introduction -- 2. Digital image processing -- 3. Essentials of medical x-ray physics -- 4. Tomography -- 5. Radiobiology, radiotherapy, and radiation protection -- 6. Phase contrast radiography -- 7. Object reconstruction: nonideal conditions and noise -- Index
Record Nr. UNINA-9910467062203321
Salditt Tim  
Berlin, [Germany] ; ; Boston, [Massachusetts] : , : De Gruyter, , 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Biomedical imaging : principles of radiography, tomography and medical physics / / Tim Salditt, Timo Aspelmeier, Sebastian Aeffner
Biomedical imaging : principles of radiography, tomography and medical physics / / Tim Salditt, Timo Aspelmeier, Sebastian Aeffner
Autore Salditt Tim
Pubbl/distr/stampa Berlin, [Germany] ; ; Boston, [Massachusetts] : , : De Gruyter, , 2017
Descrizione fisica 1 online resource (348 pages) : illustrations, tables
Disciplina 616.07/54
Collana De Gruyter Graduate
Soggetto topico Diagnostic imaging - Methodology
Diagnostic imaging - Data processing
Biomedical engineering - Mathematical models
Medical physics
ISBN 3-11-042351-0
3-11-042669-2
Classificazione SCI055000MED003070COM021030MED080000COM018000MAT003000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Frontmatter -- Contents -- Preface and acknowledgements -- 1. Introduction -- 2. Digital image processing -- 3. Essentials of medical x-ray physics -- 4. Tomography -- 5. Radiobiology, radiotherapy, and radiation protection -- 6. Phase contrast radiography -- 7. Object reconstruction: nonideal conditions and noise -- Index
Record Nr. UNINA-9910795493003321
Salditt Tim  
Berlin, [Germany] ; ; Boston, [Massachusetts] : , : De Gruyter, , 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Biomedical imaging : principles of radiography, tomography and medical physics / / Tim Salditt, Timo Aspelmeier, Sebastian Aeffner
Biomedical imaging : principles of radiography, tomography and medical physics / / Tim Salditt, Timo Aspelmeier, Sebastian Aeffner
Autore Salditt Tim
Pubbl/distr/stampa Berlin, [Germany] ; ; Boston, [Massachusetts] : , : De Gruyter, , 2017
Descrizione fisica 1 online resource (348 pages) : illustrations, tables
Disciplina 616.07/54
Collana De Gruyter Graduate
Soggetto topico Diagnostic imaging - Methodology
Diagnostic imaging - Data processing
Biomedical engineering - Mathematical models
Medical physics
ISBN 3-11-042351-0
3-11-042669-2
Classificazione SCI055000MED003070COM021030MED080000COM018000MAT003000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Frontmatter -- Contents -- Preface and acknowledgements -- 1. Introduction -- 2. Digital image processing -- 3. Essentials of medical x-ray physics -- 4. Tomography -- 5. Radiobiology, radiotherapy, and radiation protection -- 6. Phase contrast radiography -- 7. Object reconstruction: nonideal conditions and noise -- Index
Record Nr. UNINA-9910811882503321
Salditt Tim  
Berlin, [Germany] ; ; Boston, [Massachusetts] : , : De Gruyter, , 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Introduction to modeling and numerical methods for biomedical and chemical engineers / / Edward Gatzke
Introduction to modeling and numerical methods for biomedical and chemical engineers / / Edward Gatzke
Autore Gatzke E. P (Edward P.)
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (292 pages)
Disciplina 610.28
Soggetto topico Biomedical engineering - Mathematical models
ISBN 3-030-76449-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- 1 Modern Engineering -- 1.1 Engineering -- 1.1.1 Chemical Engineering -- 1.1.2 Biomedical Engineering -- 1.1.3 Other Engineering Disciplines -- 1.2 General Problem Solving Strategies -- 1.2.1 Sketches and Schematics -- 1.2.2 Models and Numerical Solutions -- 1.3 Process Flow Charts -- 1.4 Computers in Engineering -- 1.5 Suggestions for Homework Submissions -- Problems -- Further Reading -- 2 Mathematical Fundamentals -- 2.1 Basic Math -- Problems: Basic Math -- 2.2 Basic Algebra -- Problems: Finding Solutions -- 2.3 Sets of Linear Equations -- Problems: Linear Equations -- 2.4 Unit Conversion -- Problems: Unit Conversion -- 2.5 Reading Graphs -- Problems: Graphs of Functions -- 2.6 Making Graphs -- Problems: Sketching Functions -- 2.7 Trigonometry -- Problems: Graphs of Functions -- 2.8 Calculus: Basic Derivatives -- Problems: Basic Derivatives -- 2.9 Calculus: Advanced Derivatives -- Problems: Advanced Derivatives -- Further Reading -- 3 Classification of Numerical Problems -- 3.1 General Classifications of Numerical Problems -- 3.1.1 Analytical vs. Numerical -- 3.1.2 Steady-State vs. Dynamic -- 3.1.3 Scalar vs. Multivariable Algebraic Equations -- 3.1.3.1 Multivariable Algebraic Equations -- 3.1.4 Linear vs. Nonlinear -- 3.1.5 Algebraic vs. Differential -- 3.1.6 Deterministic vs. Stochastic -- 3.2 Common Classes of Numerical Problems -- 3.2.1 Algebraic Equations -- 3.2.2 Numerical Optimization -- 3.2.3 Ordinary Differential Equations -- 3.2.4 Partial Differential Equations -- 3.2.5 Differential Algebraic Equations -- Problems -- 4 Engineering Modeling -- 4.1 Forces and Free Body Diagrams -- 4.1.1 Simple Force Balance Examples -- Example: Falling Droplet at Terminal Velocity -- Example: Buoyant Floating Solid -- 4.2 Electric Circuits -- 4.2.1 Kirchhoff's Current Law -- 4.2.2 Kirchhoff's Voltage Law.
4.3 Conservation of Mass -- 4.4 Mass Balance Examples -- Problems -- 5 Structured Programming -- 5.1 Introduction to Structured Programming -- 5.2 Variables -- 5.3 Assignment Statements -- 5.4 Input and Output -- 5.5 Data Types -- 5.6 IF Statements -- 5.7 FOR Statements -- 5.8 WHILE Statements -- 5.9 Scripts -- 5.10 Functions -- 5.11 Naming Conventions -- 5.12 Debugging -- 5.12.1 Pseudo Code -- 5.13 Compiling vs. Interpreting -- 5.14 Examples -- Problems -- Further Reading -- 6 Introduction to MATLAB -- 6.1 MATLAB Advantages and Disadvantages -- 6.2 Commands -- 6.2.1 Examples of Basic Matlab Commands -- 6.2.2 Examples of Basic Matlab Plotting Commands -- 6.3 Tutorials -- 6.3.1 MATLAB Basics -- 6.3.2 MATLAB Flow Control -- 6.3.3 MATLAB Linear Algebra and Root Finding -- 6.3.4 MATLAB Plotting -- 6.3.5 MATLAB Tutorials -- 7 Linear Algebra -- 7.1 Introduction -- 7.2 Solution by Row Reduction -- 7.3 Linear Equations: Special Cases -- 7.3.1 Case A: One Solution -- 7.3.2 Case B: No Solution -- 7.3.3 Case C: Many Solutions -- 7.3.4 Non-Square Systems -- 7.4 Vectors -- 7.4.1 Dot Product -- 7.5 The Matrix -- 7.5.1 Matrix Multiplication -- 7.5.2 Determinant of a Matrix -- 7.5.3 Cross Product -- 7.6 Matrix Representation of Sets of Linear Equations -- 7.6.1 Solving Sets of Linear Equations -- 7.6.2 Determining the Matrix Inverse -- 7.7 Visualization -- 7.7.1 Linear Transform -- 7.7.2 Range -- 7.8 Mass Balance Example -- 7.8.1 MATLAB Code Example -- Problems -- Further Reading -- 8 Root Finding and Integration -- 8.1 Finding Roots of an Equation -- 8.1.1 Real Gas -- 8.1.2 Falling Droplet -- 8.1.3 General Form -- 8.2 Newton's Method -- 8.3 Bisection Method -- 8.4 Multivariate Root Finding -- 8.5 Integrating a Function -- 8.5.1 Average Velocity -- 8.5.2 Average Concentration -- 8.5.3 Total Drug Delivered -- 8.5.4 Riemann Sums.
8.5.5 Function Integration vs. Euler Integration -- 8.6 Trapezoidal Integration -- Problems -- Further Reading -- 9 Introduction to Numerical Optimization -- 9.1 The Objective Function -- 9.2 Unconstrained Optimization -- 9.3 Constraints -- 9.3.1 Smallville Example -- 9.4 Optimality Conditions -- 9.4.1 Optimality of Smallville Example -- 9.4.2 Equality Constraints and Infeasibility -- 9.5 Convexity -- 9.6 Types of Optimization Problems -- Problems -- Further Reading -- 10 Introduction to Spreadsheets -- 10.1 Spreadsheet Advantages and Disadvantages -- 10.2 Excel Functions -- 10.3 Tutorials -- 10.3.1 Excel Tutorial 1 -- 10.3.2 Excel Tutorial 2 -- 10.3.3 Excel Tutorial 3 -- 10.3.4 Excel Tutorial 4 -- Problems -- Further Reading -- 11 Basic Probability and Statistics -- 11.1 Random Variables and Probability Distributions -- 11.2 Histograms -- 11.3 Specific Probability Distributions -- 11.3.1 Normal/Gaussian -- 11.3.2 Continuous Uniform -- 11.3.3 Lognormal -- 11.3.4 Weibull -- 11.3.5 Beta -- 11.3.6 Student's t -- 11.3.7 Discrete Uniform -- 11.3.8 Binomial -- 11.3.9 Poisson -- 11.4 Calculation of Basic Statistics -- 11.4.1 Mean -- 11.4.2 Median -- 11.4.3 Variance -- 11.4.4 Standard Deviation -- 11.4.5 Standard Error -- 11.5 Central Limit Theorem -- 11.6 Hypothesis Testing -- 11.6.1 Type I and Type II Errors -- 11.7 Applied Methods -- 11.8 Monte Carlo Methods -- Problems -- Further Reading -- 12 Linear Modeling -- 12.1 Linear Interpolation -- 12.2 Linear Extrapolation -- 12.3 Linear Regression -- 12.3.1 Correlation Coefficient -- 12.4 Transformation to Linear Form -- 12.5 Linearization -- Problems -- 13 Forces and Moments -- 13.1 Vectors -- 13.1.1 Force Vector Components -- 13.1.2 Vector Addition -- 13.2 Moments -- 13.3 Static Equilibrium -- Problems -- 14 Differential Equations -- 14.1 Ordinary Differential Equations -- 14.1.1 Dynamic Mass Balance Example.
14.2 Euler Integration for ODEs -- 14.3 Boundary Value ODE Problems -- 14.4 Partial Differential Equations -- 14.4.1 Heat Transfer in Solids -- 14.4.2 Fluid Flow -- 14.4.3 Reaction and Diffusion of Dilute Species -- 14.4.4 Stress-Strain for Elastic Materials -- 14.5 Finite Difference Approximation for PDEs -- 14.5.1 PDE Boundary Conditions -- 14.6 Simple PDE Example -- 14.7 Introduction to COMSOL -- 14.8 Tutorials -- 14.9 COMSOL Design -- 14.9.1 Parametric Study -- Problems -- Further Reading -- Index.
Record Nr. UNINA-9910523737003321
Gatzke E. P (Edward P.)  
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Mathematical modeling in biomedical imaging . I Electrical and ultrasound tomographies, anomaly detection, and brain imaging / / Habib Ammari (ed.)
Mathematical modeling in biomedical imaging . I Electrical and ultrasound tomographies, anomaly detection, and brain imaging / / Habib Ammari (ed.)
Edizione [1st ed. 2009.]
Pubbl/distr/stampa Berlin, : Springer, c2009
Descrizione fisica 1 online resource (XV, 228 p.)
Disciplina 570.285
Altri autori (Persone) AmmariHabib
Collana Lecture notes in mathematics
Soggetto topico Biomedical engineering - Mathematical models
Electrical impedance tomography
ISBN 9783642034442
3642034446
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Multi-Frequency Electrical Impedance Tomography and Magnetic Resonance Electrical Impedance Tomography -- Time Reversing Waves For Biomedical Applications -- The Method of Small-Volume Expansions for Medical Imaging -- Electric and Magnetic Activity of the Brain in Spherical and Ellipsoidal Geometry -- Estimation of Velocity Fields and Propagation on Non-Euclidian Domains: Application to the Exploration of Cortical Spatiotemporal Dynamics.
Altri titoli varianti Electrical and ultrasound tomographies, anomaly detection, and brain imaging
Record Nr. UNINA-9910767512003321
Berlin, : Springer, c2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Mathematical modeling in biomedical imaging II : optical, ultrasound, and opto-acousitc tomographies / / Habib Ammari (ed.)
Mathematical modeling in biomedical imaging II : optical, ultrasound, and opto-acousitc tomographies / / Habib Ammari (ed.)
Edizione [1st ed. 2012.]
Pubbl/distr/stampa Berlin, : Springer, 2012
Descrizione fisica 1 online resource (IX, 160 p. 43 illus., 38 illus. in color.)
Disciplina 519
Altri autori (Persone) AmmariHabib
Collana Lecture notes in mathematics
Soggetto topico Tomography - Mathematical models
Biomedical engineering - Mathematical models
ISBN 9783642229909
3642229905
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Direct Reconstruction Methods in Optical Tomography -- Direct Reconstruction Methods in Ultrasound Imaging of Small Anomalies -- Photoacoustic Imaging for Attenuating Acoustic Media -- Attenuation Models in Photoacoustics -- Quantitative Photoacoustic Tomography.
Record Nr. UNINA-9910139594903321
Berlin, : Springer, 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Multiscale Modelling in Biomedical Engineering / / Antonis I. Sakellarios, Vassiliki T. Potsika, and Dimitrios I. Fotiadis
Multiscale Modelling in Biomedical Engineering / / Antonis I. Sakellarios, Vassiliki T. Potsika, and Dimitrios I. Fotiadis
Autore Sakellarios Antonis I.
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2023]
Descrizione fisica 1 online resource (402 pages)
Disciplina 610.28
Collana IEEE Press Series on Biomedical Engineering Series
Soggetto topico Biomedical engineering - Mathematical models
Biomedical engineering - Computer simulation
Biomedical engineering - Mathematics
ISBN 1-119-81902-4
1-119-51730-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Author Biographies -- Preface -- List of Abbreviations -- List of Terms -- Chapter 1 Systems Biology and Multiscale Modeling -- 1.1 Introduction -- 1.2 Systems Biology -- 1.3 Systems Biology Modeling Goals -- 1.4 Systems Biology Modeling Approach -- 1.5 Application of Multiscale Methods in Systems Biology -- 1.5.1 Introduction -- 1.6 The Use of Systems Biology and Multiscale Modeling in Biomedical and Medical Science -- 1.7 Application of Computational Methods in Biomedical Engineering -- 1.7.1 Fundamental Principles -- 1.7.2 Finite Element Method -- 1.7.3 Boundary Element Method -- 1.7.4 Finite Differences Method -- 1.8 Challenges -- References -- Chapter 2 Biomedical Imaging -- 2.1 Introduction -- 2.2 X-ray Radiography -- 2.2.1 X-ray Interaction with Tissues -- 2.2.2 Medical Applications of X-rays -- 2.3 Computed Tomography -- 2.3.1 The Principle of CT Imaging -- 2.3.2 The Evolution of CT Scanners -- 2.3.3 Medical Applications of CT Imaging -- 2.3.3.1 Application of CT Imaging in Cancer -- 2.3.3.2 Application of CT Imaging in Lungs -- 2.3.3.3 Application of CT Imaging in Cardiovascular Disease -- 2.3.3.4 Application of CT Imaging in Other Fields -- 2.3.4 Radiation of CT Imaging -- 2.4 Diagnostic Ultrasound -- 2.4.1 The Principle of US -- 2.4.2 Medical Applications of US -- 2.5 Magnetic Resonance Imaging -- 2.5.1 MRI Principle -- 2.5.2 Medical Applications of MRI -- 2.6 Positron Emission Tomography (PET) -- 2.6.1 The Principle of PET -- 2.6.2 Medical Applications of PET -- 2.7 Single Photon Emission Computed Tomography -- 2.7.1 The Principle of SPECT -- 2.7.2 Medical Applications of SPECT -- 2.8 Endoscopy -- 2.8.1 Medical Applications of Endoscopy -- 2.9 Elastography -- 2.9.1 Elastographic Techniques -- 2.9.2 Elastographic Medical Applications -- 2.10 Conclusions and Future Trends.
References -- Chapter 3 Computational Modeling at Molecular Level -- 3.1 Introduction -- 3.2 Introduction to Molecular Mechanics -- 3.2.1 Chemical Formulas -- 3.2.2 Molecular Structure and Polarity -- 3.2.2.1 Mathematical Modeling of Polarizing Biochemical Systems -- 3.3 Molecular Bioengineering in Areas Critical to Human Health -- 3.3.1 Cell Biology -- 3.3.1.1 Biology of Growth Factor Systems -- 3.3.2 Diagnostic Medicine -- 3.3.2.1 Lab-on-a-Chip Devices -- 3.3.2.2 Biosensors -- 3.3.3 Preventive Medicine -- 3.3.4 Therapeutic Medicine -- 3.3.4.1 Drug Delivery -- 3.3.4.2 Tissue Engineering -- References -- Chapter 4 Computational Modeling at Cell Level -- 4.1 Introduction -- 4.2 Introduction to Cell Mechanics -- 4.2.1 Cell Material Properties -- 4.2.2 Cell Composition and Structure -- 4.3 Cellular Bioengineering in Areas Critical to Human Health -- 4.3.1 Biology -- 4.3.2 Diagnostic Medicine -- 4.3.2.1 Organ Chip Technology -- 4.3.2.2 Mechanosensors -- 4.3.3 Therapeutic Medicine -- 4.3.3.1 Drug Delivery -- 4.3.3.2 Tissue Engineering -- 4.3.4 P4 Medicine -- References -- Chapter 5 Computational Modeling at Tissue Level -- 5.1 Introduction -- 5.2 Epithelial Tissue -- 5.2.1 Composition and Properties of Epithelial Tissue -- 5.2.2 Computational Modeling of Epithelial Tissue -- 5.3 Connective Tissue -- 5.3.1 Composition and Properties of Connective Tissue -- 5.3.2 Computational Modeling of Connective Tissue -- 5.4 Muscle Tissue -- 5.4.1 Composition and Properties of Muscle Tissue -- 5.4.2 Computational Modeling of Muscle Tissue -- 5.4.2.1 Computational Modeling of Skeletal Muscle Tissue -- 5.4.2.2 Computational Modeling of Smooth Muscle Tissue -- 5.4.2.3 Computational Modeling of Cardiac Muscle Tissue -- 5.4.2.4 Musculotendon Models -- 5.5 Nervous Tissue -- 5.5.1 Computational Modeling of Brain Tissue -- 5.5.2 Computational Modeling of the Spinal Cord Tissue.
5.5.3 Computational Modeling of Peripheral Nerves -- 5.6 Conclusion -- References -- Chapter 6 Macroscale Modeling at the Organ Level -- 6.1 Introduction -- 6.2 The Respiratory System -- 6.2.1 Computational Modeling of the Respiratory System -- 6.3 The Digestive System -- 6.3.1 Computational Modeling of the Digestive System -- 6.4 The Cardiovascular System -- 6.4.1 Computational Modeling of the Cardiovascular System -- 6.5 The Urinary System -- 6.5.1 Computational Modeling of the Urinary System -- 6.6 The Integumentary System -- 6.6.1 Computational Modeling of the Integumentary System -- 6.7 The Musculoskeletal System -- 6.7.1 Introduction to the Skeletal System -- 6.7.2 Introduction to the Muscular System -- 6.7.3 Computational Modeling of the Muscular-Skeletal System -- 6.8 The Endocrine System -- 6.8.1 Computational Modeling of the Endocrine System -- 6.9 The Lymphatic System -- 6.9.1 Computational Modeling of the Lymphatic System -- 6.10 The Nervous System -- 6.10.1 Computational Modeling of the Nervous System -- 6.11 The Reproductive System -- 6.11.1 Computational Modeling of the Reproductive System -- 6.12 Conclusion -- References -- Chapter 7 Mechanotransduction Perspective, Recent Progress and Future Challenges -- 7.1 Introduction -- 7.2 Methods for Studying Mechanotransduction -- 7.2.1 How Mechanical Forces Are Detected -- 7.2.2 Transmission of Mechanical Forces -- 7.2.3 Conversion of Mechanical Forces to Signals -- 7.3 Mathematical Models of Mechanotransduction -- 7.3.1 ODE Based Computational Model -- 7.3.2 PDE Based Computational Model -- 7.3.2.1 Mechanical Factors that Affect Cell Differentiation and Proliferation -- 7.3.2.2 A Case Example of Multi-Scale Modeling Cell Differentiation and Proliferation -- 7.3.3 Methodology of a Hybrid Multi-Scale Approach -- 7.3.3.1 The Agent-Based Model (ABM) -- 7.3.3.2 Mechanical Model -- 7.4 Challenges.
References -- Chapter 8 Multiscale Modeling of the Musculoskeletal System -- 8.1 Introduction -- 8.2 Structure of the Musculoskeletal System -- 8.2.1 Structure of the Skeletal System Components -- 8.2.2 Structure of the Muscular System Components -- 8.3 Elasticity -- 8.4 Mechanical Characteristics of Muscles -- 8.5 Multiscale Modeling Approaches of the Musculoskeletal System -- 8.5.1 Multiscale Modeling of Bones -- 8.5.2 Multiscale Modeling of Articular Cartilage -- 8.5.3 Multiscale Modeling of Tendons and Ligaments -- 8.5.3.1 Advances in Multiscale Modeling of Tendons -- 8.5.3.2 Advances in Multiscale Modeling of Ligaments -- 8.5.4 Multiscale Modeling of the Skeletal Muscle -- 8.5.5 Multiscale Modeling of the Smooth Muscle -- 8.6 Conclusion -- References -- Chapter 9 Multiscale Modeling of Cardiovascular System -- 9.1 Introduction -- 9.2 Cardiovascular Mechanics -- 9.2.1 Visualization of the Cardiovascular System and 3D Arterial Reconstruction -- 9.2.2 Blood Flow Modeling -- 9.2.2.1 Steady and Pulsatile Flow of Blood -- 9.2.2.2 Computational Fluid Dynamics Modeling -- 9.2.2.3 Newtonian and Non-Newtonian Behavior of Blood -- 9.2.3 Plaque Growth Modeling -- 9.2.4 Agent-Based Modeling -- 9.2.4.1 Key Components of Agent-Based Modelling -- 9.2.4.2 Agent-Based Modelling and Simulation Approach -- 9.2.4.3 Problem Definition -- 9.2.4.4 ABM Applications in Cardiovascular Systems -- 9.2.5 Discrete Particle Dynamics -- 9.2.6 Multiscale Model of Drug Delivery/Restenosis -- 9.2.6.1 Benefits of Multiscale Model of Drug Delivery/Restenosis -- 9.3 Conclusions -- References -- Chapter 10 Risk Prediction -- 10.1 Introduction -- 10.2 Medical Data Preprocessing -- 10.2.1 Data Sharing -- 10.2.2 Data Harmonization -- 10.3 Machine Learning and Data Mining -- 10.3.1 Supervised Learning Algorithms -- 10.3.1.1 Regression Analysis -- 10.3.1.2 Support Vector Machines.
10.3.1.3 Naïve Bayes -- 10.3.1.4 Decision Trees -- 10.3.1.5 Ensemble Classifiers -- 10.3.1.6 Artificial Neural Networks -- 10.3.1.7 K-Means -- 10.3.1.8 Spectral Clustering -- 10.3.1.9 Hierarchical Clustering -- 10.4 Explainable Machine Learning -- 10.4.1 Transparency -- 10.4.2 Evaluation and Types of Explanation -- 10.5 Example of Predictive Models in Cardiovascular Disease -- 10.6 Conclusion -- References -- Chapter 11 Future Trends -- 11.1 Virtual Populations -- 11.1.1 Methods for Virtual Population Generation -- 11.1.2 A Methodological Approach for a Virtual Population -- 11.1.2.1 Multivariate Log-Normal Distribution (log-MVND) -- 11.1.2.2 Supervised Tree Ensembles -- 11.1.2.3 Unsupervised Tree Ensembles -- 11.1.2.4 Radial Basis Function-Based Artificial Neural Networks -- 11.1.2.5 Bayesian Networks -- 11.1.2.6 Performance Evaluation of the Quality of the Generated Virtual Patient Data -- 11.1.3 A Novel Approach for a Virtual Population Combining Multiscale Modeling -- 11.2 Digital Twins -- 11.2.1 Ecosystem of the Digital Twin for Health -- 11.2.2 An Example Workflow of a Digital Twin -- 11.3 Integrating Multiscale Modeling and Machine Learning -- 11.3.1 Physics-Informed NN (PINN) -- 11.3.2 Deep NN Algorithms Inspired by Statistical Physics and Information Theory -- 11.4 Conclusion and Future Trends -- References -- Index -- EULA.
Record Nr. UNINA-9910830080803321
Sakellarios Antonis I.  
Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Numerical methods in biomedical engineering [[electronic resource] /] / Stanley M. Dunn, Alkis Constantinides, Prabhas V. Moghe
Numerical methods in biomedical engineering [[electronic resource] /] / Stanley M. Dunn, Alkis Constantinides, Prabhas V. Moghe
Pubbl/distr/stampa Amsterdam ; ; Boston, : Elsevier Academic Press, c2006
Descrizione fisica 1 online resource (628 p.)
Disciplina 610/.28
Altri autori (Persone) DunnStanley Martin
ConstantinidesA
MoghePrabhas V
Collana Academic Press series in biomedical engineering
Soggetto topico Biomedical engineering - Mathematics
Biomedical engineering - Mathematical models
Soggetto genere / forma Electronic books.
ISBN 1-280-96128-7
9786610961283
0-08-047080-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front cover; Title page; Copyright page; Table of contents; Preface; Organization and Outline of the Book; Part I: Fundamentals; Chapter 1 Modeling Biosystems; 1.1 Biomedical Engineering; 1.2 Fundamental Aspects of Biomedical Engineering; 1.3 Constructing Engineering Models; 1.3.1 A framework for problem solving; 1.3.2 Formulating the mathematical expression of conservation; 1.3.3 Using balance equations; 1.4 Examples of Solving Biomedical Engineering Models by Computer; 1.4.1 Modeling rtPCR efficiency; 1.4.2 Modeling transcranial magnetic stimulation; 1.4.3 Modeling cardiac electrophysiology
1.4.4 Using numerical methods to model the response of the cardiovascular system to gravity1.5 Overview of the Text; 1.5.1 Part I: Fundamentals; 1.5.2 Part II: Steady-state behavior (algebraic models); 1.5.3 Part III: Dynamic behavior (differential equations); 1.5.4 Part IV: Modeling tools and applications; 1.6 Lessons Learned in this Chapter; 1.7 Problems; 1.8 References; Chapter 2 Introduction to Computing; 2.1 Introduction; 2.2 The Role of Computers in Biomedical Engineering; 2.3 Programming Language Tools and Techniques; 2.3.1 Sequences of statements; 2.3.2 Conditional execution
2.3.3 Iteration2.3.4 Encapsulation; 2.4 Fundamentals of Data Structures for MATLAB; 2.4.1 Number representation; 2.4.2 Arrays; 2.4.3 Characters and strings; 2.4.4 Logical or Boolean data types; 2.4.5 Cells and cell arrays; 2.4.6 Data structures not explicitly found in MATLAB; 2.4.7 Data type conversion; 2.5 An Introduction to Object-Oriented Systems; 2.6 Analyzing Algorithms and Programs; 2.6.1 Polynomial complexity; 2.6.2 Operation counting; 2.7 Lessons Learned in this Chapter; 2.8 Problems; Chapter 3 Concepts of Numerical Analysis; 3.1 Scientific Computing
3.2 Numerical Algorithms and Errors3.3 Taylor Series; 3.4 Keeping Errors Small; 3.5 Floating-Point Representation in MATLAB; 3.5.1 The IEEE 754 standard for floating-point representation; 3.5.2 Floating-point arithmetic, truncation, and rounding; 3.5.3 Roundoff error accumulation and cancellation error; 3.6 Lessons Learned in this Chapter; 3.7 Problems; 3.8 References; Part II: Steady-State Behavior; Chapter 4 Linear Models of Biological Systems; 4.1 Introduction; 4.2 Examples of Linear Biological Systems; 4.2.1 Force balance in biomechanics; 4.2.2 Biomedical imaging and image processing
5.3 Examples of Nonlinear Equations in Biomedical Engineering
Record Nr. UNINA-9910458726803321
Amsterdam ; ; Boston, : Elsevier Academic Press, c2006
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Numerical methods in biomedical engineering [e-book] / Stanley M. Dunn, Alkis Constantinides, Prabhas V. Moghe
Numerical methods in biomedical engineering [e-book] / Stanley M. Dunn, Alkis Constantinides, Prabhas V. Moghe
Pubbl/distr/stampa Amsterdam ; Boston : Elsevier Academic Press, c2006
Descrizione fisica xviii, 615 p. : ill. ; 24 cm
Disciplina 610.28
Altri autori (Persone) Dunn, Stanley Martin
Constantinides, Alkisauthor
Moghe, Prabhas V.
Collana Academic Press series in biomedical engineering
Soggetto topico Biomedical engineering - Mathematics
Biomedical engineering - Mathematical models
Soggetto genere / forma Electronic books.
ISBN 9780121860318
0121860310
Formato Risorse elettroniche
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Section I: Fundamentals of Computational Analysis and Modeling Biosystems; Section II: Steady State Biosystems: Linear and Non-linear Models; Section III: Dynamic Biosystems Modeled with Ordinary or Partial Differential Equations; Section IV: Computational Packages of Physiology Models and Case Studies
Record Nr. UNISALENTO-991003234339707536
Amsterdam ; Boston : Elsevier Academic Press, c2006
Risorse elettroniche
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui