top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Biofuels, bioproducts & biorefining : Biofpr
Biofuels, bioproducts & biorefining : Biofpr
Pubbl/distr/stampa [Chichester, West Sussex] : , : John Wiley & Sons, , [2007]-
Descrizione fisica 1 online resource
Disciplina 662
Soggetto topico Biomass energy
Biological products
Soggetto genere / forma Periodicals.
ISSN 1932-1031
Formato Materiale a stampa
Livello bibliografico Periodico
Lingua di pubblicazione eng
Altri titoli varianti Biofuels, bioproducts and biorefining
Biofpr
Record Nr. UNISA-996207433903316
[Chichester, West Sussex] : , : John Wiley & Sons, , [2007]-
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Biofuels, bioproducts & biorefining : Biofpr
Biofuels, bioproducts & biorefining : Biofpr
Pubbl/distr/stampa [Chichester, West Sussex] : , : John Wiley & Sons, , [2007]-
Descrizione fisica 1 online resource
Disciplina 662
Soggetto topico Biomass energy
Biological products
Soggetto genere / forma Periodicals.
ISSN 1932-1031
Formato Materiale a stampa
Livello bibliografico Periodico
Lingua di pubblicazione eng
Altri titoli varianti Biofuels, bioproducts and biorefining
Biofpr
Record Nr. UNINA-9910216940703321
[Chichester, West Sussex] : , : John Wiley & Sons, , [2007]-
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Biologics, biosimilars, and biobetters : an introduction for pharmacists, physicians and other health practitioners / / edited by Iqbal Ramzan
Biologics, biosimilars, and biobetters : an introduction for pharmacists, physicians and other health practitioners / / edited by Iqbal Ramzan
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, , 2021
Descrizione fisica 1 online resource (xii, 302 pages) : illustrations (chiefly colour)
Disciplina 615.7
Soggetto topico Biological products
Biologicals
Pharmaceutical biotechnology
Biological Products
Biosimilar Pharmaceuticals
Biopharmaceutics
Soggetto genere / forma Electronic books.
ISBN 1-119-56468-9
1-119-56466-2
1-119-56469-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910555288103321
Hoboken, New Jersey : , : Wiley, , 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Biologics, biosimilars, and biobetters : an introduction for pharmacists, physicians and other health practitioners / / edited by Iqbal Ramzan
Biologics, biosimilars, and biobetters : an introduction for pharmacists, physicians and other health practitioners / / edited by Iqbal Ramzan
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, , 2021
Descrizione fisica 1 online resource (xii, 302 pages) : illustrations (chiefly colour)
Disciplina 615.7
Soggetto topico Biological products
Biologicals
Pharmaceutical biotechnology
Biological Products
Biosimilar Pharmaceuticals
Biopharmaceutics
ISBN 1-119-56468-9
1-119-56466-2
1-119-56469-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Innovator Biologics, Biosimilars and Biobetters : Terminology, Nomenclature and Definitions -- Approved Biologic Medicines and Biosimilars in Major Regulatory Jurisdictions -- Status of Biologic Drugs in Modern Therapeutics-Targeted Therapies vs Small Molecule Drugs -- Major Classes of Biotherapeutics -- Drug Targets for Biologics -- Pivotal Biology, Chemistry, Biochemistry and Biophysical Concepts of Biologics and Biosimilars -- Biosimilarity and Interchangeability of Biologic Drugs- General Principles, Biophysical Tests and Clinical Requirements to Demonstrate Biosimilarity -- Pharmacokinetics of Biologics -- Pharmacogenomics of Biologics -- International Regulatory Processes and Policies for Innovator Biologics, Biosimilars and Biobetters -- Pharmacovigilance of Innovator Biologics and Biosimilars -- Pharmacoeconomics of Biologic Medicines and Biosimilars / Gregory Reardon -- New Emerging Biotherapies : Cutting-Edge Research to Experimental Therapies -- Optimising Use of Biologic Medicines Using a Quality Use of Medicines Approach -- Knowledge Areas and Competency Standards on Biologic Medicines for Pharmacists and Pharmacy Students -- A Checklist for Pharmacists on Biologics and Biosimilars - Tips to Enhance Patient-Centred Discussions.
Record Nr. UNINA-9910830255203321
Hoboken, New Jersey : , : Wiley, , 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Bioprocessing of agri-food residues for production of bioproducts / / edited by Adriana Carolina Flores-Gallegos, PhD, Rosa Mar̕a Rodriguez-Jasso, PhD, Cristobal Nǒ Aguilar, PhD
Bioprocessing of agri-food residues for production of bioproducts / / edited by Adriana Carolina Flores-Gallegos, PhD, Rosa Mar̕a Rodriguez-Jasso, PhD, Cristobal Nǒ Aguilar, PhD
Edizione [1st ed.]
Pubbl/distr/stampa Palm Bay, FL, USA ; ; Burlington, ON, Canada : , : Apple Academic Press
Descrizione fisica 1 online resource (295 pages)
Disciplina 660.6
Soggetto topico Agricultural wastes
Biological products
Sustainable agriculture
ISBN 1-00-304830-7
1-000-07082-4
1-003-04830-7
1-000-07181-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Dual-Purpose Bioprocesses: Biotransformation of Agri-Food Residues and High Added-Value Bioproducts Recovery / Miguel A. Medina-Morales, Ricardo G̤mez-Garc̕a, Marisol Cruz-Requena, and Crist̤bal N. Aguilar -- Mango Seed Byproduct: A Sustainable Source of Bioactive Phytochemicals and Important Functional Properties / Cristian Torres-Le̤n, Maria T. dos Santos Correia, Liliana Serna-Cock, Maria das Grȧas, Janeth Ventura, Alberto Ascacio-Valďs, and Crist̤bal N. Aguilar -- Citrus Waste: An Important Source of Bioactive Compounds / Nathiely Ram̕rez-Guzm̀n, M̤nica L. Ch̀vez-Gonz̀lez, Erick Pęa-Lucio, Hugo A. Luna-Garc̕a, Juan A. Ascacio Valďs, Gloria Mart̕nez-Medina, Maria das Grȧas Carneiro da Cunha, Teresinha Goṅalves da Silva, Još L. Mart̕nez-Herǹndez, and Crist̤bal N. Aguilar -- Use of Agro-Industrial Residues to Obtain Polyphenols with Prebiotic Effect / Ana Yoselyn Castro-Torres, Ra︢l Rodr̕guez-Herrera, Aiď S̀enz-Galindo, Juan Alberto Ascacio-Valďs, Jes︢s Antonio Morlett-Ch̀vez, and Adriana Carolina Flores-Gallegos -- Valorization of Pomegranate Residues / Paloma Almanza-Tovanche, Ra︢l Rodr̕guez-Herrera, Aiď S̀enz-Galindo, Juan Alberto Ascacio-Valďs, Crist̤bal N. Aguilar, and Adriana Carolina Flores-Gallegos -- Lactic Acid Fermentation as a Tool for Obtaining Bioactive Compounds from Cruciferous Vegetables / Daniela Iga Buitr̤n, Margarita del Rosario Salazar S̀nchez, Edgar Torres Maravilla, Luis Berm︢dez Humaran, Juan Alberto Ascacio-Valďs, Još Fernando Solanilla Duque, and Adriana C. Flores-Gallegos -- Potential of Agro-Food Residues to Produce Enzymes for Animal Nutrition / Erika Nava-Reyna, Anna Ilyina, Georgina Michelena-ℓvarez, and Još Luis Mart̕nez-Herǹndez -- Biotechnological Valorization of Whey: A By-Product from the Dairy Industry / Hilda Karina S̀enz-Hidalgo, Alexandro Guevara-Aguilar, Još Juan Buenrostro-Figueroa, R. Baeza-Jim̌nez, Adriana C. Flores-Gallegos, and M̤nica Alvarado-Gonz̀lez -- Contributions of Biosurfactants in the Environment: A Green and Clean Approach / Geeta Rawat and Vivek Kumar -- Fungal Solid-State Bioprocessing of Grapefruit Waste / Ram̤n Larios-Cruz, Rosa M. Rodr̕guez-Jasso, Juan Buenrostro-Figueroa, Arely Prado-Barrag̀n, Ȟctor Ruiz, and Crist̤bal N. Aguilar -- Valorization of Ataulfo Mango Seed Byproduct Based on Its Nutritional and Functional Properties / Cristian Torres-Leon, M̤nica L. Ch̀vez-Gonz̀lez, Liliana Serna-Cock, Juan A. Ascacio Valďs, Romeo Rojas, Ruth Belmares-Cerda, and Crist̤bal Nǒ Aguilar -- Kinetic Parameters of the Carotenoids Production by Rhodotorula glutinis Under Different Concentration of Carbon Source / Ayerim Herǹndez-Almanza, V̕ctor Navarro-Mac̕as, Oscar Aguilar, Juan C. Contreras-Esquivel, Julio C. Montąez, Guillermo Mart̕nez ℓvila, and Crist̤bal N. Aguilar.
Record Nr. UNINA-9910861998903321
Palm Bay, FL, USA ; ; Burlington, ON, Canada : , : Apple Academic Press
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Bioproducts for Health II / / edited by Manuela Pintado, Ezequiel Coscueta, María Emilia Brassesco
Bioproducts for Health II / / edited by Manuela Pintado, Ezequiel Coscueta, María Emilia Brassesco
Pubbl/distr/stampa Basel : , : MDPI, , 2023
Descrizione fisica 1 online resource (214 pages)
Disciplina 660.6
Soggetto topico Biological products
ISBN 3-0365-6992-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910683371503321
Basel : , : MDPI, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Bioresource technology : concept, tools and experience / / Tanveer Bilal Pirzadah [and three others]
Bioresource technology : concept, tools and experience / / Tanveer Bilal Pirzadah [and three others]
Autore Pirzadah Tanveer Bilal
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Incorporated, , [2022]
Descrizione fisica 1 online resource (546 pages)
Disciplina 660.63
Soggetto topico Biochemical engineering
Biological products
Soggetto genere / forma Electronic books.
ISBN 1-119-78944-3
1-119-78942-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Bioresource Technology: Concept, Tools and Experiences -- Contents -- About the Editors -- About the Book -- Foreword -- List of Contributors -- Preface -- Part I: The Application of Bioresource Technology in the Functional Food Sector -- 1. Millets: Robust Entrants to Functional Food Sector -- 1.1 Introduction -- 1.2 Nomenclature and Use -- 1.3 Description of Important Millets -- 1.3.1 Sorghum -- 1.3.2 Pearl Millet -- 1.3.3 Finger Millet -- 1.3.4 Foxtail Millet -- 1.3.5 Proso Millet -- 1.3.6 Barnyard Millet -- 1.3.7 Little Millet -- 1.3.8 Kodo Millet -- 1.3.9 Brown-Top Millet -- 1.4 Millets: The Ancient Crops -- 1.5 Current Scenario of Millets Production -- 1.6 Nutritional Importance of Millets -- 1.6.1 Millets as Functional Food 13 -- 1.6.2 Anti-Oxidant and Anti-Aging Properties -- 1.6.3 Protection Against Cancer -- 1.6.4 Anti-Diabetic Properties -- 1.6.5 Protection Against Gastro-Intestinal Disorders -- 1.6.7 Protection Against Osteoporosis -- 1.7 Changes in Food Consumption Pattern and Future Demand -- 1.8 Food and Nutritional Security -- 1.9 Climate Change and Associated Threat to Agriculture -- 1.10 Millets: As Climate Smart Crops -- 1.11 Future Agriculture: Smart Technologies in Millet Farming -- 1.12 Conclusions -- References -- 2. The Art and Science of Growing Microgreens -- 2.1 Introduction -- 2.2 Historical Background -- 2.3 Health Benefits of Microgreens -- 2.3.1 Source of Functional Food Components -- 2.3.2 Component of Space Life Support Systems -- 2.3.3 Component of Nutritional Diet of Troops and Residents of High Altitude Regions -- 2.4 Cultivation Practices -- 2.4.1 Species Selection 30 -- 2.4.2 Growing Media and Propagation Felts -- 2.4.3 Growing Process -- 2.5 Quality and Shelf Life -- 2.6 Market Trends -- 2.7 Future Outlook -- 2.8 Conclusions -- References -- 3. Novel Nutraceuticals From Marine Resources.
3.1 Introduction -- 3.2 Marine Microorganisms as a Source of Nutraceuticals -- 3.2.1 Marine Algae -- 3.2.2 Marine Invertebrates -- 3.2.2.1 Sponges -- 3.2.2.2 Crustaceans, Echinoderms and Molluscs -- 3.2.2.3 Marine Fishes -- 3.2.2.4 Marine Actinomycetes -- 3.2.2.5 Marine Fungi -- 3.2.2.6 Marine Bacteria -- 3.3 Classification of Different Nutraceuticals Obtained from Marine Environment -- 3.3.1 Polysaccharides -- 3.3.2 Marine Lipids -- 3.3.3 Natural Pigments from Marine Sources -- 3.3.4 Chitosan and Its Derivatives -- 3.3.5 Proteins and Peptides -- 3.3.6 Minerals, Vitamins and Enzymes -- 3.3.7 Marine Probiotics and Phenolic Compounds -- 3.4 Important Bioactive Metabolites and Their Biological Properties -- 3.5 Current Status of Nutraceuticals in Market -- 3.6 Conclusion and Future Recommendations -- References -- 4. Bioprospecting of Bioresources: Creating Value From Bioresources -- 4.1 Introduction -- 4.2 Bioprospecting in Various Industrial Fields -- 4.2.1 Pharmaceutical Industries -- 4.2.1.1 Drugs From Plants -- 4.2.1.2 Drugs From Bugs -- 4.2.1.3 Drugs From Aquatics -- 4.3 Chemical Industries -- 4.3.1 Biocatalysis -- 4.4 Bioprospecting in Agriculture -- 4.4.1 Biofertilizers and Biopesticides -- 4.4.2 Bioremediation -- 4.5 Bioprospecting in Beautification/Cosmetics -- 4.6 Bioprospecting in Detergent Industry -- 4.7 Bioprospecting in Textile Industry -- 4.8 Bioprospecting in Paper Industry -- 4.9 Bioprospecting in Food Industry -- 4.9.1 Bioprospecting in Brewing Industry -- 4.10 Diagnostic -- 4.10.1 Application of Enzymes for the Detection of Pyrogens in Pharmaceutical Products -- 4.10.2 Bioprospecting in Biofuel Production -- 4.11 Conclusions and Future Perspectives -- References -- 5. Green and Smart Packaging of Food -- 5.1 Introduction -- 5.2 Green Packaging in Food -- 5.3 Properties of Green Packaging Materials.
5.4 Mechanical Properties of Green Packaging Materials -- 5.5 Barrier Properties of Green Packaging -- 5.6 Green Packaging Materials with Active Properties -- 5.7 Biodegradation Mechanisms of Green Packaging -- 5.8 Main Green Food Packaging -- 5.8.1 Poly(lactic Acid) (PLA) -- 5.8.2 Polyhydroxyalkaonate (PHA) -- 5.8.3 Starch-based Materials -- 5.8.4 Cellulose-based Materials -- 5.9 Life Cycle of Green Packaging Materials -- 5.10 Smart Packaging in Food -- 5.11 Indicators for Smart Packaging -- 5.11.1 Time-Temperature Indicator (TTI) -- 5.11.2 Freshness Indicators -- 5.11.3 Packaging Integrity Indicators -- 5.12 Sensor Applications for Smart Packaging -- 5.13 Data Carriers for Smart Packaging -- 5.14 Regulatory Aspects -- 5.15 Conclusion and Future Perspectives -- References -- 6. Nanosensors: Diagnostic Tools in the Food Industry -- 6.1 Introduction -- 6.2 Identification of Foodborne Pathogens and Toxins -- 6.3 Pesticides and Carcinogenic Detection -- 6.3.1 Nitrites-Carcinogenic Detection -- 6.3.2 Mycotoxin Detection -- 6.3.3 Food Packaging -- 6.3.4 Food Freshness Detection -- 6.4 Chemicals and Food Additives Detection -- 6.4.1 Preservatives -- 6.4.2 Dyes -- 6.4.3 Sweeteners -- 6.4.4 Antioxidants -- 6.4.5 Food Allergens -- 6.5 Nano-based Sensors for Smart Packaging -- 6.5.1 Nanobarcodes -- 6.5.2 e-NOSE and e-TONGUE -- 6.5.3 Oxygen Sensors -- 6.5.4 Humidity Sensors -- 6.5.5 Carbon Dioxide (CO2) Sensor -- 6.6 Challenges -- 6.7 Conclusions and Future Perspectives -- References -- 7. Harnessing Genetic Diversity for Addressing Wheat-based Time Bound Food Security Projections: A Selective Comprehensive Practical Overview -- 7.1 The Global Wheat Scenario -- 7.2 Food Security: The Challenge of Feeding Over 9 Billion by 2050 -- 7.3 Conventional Wheat Improvement Strategies -- 7.3.1 Breeding Methods -- 7.3.2 Recombination Breeding.
7.3.3 Pedigree or Line Breeding -- 7.3.4 Bulk Method -- 7.3.5 Single Seed Descent (SSD) Method -- 7.3.6 Backcross Breeding -- 7.3.7 Modified Pedigree Bulk -- 7.3.8 Selected Bulk -- 7.3.9 Multiline Breeding -- 7.3.10 Shuttle Breeding -- 7.3.11 Doubled Haploid -- 7.3.12 Mutation Breeding -- 7.3.13 Hybrid Wheat -- 7.3.14 The XYZ System -- 7.4 Innovative Technologies for Accessing Novel Genetic Diversity -- 7.5 Major Global Locations of Wheat Genetic Diversity -- 7.6 Utilization of Genetic Diversity -- 7.6.1 Wide Crosses: The Historical Build-up -- 7.7 Distribution of Genetic Diversity: Gene Pools, Their Potential Impact and Research Integration for Practicality -- 7.7.1 The Gene Pool Structure -- 7.7.1.1 Primary Gene Pool Species -- 7.7.1.2 The A Genome (Triticum Boeoticum, T. Monococcum, T. Urartu -- 2n = 2x = 14, AA) -- 7.7.1.3 The D Genome (Aegilops Tauschii = Goat Grass -- 2n = 2x = 14, DD) -- 7.7.1.4 Secondary Gene Pool Species -- 7.7.1.5 Selected Secondary Gene Pool Species Utilization Example -- 7.7.1.6 Tertiary Gene Pool Species -- 7.7.1.7 The Gene Pool Potential Recap -- 7.7.1.8 Conclusion: Transfer Prerequisites Across Gene Pools -- 7.8 Underexplored Areas -- 7.8.1 Land Races: Definitions, General Characteristics and Practicality Potential -- 7.8.2 Wheat Landraces: An Additive Diversity Source -- 7.8.3 Important Collections of Wheat Landraces -- 7.9 Perennial Wheat -- 7.9.1 The Concept of a More Sustainable Perennial Wheat-Like Cereal. Is It Feasible? -- 7.9.1.1 What Benefit/s Would Come? -- 7.9.1.2 Potential Pitfalls -- 7.9.1.3 What Approaches Can Be Conceived? -- 7.9.1.4 What Progress? -- 7.9.1.5 What Lessons? -- 7.9.1.6 Suggested Way Forward? -- 7.9.2 Genetic Engineering for Wheat Improvement Focused on a Few Major Food Security Aspects -- 7.9.2.1 Tissue Culture and Transformation of Wheat.
7.9.2.2 Production of Genetically-Modified Wheat -- 7.9.2.3 CRISPR/Cas9 Genome Editing in Wheat -- 7.9.2.4 Potential Traits for Genetic Improvement of Wheat Through Biotechnology -- 7.9.2.5 Yield Potential -- 7.9.2.6 Climate Change -- 7.9.2.7 Drought -- 7.9.2.8 Salinity -- 7.9.2.9 Heat -- 7.10 Historical Non-Conventional Trends for Exploiting Wheat's Genetic Resources -- 7.10.1 Pre-1900 -- 7.10.2 1901-1920 -- 7.10.3 1921-1930 -- 7.10.4 1931-1950 -- 7.10.5 The Post-1950 Era: Preamble -- 7.10.6 Homoeologous Pairing -- 7.10.7 Isolation of Homoeologous Recombinants -- 7.10.8 Intergeneric Hybridization Steps for Wheat/Alien Crossing -- 7.10.8.1 Embryo Extraction and Handling -- 7.10.8.2 Pre-Breeding Protocol -- 7.10.8.3 Development of Genetic Stocks -- 7.10.8.4 Establishing a Living Herbarium -- 7.10.9 Interspecific Hybridization -- 7.10.10 Additive Durum Wheat Improvement -- 7.10.10.1 The Parental Choice -- 7.10.10.2 Shortening the Breeding Cycle by Inducing Homozygosity in Desired Early Breeding Generations -- 7.10.10.3 The Integration of Molecular Development Options for Efficiency and Precision -- 7.11 Alleviating Wheat Productivity Constraints via New Genetic Variation -- 7.11.1 Biotic Constraints -- 7.11.2 Insect Resistance -- 7.11.3 Root Diseases -- 7.11.4 Abiotic Stresses -- 7.11.5 Grain Yield -- 7.11.6 Bio-Fortification -- 7.11.7 Future Directions and Strategies -- 7.12 Accruing Potental Practical Benefits -- 7.13 Summary of the Practical Potential Benefits -- 7.14 The Role of Genomics Information Including Molecular Markers in Wheat -- 7.15 The Way Forward and Wrap-Up -- 7.16 Concerns -- 7.17 Conclusions -- 7.18 Some Perceptions -- References -- Part II: Bioresource and Future Energy Security -- 8. Waste-to-Energy: Potential of Biofuels Production from Sawdust as a Pathway to Sustainable Energy Development -- 8.1 Introduction.
8.2 Overview of Potential WTE Technologies for Biomass Wastes.
Record Nr. UNINA-9910566701203321
Pirzadah Tanveer Bilal  
Hoboken, New Jersey : , : John Wiley & Sons, Incorporated, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Bioresource technology : concept, tools and experience / / Tanveer Bilal Pirzadah [and three others]
Bioresource technology : concept, tools and experience / / Tanveer Bilal Pirzadah [and three others]
Autore Pirzadah Tanveer Bilal
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Incorporated, , [2022]
Descrizione fisica 1 online resource (546 pages)
Disciplina 660.63
Soggetto topico Biochemical engineering
Biological products
ISBN 1-119-78944-3
1-119-78942-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Bioresource Technology: Concept, Tools and Experiences -- Contents -- About the Editors -- About the Book -- Foreword -- List of Contributors -- Preface -- Part I: The Application of Bioresource Technology in the Functional Food Sector -- 1. Millets: Robust Entrants to Functional Food Sector -- 1.1 Introduction -- 1.2 Nomenclature and Use -- 1.3 Description of Important Millets -- 1.3.1 Sorghum -- 1.3.2 Pearl Millet -- 1.3.3 Finger Millet -- 1.3.4 Foxtail Millet -- 1.3.5 Proso Millet -- 1.3.6 Barnyard Millet -- 1.3.7 Little Millet -- 1.3.8 Kodo Millet -- 1.3.9 Brown-Top Millet -- 1.4 Millets: The Ancient Crops -- 1.5 Current Scenario of Millets Production -- 1.6 Nutritional Importance of Millets -- 1.6.1 Millets as Functional Food 13 -- 1.6.2 Anti-Oxidant and Anti-Aging Properties -- 1.6.3 Protection Against Cancer -- 1.6.4 Anti-Diabetic Properties -- 1.6.5 Protection Against Gastro-Intestinal Disorders -- 1.6.7 Protection Against Osteoporosis -- 1.7 Changes in Food Consumption Pattern and Future Demand -- 1.8 Food and Nutritional Security -- 1.9 Climate Change and Associated Threat to Agriculture -- 1.10 Millets: As Climate Smart Crops -- 1.11 Future Agriculture: Smart Technologies in Millet Farming -- 1.12 Conclusions -- References -- 2. The Art and Science of Growing Microgreens -- 2.1 Introduction -- 2.2 Historical Background -- 2.3 Health Benefits of Microgreens -- 2.3.1 Source of Functional Food Components -- 2.3.2 Component of Space Life Support Systems -- 2.3.3 Component of Nutritional Diet of Troops and Residents of High Altitude Regions -- 2.4 Cultivation Practices -- 2.4.1 Species Selection 30 -- 2.4.2 Growing Media and Propagation Felts -- 2.4.3 Growing Process -- 2.5 Quality and Shelf Life -- 2.6 Market Trends -- 2.7 Future Outlook -- 2.8 Conclusions -- References -- 3. Novel Nutraceuticals From Marine Resources.
3.1 Introduction -- 3.2 Marine Microorganisms as a Source of Nutraceuticals -- 3.2.1 Marine Algae -- 3.2.2 Marine Invertebrates -- 3.2.2.1 Sponges -- 3.2.2.2 Crustaceans, Echinoderms and Molluscs -- 3.2.2.3 Marine Fishes -- 3.2.2.4 Marine Actinomycetes -- 3.2.2.5 Marine Fungi -- 3.2.2.6 Marine Bacteria -- 3.3 Classification of Different Nutraceuticals Obtained from Marine Environment -- 3.3.1 Polysaccharides -- 3.3.2 Marine Lipids -- 3.3.3 Natural Pigments from Marine Sources -- 3.3.4 Chitosan and Its Derivatives -- 3.3.5 Proteins and Peptides -- 3.3.6 Minerals, Vitamins and Enzymes -- 3.3.7 Marine Probiotics and Phenolic Compounds -- 3.4 Important Bioactive Metabolites and Their Biological Properties -- 3.5 Current Status of Nutraceuticals in Market -- 3.6 Conclusion and Future Recommendations -- References -- 4. Bioprospecting of Bioresources: Creating Value From Bioresources -- 4.1 Introduction -- 4.2 Bioprospecting in Various Industrial Fields -- 4.2.1 Pharmaceutical Industries -- 4.2.1.1 Drugs From Plants -- 4.2.1.2 Drugs From Bugs -- 4.2.1.3 Drugs From Aquatics -- 4.3 Chemical Industries -- 4.3.1 Biocatalysis -- 4.4 Bioprospecting in Agriculture -- 4.4.1 Biofertilizers and Biopesticides -- 4.4.2 Bioremediation -- 4.5 Bioprospecting in Beautification/Cosmetics -- 4.6 Bioprospecting in Detergent Industry -- 4.7 Bioprospecting in Textile Industry -- 4.8 Bioprospecting in Paper Industry -- 4.9 Bioprospecting in Food Industry -- 4.9.1 Bioprospecting in Brewing Industry -- 4.10 Diagnostic -- 4.10.1 Application of Enzymes for the Detection of Pyrogens in Pharmaceutical Products -- 4.10.2 Bioprospecting in Biofuel Production -- 4.11 Conclusions and Future Perspectives -- References -- 5. Green and Smart Packaging of Food -- 5.1 Introduction -- 5.2 Green Packaging in Food -- 5.3 Properties of Green Packaging Materials.
5.4 Mechanical Properties of Green Packaging Materials -- 5.5 Barrier Properties of Green Packaging -- 5.6 Green Packaging Materials with Active Properties -- 5.7 Biodegradation Mechanisms of Green Packaging -- 5.8 Main Green Food Packaging -- 5.8.1 Poly(lactic Acid) (PLA) -- 5.8.2 Polyhydroxyalkaonate (PHA) -- 5.8.3 Starch-based Materials -- 5.8.4 Cellulose-based Materials -- 5.9 Life Cycle of Green Packaging Materials -- 5.10 Smart Packaging in Food -- 5.11 Indicators for Smart Packaging -- 5.11.1 Time-Temperature Indicator (TTI) -- 5.11.2 Freshness Indicators -- 5.11.3 Packaging Integrity Indicators -- 5.12 Sensor Applications for Smart Packaging -- 5.13 Data Carriers for Smart Packaging -- 5.14 Regulatory Aspects -- 5.15 Conclusion and Future Perspectives -- References -- 6. Nanosensors: Diagnostic Tools in the Food Industry -- 6.1 Introduction -- 6.2 Identification of Foodborne Pathogens and Toxins -- 6.3 Pesticides and Carcinogenic Detection -- 6.3.1 Nitrites-Carcinogenic Detection -- 6.3.2 Mycotoxin Detection -- 6.3.3 Food Packaging -- 6.3.4 Food Freshness Detection -- 6.4 Chemicals and Food Additives Detection -- 6.4.1 Preservatives -- 6.4.2 Dyes -- 6.4.3 Sweeteners -- 6.4.4 Antioxidants -- 6.4.5 Food Allergens -- 6.5 Nano-based Sensors for Smart Packaging -- 6.5.1 Nanobarcodes -- 6.5.2 e-NOSE and e-TONGUE -- 6.5.3 Oxygen Sensors -- 6.5.4 Humidity Sensors -- 6.5.5 Carbon Dioxide (CO2) Sensor -- 6.6 Challenges -- 6.7 Conclusions and Future Perspectives -- References -- 7. Harnessing Genetic Diversity for Addressing Wheat-based Time Bound Food Security Projections: A Selective Comprehensive Practical Overview -- 7.1 The Global Wheat Scenario -- 7.2 Food Security: The Challenge of Feeding Over 9 Billion by 2050 -- 7.3 Conventional Wheat Improvement Strategies -- 7.3.1 Breeding Methods -- 7.3.2 Recombination Breeding.
7.3.3 Pedigree or Line Breeding -- 7.3.4 Bulk Method -- 7.3.5 Single Seed Descent (SSD) Method -- 7.3.6 Backcross Breeding -- 7.3.7 Modified Pedigree Bulk -- 7.3.8 Selected Bulk -- 7.3.9 Multiline Breeding -- 7.3.10 Shuttle Breeding -- 7.3.11 Doubled Haploid -- 7.3.12 Mutation Breeding -- 7.3.13 Hybrid Wheat -- 7.3.14 The XYZ System -- 7.4 Innovative Technologies for Accessing Novel Genetic Diversity -- 7.5 Major Global Locations of Wheat Genetic Diversity -- 7.6 Utilization of Genetic Diversity -- 7.6.1 Wide Crosses: The Historical Build-up -- 7.7 Distribution of Genetic Diversity: Gene Pools, Their Potential Impact and Research Integration for Practicality -- 7.7.1 The Gene Pool Structure -- 7.7.1.1 Primary Gene Pool Species -- 7.7.1.2 The A Genome (Triticum Boeoticum, T. Monococcum, T. Urartu -- 2n = 2x = 14, AA) -- 7.7.1.3 The D Genome (Aegilops Tauschii = Goat Grass -- 2n = 2x = 14, DD) -- 7.7.1.4 Secondary Gene Pool Species -- 7.7.1.5 Selected Secondary Gene Pool Species Utilization Example -- 7.7.1.6 Tertiary Gene Pool Species -- 7.7.1.7 The Gene Pool Potential Recap -- 7.7.1.8 Conclusion: Transfer Prerequisites Across Gene Pools -- 7.8 Underexplored Areas -- 7.8.1 Land Races: Definitions, General Characteristics and Practicality Potential -- 7.8.2 Wheat Landraces: An Additive Diversity Source -- 7.8.3 Important Collections of Wheat Landraces -- 7.9 Perennial Wheat -- 7.9.1 The Concept of a More Sustainable Perennial Wheat-Like Cereal. Is It Feasible? -- 7.9.1.1 What Benefit/s Would Come? -- 7.9.1.2 Potential Pitfalls -- 7.9.1.3 What Approaches Can Be Conceived? -- 7.9.1.4 What Progress? -- 7.9.1.5 What Lessons? -- 7.9.1.6 Suggested Way Forward? -- 7.9.2 Genetic Engineering for Wheat Improvement Focused on a Few Major Food Security Aspects -- 7.9.2.1 Tissue Culture and Transformation of Wheat.
7.9.2.2 Production of Genetically-Modified Wheat -- 7.9.2.3 CRISPR/Cas9 Genome Editing in Wheat -- 7.9.2.4 Potential Traits for Genetic Improvement of Wheat Through Biotechnology -- 7.9.2.5 Yield Potential -- 7.9.2.6 Climate Change -- 7.9.2.7 Drought -- 7.9.2.8 Salinity -- 7.9.2.9 Heat -- 7.10 Historical Non-Conventional Trends for Exploiting Wheat's Genetic Resources -- 7.10.1 Pre-1900 -- 7.10.2 1901-1920 -- 7.10.3 1921-1930 -- 7.10.4 1931-1950 -- 7.10.5 The Post-1950 Era: Preamble -- 7.10.6 Homoeologous Pairing -- 7.10.7 Isolation of Homoeologous Recombinants -- 7.10.8 Intergeneric Hybridization Steps for Wheat/Alien Crossing -- 7.10.8.1 Embryo Extraction and Handling -- 7.10.8.2 Pre-Breeding Protocol -- 7.10.8.3 Development of Genetic Stocks -- 7.10.8.4 Establishing a Living Herbarium -- 7.10.9 Interspecific Hybridization -- 7.10.10 Additive Durum Wheat Improvement -- 7.10.10.1 The Parental Choice -- 7.10.10.2 Shortening the Breeding Cycle by Inducing Homozygosity in Desired Early Breeding Generations -- 7.10.10.3 The Integration of Molecular Development Options for Efficiency and Precision -- 7.11 Alleviating Wheat Productivity Constraints via New Genetic Variation -- 7.11.1 Biotic Constraints -- 7.11.2 Insect Resistance -- 7.11.3 Root Diseases -- 7.11.4 Abiotic Stresses -- 7.11.5 Grain Yield -- 7.11.6 Bio-Fortification -- 7.11.7 Future Directions and Strategies -- 7.12 Accruing Potental Practical Benefits -- 7.13 Summary of the Practical Potential Benefits -- 7.14 The Role of Genomics Information Including Molecular Markers in Wheat -- 7.15 The Way Forward and Wrap-Up -- 7.16 Concerns -- 7.17 Conclusions -- 7.18 Some Perceptions -- References -- Part II: Bioresource and Future Energy Security -- 8. Waste-to-Energy: Potential of Biofuels Production from Sawdust as a Pathway to Sustainable Energy Development -- 8.1 Introduction.
8.2 Overview of Potential WTE Technologies for Biomass Wastes.
Record Nr. UNINA-9910830992703321
Pirzadah Tanveer Bilal  
Hoboken, New Jersey : , : John Wiley & Sons, Incorporated, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Biosimilars : design and analysis of follow-on biologics / / Shein-Chung Chow, Duke University School of Medicine, Durham, North Carolina, USA
Biosimilars : design and analysis of follow-on biologics / / Shein-Chung Chow, Duke University School of Medicine, Durham, North Carolina, USA
Autore Chow Shein-Chung <1955, >
Pubbl/distr/stampa Boca Raton : , : Taylor & Francis, , 2014
Descrizione fisica 1 online resource (424 pages ) : illustrations
Disciplina 615.19
Collana Chapman & Hall/CRC biostatistics series
Soggetto topico Pharmaceutical biotechnology
Pharmaceutical biotechnology industry
Drugs - Generic substitution
Pharmaceutical policy
Biological products
ISBN 0-429-07126-4
1-4665-7969-2
Classificazione MAT029000MED071000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction Background Fundamental Differences Regulatory Requirements Biosimilarity Interchangeability of Biological Drug Products Scientific Factors Aim and Scope of the Book Bioequivalence Experience for Small-Molecule Drug Products Background Process for Bioequivalence Assessment Issue of Drug Interchangeability Highly Variable Drugs Practical Issues Frequently Asked Questions Regulatory Requirements for Assessing Follow-On Biologics Background Definitions and Interpretations of Biosimilar Products Regulatory Requirements Review of the FDA Draft Guidances Global Harmonization Criteria for Similarity Introduction Criteria for Bioequivalence Similarity Factor for Dissolution Profile Comparison Measures of Consistency Comparison of Moment-Based and Probability-Based Criteria Alternative Criteria Statistical Methods for Assessing Average Biosimilarity Introduction Classic Methods for Assessing Biosimilarity Bayesian Methods Wilcoxon-Mann-Whitney Two One-Sided Tests Procedure Three-Arm Parallel Design General Approach for Assessing Biosimilarity Background Reproducibility Probability Development of the Biosimilarity Index Relationship of the Biosimilarity Criterion versus Variability Biosimilarity Index Based on the Bayesian Approach Consistency Approach Non-Inferiority versus Equivalence/Similarity Background Testing for Equality Testing for Noninferiority Testing for Superiority Testing for Equivalence Relationship among Testing for Noninferiority, Superiority, and Equivalence Determination of the Noninferiority Margin Sample Size Requirement When There Is a Switch in Hypothesis Testing Statistical Test for Biosimilarity in Variability Introduction Pitman-Morgan's Adjusted Test for Comparing Variabilities F -Type Test under Parallel Design Non-Parametrics Methods Alternative Methods Sample Size for Comparing Variabilities Introduction Comparing Intra-Subject Variability Comparing Inter-Subject Variability Comparing Total Variability Comparing Intra-Subject CVs Impact of Variability on Biosimilarity Limits for Assessing Follow-On Biologics Introduction Relationship between Variability and Biosimilarity Limits Scaled Biosimilarity Margins Simulations Discussions Drug Interchangeability Introduction Population and Individual Bioequivalence Interchangeability for Biosimilar Products Study Designs for Interchangeability Statistical Methods Issues on Immunogenicity Studies Introduction Regulatory Requirements Assay Development/Validation Design for Immunogenicity Studies Sample Size for Immunogenicity Studies CMC Requirements for Biological Products Introduction CMC Development Product Characterization and Specification Manufacture and Process Validation Quality Control/Assurance Reference Standards, Container Closure System, and Stability Test for Comparability in Manufacturing Process Introduction Biologic Manufacturing Process Consistency Index Test for Comparability Other Comparability Tests Stability Analysis of Biosimilar Products Introduction Regulatory Stability Guidelines on Biologicals Stability Indicating Profile and Expiration Dating Period Stability Designs Statistical Analysis Assessing Biosimilarity Using Biomarker Data Introduction Assessment of Biosimilarity Statistical Test for Biosimilarity Using Biomarker Data Numerical Study Current Issues in Biosimilar Studies Introduction Scientific Factors Current Issues References Index
Record Nr. UNINA-9910787329603321
Chow Shein-Chung <1955, >  
Boca Raton : , : Taylor & Francis, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Biosimilars : design and analysis of follow-on biologics / / Shein-Chung Chow, Duke University School of Medicine, Durham, North Carolina, USA
Biosimilars : design and analysis of follow-on biologics / / Shein-Chung Chow, Duke University School of Medicine, Durham, North Carolina, USA
Autore Chow Shein-Chung <1955, >
Edizione [1st ed.]
Pubbl/distr/stampa Boca Raton : , : Taylor & Francis, , 2014
Descrizione fisica 1 online resource (424 pages ) : illustrations
Disciplina 615.19
Collana Chapman & Hall/CRC biostatistics series
Soggetto topico Pharmaceutical biotechnology
Pharmaceutical biotechnology industry
Drugs - Generic substitution
Pharmaceutical policy
Biological products
ISBN 0-429-07126-4
1-4665-7969-2
Classificazione MAT029000MED071000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction Background Fundamental Differences Regulatory Requirements Biosimilarity Interchangeability of Biological Drug Products Scientific Factors Aim and Scope of the Book Bioequivalence Experience for Small-Molecule Drug Products Background Process for Bioequivalence Assessment Issue of Drug Interchangeability Highly Variable Drugs Practical Issues Frequently Asked Questions Regulatory Requirements for Assessing Follow-On Biologics Background Definitions and Interpretations of Biosimilar Products Regulatory Requirements Review of the FDA Draft Guidances Global Harmonization Criteria for Similarity Introduction Criteria for Bioequivalence Similarity Factor for Dissolution Profile Comparison Measures of Consistency Comparison of Moment-Based and Probability-Based Criteria Alternative Criteria Statistical Methods for Assessing Average Biosimilarity Introduction Classic Methods for Assessing Biosimilarity Bayesian Methods Wilcoxon-Mann-Whitney Two One-Sided Tests Procedure Three-Arm Parallel Design General Approach for Assessing Biosimilarity Background Reproducibility Probability Development of the Biosimilarity Index Relationship of the Biosimilarity Criterion versus Variability Biosimilarity Index Based on the Bayesian Approach Consistency Approach Non-Inferiority versus Equivalence/Similarity Background Testing for Equality Testing for Noninferiority Testing for Superiority Testing for Equivalence Relationship among Testing for Noninferiority, Superiority, and Equivalence Determination of the Noninferiority Margin Sample Size Requirement When There Is a Switch in Hypothesis Testing Statistical Test for Biosimilarity in Variability Introduction Pitman-Morgan's Adjusted Test for Comparing Variabilities F -Type Test under Parallel Design Non-Parametrics Methods Alternative Methods Sample Size for Comparing Variabilities Introduction Comparing Intra-Subject Variability Comparing Inter-Subject Variability Comparing Total Variability Comparing Intra-Subject CVs Impact of Variability on Biosimilarity Limits for Assessing Follow-On Biologics Introduction Relationship between Variability and Biosimilarity Limits Scaled Biosimilarity Margins Simulations Discussions Drug Interchangeability Introduction Population and Individual Bioequivalence Interchangeability for Biosimilar Products Study Designs for Interchangeability Statistical Methods Issues on Immunogenicity Studies Introduction Regulatory Requirements Assay Development/Validation Design for Immunogenicity Studies Sample Size for Immunogenicity Studies CMC Requirements for Biological Products Introduction CMC Development Product Characterization and Specification Manufacture and Process Validation Quality Control/Assurance Reference Standards, Container Closure System, and Stability Test for Comparability in Manufacturing Process Introduction Biologic Manufacturing Process Consistency Index Test for Comparability Other Comparability Tests Stability Analysis of Biosimilar Products Introduction Regulatory Stability Guidelines on Biologicals Stability Indicating Profile and Expiration Dating Period Stability Designs Statistical Analysis Assessing Biosimilarity Using Biomarker Data Introduction Assessment of Biosimilarity Statistical Test for Biosimilarity Using Biomarker Data Numerical Study Current Issues in Biosimilar Studies Introduction Scientific Factors Current Issues References Index
Record Nr. UNINA-9910822825703321
Chow Shein-Chung <1955, >  
Boca Raton : , : Taylor & Francis, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui