top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Engineering Translational Models of Lung Homeostasis and Disease / / edited by Chelsea M. Magin
Engineering Translational Models of Lung Homeostasis and Disease / / edited by Chelsea M. Magin
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (328 pages)
Disciplina 262
Collana Advances in Experimental Medicine and Biology
Soggetto topico Regenerative medicine
Biomedical engineering
Cytology
Biomaterials
Cells
Biotechnology
Regenerative Medicine and Tissue Engineering
Biomedical Engineering and Bioengineering
Cell Biology
Biomaterials-Cells
Soggetto non controllato Physiology
Science
ISBN 9783031266256
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Foreword -- Preface -- Contents -- Chapter 1: An Introduction to Engineering and Modeling the Lung -- 1.1 Introduction -- 1.2 Broader Impacts of Understanding Lung Biology in Health and Disease -- 1.3 Lung Physiology in Homeostasis and Disease -- 1.4 Engineering Translational Models of Lung Homeostasis and Disease -- 1.5 Conclusion -- References -- Part I: Engineering and Modeling the Developing Lung -- Chapter 2: Simple Models of Lung Development -- 2.1 Introduction -- 2.1.1 Basics of Lung Development -- 2.2 Models to Study Lung Development -- 2.3 Models of Early Lung Development (Airways) -- 2.3.1 Explant Cultures -- 2.3.2 2D and 3D Imaging of Branching Morphogenesis -- 2.3.3 Time-Lapse Imaging -- 2.3.4 Organoids -- 2.4 Models of Late Lung Development -- 2.4.1 Saccular Phase Models -- 2.4.2 Alveologenesis -- 2.4.3 Other 3D Models of Alveologenesis -- 2.5 Conclusion -- References -- Chapter 3: Lung Development in a Dish: Models to Interrogate the Cellular Niche and the Role of Mechanical Forces in Development -- 3.1 Introduction -- 3.2 Self-Assembled Organoid and Spheroid Models -- 3.2.1 Creating Lung Organoid Models That Represent Regional Composition and Heterogeneity -- 3.2.2 Advancing the Complexity of Organoids to Investigate Tissue Crosstalk -- 3.2.3 Induction of Lung Organoids to Create Multiple Tissue Compartments -- 3.3 Microfluidic and Organ-on-a-Chip Models to Study Lung Development -- 3.3.1 Moving Toward More Complex Physiology with Multiple Channels -- 3.3.2 Integration of Dimensionality and Biomaterials into Organ-on-a-Chip Platforms -- 3.4 Whole Organ Models to Understand the Mechanics of Lung Development -- 3.5 Conclusion -- References -- Chapter 4: Multipotent Embryonic Lung Progenitors: Foundational Units of In Vitro and In Vivo Lung Organogenesis -- 4.1 Introduction -- 4.2 Overview of Embryonic Lung Progenitors.
4.2.1 Stage-Specific Epithelial Progenitors (Primordial, Distal Tip, Basal) -- Lung Primordial Progenitors -- Distal Tip Progenitors -- Airway Basal Cells -- 4.2.2 Stage-Specific Mesenchymal Progenitors -- 4.3 Ex Vivo Culture of Multipotent Embryonic Lung Progenitors -- 4.3.1 Ex Vivo Culture of Mouse Embryonic Progenitors -- 4.3.2 Ex Vivo Culture of Human Embryonic Progenitors -- 4.4 In Vitro Derivation of Multipotent Embryonic Lung Progenitors -- 4.5 Progenitor Cell Similarity Models -- 4.6 Conclusion -- References -- Part II: Engineering and Modeling Large Airways -- Chapter 5: Basic Science Perspective on Engineering and Modeling the Large Airways -- 5.1 Introduction -- 5.2 Proximal Airways: Composition and Function -- 5.3 Regeneration of the Airways -- 5.3.1 Endogenous Stem Cells -- 5.3.2 The Stem Cell Niche -- 5.3.3 Stem Cell Attrition with Disease and Aging -- 5.4 Developing Cellular Therapies for Regeneration of Airway Tissues -- 5.5 In Vitro Models of the Human Airways -- 5.5.1 Transwell Air-Liquid Interface (ALI) Cultures -- 5.5.2 Airway Spheroids: Tracheo/Bronchospheres -- 5.5.3 Organoids -- 5.5.4 Lung-on-a-Chip -- 5.5.5 Xenografts -- 5.6 Cell-Matrix Interactions -- 5.7 Conclusion -- References -- Chapter 6: Computational, Ex Vivo, and Tissue Engineering Techniques for Modeling Large Airways -- 6.1 Large Airways: Structure-Function Relationship -- 6.2 Pathologies and the Need for Modeling the Large Airways -- 6.2.1 Conditions That Cause Large Airway Dysfunction -- 6.2.2 Need for Computational and Physiological Models of the Large Airways -- 6.3 Computational Modeling -- 6.4 Ex Vivo Testing -- 6.5 Tissue Engineering Techniques for Modeling the Large Airways -- 6.5.1 Biomaterial Scaffolds -- Decellularized Scaffolds -- Cellular, Synthetic, or Hybrid Biomaterial Approaches -- 6.5.2 Manufacturing Techniques for Large Airway Models.
6.6 Tools for Functional Assessment of Large Airway Models -- 6.7 Limitations and Future Considerations -- References -- Chapter 7: Engineering Large Airways -- 7.1 Introduction -- 7.2 Forces During Respiration and How They Can Influence Construct Design -- 7.3 The Structure of the Trachea and Its Mechanical Properties -- 7.3.1 Tracheal Cartilage -- 7.3.2 Trachealis Muscle -- 7.3.3 Annular Ligament -- 7.4 Mechanical Properties of the Whole Trachea and the Implications of Mechanical Property Mismatch -- 7.4.1 Compliance -- 7.4.2 Extension and Bending -- 7.5 Key Considerations and Summary of Recommended Mechanical Tests -- 7.6 Conclusion -- References -- Part III: Engineering and Modeling the Mesenchyme and Parenchyma -- Chapter 8: Engineering and Modeling the Lung Mesenchyme -- 8.1 Introduction -- 8.2 Advancing the Discovery of Fibroblast Heterogeneity -- 8.3 The Organization and Heterogeneity of Lung Fibroblasts -- 8.3.1 Platelet-Derived Growth Factor Receptor Alpha (PDGFRα)-Expressing Alveolar Fibroblasts 1 and 2 -- 8.3.2 Platelet-Derived Growth Factor Beta (PDGFRβ)-Expressing Pericytes -- 8.3.3 Airway and Vascular Smooth Muscle (ASM and VSM) -- 8.4 Other Fibroblast Subtypes -- 8.4.1 Developmental Secondary Crest Myofibroblasts (SCMF) -- 8.4.2 Fibrotic Disease-Associated Myofibroblasts (MyoF) -- 8.5 Bioengineering Approaches to Characterize Complex Fibroblast Behaviors -- 8.5.1 Organoids to Model Mesenchymal-Epithelial Interactions -- 8.5.2 Lung-on-a-Chip to Model Human Lung Architecture and Environmental Forces -- 8.5.3 Acellular Tissue Scaffolds to Model Fibroblast and ECM Interactions -- 8.6 Targeting Fibroblasts with Nanoparticles as Strategy for Intervention -- 8.7 Conclusion -- References -- Chapter 9: Engineering Dynamic 3D Models of Lung -- 9.1 Introduction -- 9.2 Building the Extracellular Microenvironment -- 9.2.1 Biomaterials.
9.2.2 Lung Decellularization and Recellularization -- 9.2.3 dECM Hydrogels -- 9.2.4 Synthetic Hydrogels -- 9.2.5 Hybrid-Hydrogels -- 9.3 Constructing Relevant Tissue Geometries -- 9.3.1 Precision-Cut Lung Slices -- 9.3.2 Organoids -- 9.3.3 Engineered 3D Hydrogel Constructs -- 9.3.4 3D Bioprinting -- 9.4 Incorporating Dynamic Mechanical Forces -- 9.4.1 Biomechanical Modeling -- 9.4.2 Lung-on-a-Chip -- 9.5 Conclusion -- References -- Chapter 10: Lung-on-a-Chip Models of the Lung Parenchyma -- 10.1 Introduction -- 10.2 Lung Alveolar Cells and the Alveolar Environment -- 10.2.1 Lung Alveolar Cells and Their Environment -- 10.2.2 Lung Alveolar Epithelial Cells In Vitro -- 10.3 Reproducing the Alveolar Barrier with a Lung-on-a-Chip -- 10.3.1 Reproducing the Lung Alveolar Environment on Chip -- Scaffolds for the Alveolar Barrier: Engineering a Thin, Flexible and Soft Basement Membrane -- Mechanical Stress Induced by the Respiratory Movements -- 10.3.2 Effects of Biochemical and Physical Cues on the Lung Alveolar Barrier -- Effects of Mechanical Forces on Alveolar Epithelial Cells -- Effects of Mechanical Forces on Lung Endothelial Cells -- Lung Alveolar Extracellular Matrix (ECM) -- Effects Induced by the Air-Liquid Interface -- 10.3.3 Read-Outs: Extracting Information from a Lung-on-a-Chip -- 10.4 Lung Disease-on-a-Chip Models -- 10.4.1 Idiopathic Pulmonary Fibrosis (IPF) -- 10.4.2 Emphysema -- 10.4.3 Acute Respiratory Distress Syndrome (ARDS) -- 10.4.4 COVID -- 10.4.5 Lung Adenocarcinoma -- 10.5 Challenges of Lung-on-a-Chip Technologies -- 10.6 Perspectives for Lung-on-a-Chip Technologies -- References -- Chapter 11: Assessment of Collagen in Translational Models of Lung Research -- 11.1 Introduction -- 11.2 Quantification of Collagen -- 11.2.1 The Sircol Assay -- 11.2.2 Hydroxyproline Quantification -- 11.2.3 Immuno-Based Methods.
11.3 Mass Spectrometry Characterization of Collagen -- 11.3.1 Assessment of Collagens in Proteomics Analyses of Pulmonary ECM -- 11.3.2 Analysis of Posttranslational Modifications of Collagen -- 11.3.3 Assessment of Enzymatic Crosslinks in Collagen -- 11.4 Assessment of Collagen Architecture In Situ -- 11.4.1 Masson's Trichrome Staining -- 11.4.2 Picrosirius Red Staining -- 11.4.3 Second Harmonic Generation Microscopy -- 11.4.4 Immunohistochemistry -- 11.4.5 Transmission Electron Microscopy -- 11.4.6 Selected Complementary and Emerging Techniques -- Confocal Reflection Microscopy (CRM) -- Atomic Force Microscopy (AFM) -- Imaging Probes for Magnetic Resonance Imaging (MRI) -- 11.5 Monitoring Fibril Formation in Real Time Using Purified Collagen -- 11.6 Assessment of Collagen Turnover by Peripheral Markers -- 11.7 Conclusion -- References -- Part IV: Engineering and Modeling the Pulmonary Vasculature -- Chapter 12: Understanding and Engineering the Pulmonary Vasculature -- 12.1 Pulmonary Vasculature in Development and Diseases -- 12.2 Pulmonary ECs and Their Angiocrine Functions -- 12.3 Engineering the Pulmonary Vasculature -- 12.3.1 Generation of Vascularized Organoids -- 12.3.2 Bioengineered Lung and Vasculature Using Acellular Native Lung Scaffold -- 12.3.3 Vascularized Lung-on-a-Chip -- 12.3.4 Guided Vascularization Through 3D Bioprinting -- 12.4 Pulmonary Vascular Diseases -- 12.5 Conclusion -- References -- Chapter 13: An Overview of Organ-on-a-Chip Models for Recapitulating Human Pulmonary Vascular Diseases -- 13.1 Introduction -- 13.2 Microfluidics and Organ-on-a-Chip -- 13.2.1 Concepts -- Microfluidics in Vascular Biology -- Patterning Microvascular Networks -- 13.3 OoC for Pulmonary Vascular Diseases -- 13.4 Conclusion -- References -- Chapter 14: Clinical Translation of Engineered Pulmonary Vascular Models -- 14.1 Introduction.
14.2 Brief Overview of Pulmonary Vascular Physiology.
Record Nr. UNINA-9910733729003321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Pluripotent Stem Cell Therapy for Diabetes [[electronic resource] /] / edited by Lorenzo Piemonti, Jon Odorico, Timothy J . Kieffer, Valeria Sordi, Eelco de Koning
Pluripotent Stem Cell Therapy for Diabetes [[electronic resource] /] / edited by Lorenzo Piemonti, Jon Odorico, Timothy J . Kieffer, Valeria Sordi, Eelco de Koning
Autore Piemonti Lorenzo
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (597 pages)
Disciplina 571.6
616.02774
Altri autori (Persone) OdoricoJon
KiefferTimothy J.
SordiValeria
de KoningEelco
Soggetto topico Stem cells
Regenerative medicine
Biomaterials
Cells
Immunotherapy
Developmental biology
Stem Cell Biology
Regenerative Medicine and Tissue Engineering
Biomaterials-Cells
Developmental Biology and Stem Cells
ISBN 3-031-41943-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Mimicking pancreas development with human pluripotent stem cells -- Pancreatic cell fate specification: insights into developmental mechanisms and their application for lineage reprogramming -- The evolution of methods for in vitro differentiation of stem cell derived islets -- Signaling pathways that govern the formation, expansion and maturation of pancreatic progenitors -- Building islets from the ground up using stem cells -- Pancreatic progenitor proliferation -- Selecting biocompatible biomaterials for stem cell derived islet transplantation -- Scaffolds for encapsulation of stem-cell-derived β cells -- 3d printing of new islets -- Biological scaffolds and hydrogels in islet organoids -- 3-D organoids of mesenchymal stromal and pancreatic islet cells -- Bioengineered insulin producing endocrine tissues -- Bioactive materials for cell encapsulation -- Strategies to boost islet graft oxygenation -- Vascularizing device strategies -- Immunogenicity of stem cell derived islets -- Immune evasive stem cell islets -- Encapsulation of stem cell-derived islets: recent progress -- Islet immunoengineering -- Stem cell genome editing tools -- Selection of SC-derived pancreatic progenitors and β cell -- Considerations pertaining to implant sites for cell-based insulin replacement -- Safety switches in pluripotent stem cells -- Safety: teratoma risk -- Stem cell derived islets transplantation in non-human primates -- Social / Legal / Ethical issues pertaining to use of pluripotent stem cells -- Cost-effectiveness considerations for stem cell derived islet replacement therapy -- Lessons from clinical trials of islet cell replacement -- Scale up and Biomanufacturing of Stem Cell- derived Islets -- Minimal SC-β cell properties for transplantation in diabetic patients -- Autologous stem cell islets for patients with chronic pancreatitis and diabetes -- Clinical Trials -- Modeling monogenic diabetes with stem cells -- Stem and progenitor cells in pancreas development, regeneration and drug screening. .
Record Nr. UNINA-9910838275603321
Piemonti Lorenzo  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Regenerative Medicine : Emerging Techniques to Translation Approaches / / edited by Nishant Chakravorty, Praphulla Chandra Shukla
Regenerative Medicine : Emerging Techniques to Translation Approaches / / edited by Nishant Chakravorty, Praphulla Chandra Shukla
Autore Chakravorty Nishant
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (395 pages)
Disciplina 571.889
Soggetto topico Regenerative medicine
Stem cells
Nervous system—Regeneration
Biomaterials
Cells
Regenerative Medicine and Tissue Engineering
Stem Cell Biology
Regeneration and Repair in the Nervous System
Biomaterials-Cells
ISBN 981-19-6008-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1. Regeneration and tissue microenvironment -- Chapter 2. Non stem cell mediated tissue regeneration and repair -- Chapter 3. Immunological Perspectives Involved in Tissue Engineering -- Chapter 4. Advances in Medical Imaging for Wound Repair and Regenerative Medicine -- Chapter 5. Role of Biosensors in Regenerative Therapeutics: Past, Present & Future Prospects -- Chapter 6. Acute and Chronic Wound Management: Assessment, Therapy and Monitoring Strategies -- Chapter 7. Stem cells and therapies in cardiac regeneration -- Chapter 8. Hydrogel-based Tissue-mimics for Vascular Regeneration and Tumor Angiogenesis -- Chapter 9. Advances in 3D Printing Technology for Tissue Engineering -- Chapter 10. Adult Neurogenesis: A Potential Target for Regenerative Medicine -- Chapter 11. Regenerative approaches in the nervous system -- Chapter 12. Prenatal interventions for the treatment of congenital disorders -- Chapter 13. Understanding LncRNAs in biomaterials development for osteointegration -- Chapter 14. Current approaches in vertical bone augmentation and large bone deficiencies in the oro-facial region -- Chapter 15. In-vitro and in-vivo tracking of cell-biomaterial interaction to monitor the process of bone regeneration -- Chapter 16. The Prospects of RNAs and Common Significant Pathways in Cancer Therapy and Regenerative Medicine.
Record Nr. UNINA-9910647382803321
Chakravorty Nishant  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Scanning Ion Conductance Microscopy / / edited by Tilman E. Schäffer
Scanning Ion Conductance Microscopy / / edited by Tilman E. Schäffer
Edizione [1st ed. 2022.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
Descrizione fisica 1 online resource (238 pages)
Disciplina 502.82
Collana Bioanalytical Reviews
Soggetto topico Materials - Microscopy
Analytical chemistry
Biophysics
Nanoscience
Biomaterials
Cells
Microscopy
Analytical Chemistry
Nanoscale Biophysics
Biomaterials-Cells
ISBN 9783031144431
9783031144424
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto The evolution of scanning ion conductance microscopy -- Scanning ion conductance microscopy and atomic force microscopy: A comparison of strengths and limitations for biological investigations -- Ions and electrons with scanning ion conductance microscopy -- Ion channel recording with a smart patch-clamp system -- Understanding cardiac structure and function at nanoscale resolution with SICM -- Local Electrochemical Characterization using Scanning Electrochemical Cell Microscopy -- Comparison of scanning ion conductance microscopy with scanning electron microscopy for imaging cells and tissues -- Correlating scanning ion conductance and super-resolved fluorescence microscopy.
Record Nr. UNINA-9910616369103321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui