top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Biobanking of human biospecimens : lessons from 25 years of biobanking experience / / editors, Pierre Hainaut [and three others]
Biobanking of human biospecimens : lessons from 25 years of biobanking experience / / editors, Pierre Hainaut [and three others]
Edizione [Second edition.]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (210 pages)
Disciplina 570.752
Soggetto topico Biobanks
Ciències de la salut
Biologia computacional
ISBN 3-030-55901-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910495217303321
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Bioinformatics and computational biology : a primer for biologists / / Basant K. Tiwary
Bioinformatics and computational biology : a primer for biologists / / Basant K. Tiwary
Autore Tiwary Basant K.
Pubbl/distr/stampa Singapore : , : Springer, , [2022]
Descrizione fisica 1 online resource (239 pages)
Disciplina 570.285
Soggetto topico Bioinformatics
Computational biology
Bioinformàtica
Biologia computacional
Soggetto genere / forma Llibres electrònics
ISBN 981-16-4240-0
981-16-4241-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910743247203321
Tiwary Basant K.  
Singapore : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Concise encyclopaedia of bioinformatics and computational biology / / edited by John M. Hancock (Department of Physiology, Development & Neuroscience University of Cambridge Cambridge, UK), Marketa J. Zvelebil (Breakthrough Breast Cancer Research Institute of Cancer Research London, UK)
Concise encyclopaedia of bioinformatics and computational biology / / edited by John M. Hancock (Department of Physiology, Development & Neuroscience University of Cambridge Cambridge, UK), Marketa J. Zvelebil (Breakthrough Breast Cancer Research Institute of Cancer Research London, UK)
Edizione [Second edition]
Pubbl/distr/stampa Chichester, West Sussex, UK : , : John Wiley & Sons Ltd., , 2014
Descrizione fisica 1 online resource (832 pages)
Disciplina 572.330285
Soggetto topico Bioinformatics -- Dictionaries
Computational biology -- Dictionaries
Systems biology -- Dictionaries
Bioinformatics
Computational biology
Biology
Health & Biological Sciences
Biology - General
Bioinformàtica
Biologia computacional
ISBN 9780470978726
0470978724
9781118598160
1118598164
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Concise Encyclopaedia of Bioinformatics and Computational Biology; Title Page; Copyright; Contents; List of Contributors; Preface; A; Ab Initio; Ab Initio Gene Prediction, see Gene Prediction, ab initio.; ABNR, see Energy Minimization.; Accuracy (of Protein Structure Prediction); David Jones; Accuracy Measures, see Error Measures.; Adjacent Group; Aidan Budd and Alexandros Stamatakis; Admixture Mapping (Mapping by Admixture Linkage Disequilibrium); Andrew Collins, Mark McCarthy and Steven Wiltshire; Adopted-basis Newton-Raphson Minimization (ABNR), see Energy Minimization.
Affine Gap Penalty, see Gap Penalty.Affinity Propagation-based Clustering; Pedro Larranaga and Concha Bielza; Affymetrix GeneChipTM Oligonucleotide Microarray; Stuart Brown and Dov Greenbaum; Affymetrix Probe Level Analysis; Stuart Brown; After Sphere, see After State.; After State (After Sphere); Thomas D. Schneider; AIC, see Akaike Information Criterion.; Akaike Information Criterion; Pedro Larranaga and Concha Bielza; Algorithm; Matthew He; Alignment (Domain Alignment, Repeats Alignment); Jaap Heringa; Alignment Score; Laszlo Patthy; Allele-Sharing Methods (Non-parametric Linkage Analysis)
Mark McCarthy, Steven Wiltshire and Andrew CollinsAllelic Association; Mark McCarthy, Steven Wiltshire and Andrew Collins; Allen Brain Atlas; Dan Bolser; Allopatric Evolution (Allopatric Speciation); A.R. Hoelzel; Allopatric Speciation, see Allopatric Evolution.; AlogP; Bissan Al-Lazikani; Alpha carbon, see Cα (C-Alpha).; Alpha Helix; Roman Laskowski and Tjaart de Beer; Alternative Splicing; Enrique Blanco and Josep F. Abril; Alternative Splicing Gene Prediction, see Gene Prediction, alternative splicing.; Amide Bond (Peptide Bond); Roman Laskowski and Tjaart de Beer; Amino Acid (Residue)
Roman Laskowski, Jeremy Baum and Tjaart de BeerAmino Acid Abbreviations, see IUPAC-IUB Codes.; Amino Acid Composition; Jeremy Baum; Amino Acid Exchange Matrix (Dayhoff Matrix, Log Odds Score, PAM (Matrix), BLOSUM Matrix); Jaap Heringa; AMINO Acid Substitution Matrix, see Amino Acid Exchange Matrix.; Amino-terminus, see N-terminus.; Amphipathic; Roman Laskowski and Tjaart de Beer; Analog (Analogue); Dov Greenbaum; Ancestral Lineage, see Offspring Lineage.; Ancestral State Reconstruction; Sudhir Kumar and Alan Filipski; Anchor Points; Roland Dunbrack
Annotation Refinement Pipelines, see Gene Prediction.Annotation Transfer (Guilt by Association Annotation); Dov Greenbaum; APBIONET (Asia-Pacific Bioinformatics Network); Pedro Fernandes; Apomorphy; A.R. Hoelzel; APOLLO, see Gene Annotation, visualization tools.; Arc, see Branch (of a Phylogenetic Tree).; Are We There Yet?, see AWTY.; Aromatic; Roman Laskowski and Tjaart de Beer; Array, see Data Structure.; Artificial Neural Networks, see Neural Networks.; ASBCB (The African Society for Bioinformatics and Computational Biology); Pedro Fernandes
Association Analysis (Linkage Disequilibrium Analysis)
Record Nr. UNINA-9910970663603321
Chichester, West Sussex, UK : , : John Wiley & Sons Ltd., , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Data-driven Modelling of Structured Populations : A Practical Guide to the Integral Projection Model / / by Stephen P. Ellner, Dylan Z. Childs, Mark Rees
Data-driven Modelling of Structured Populations : A Practical Guide to the Integral Projection Model / / by Stephen P. Ellner, Dylan Z. Childs, Mark Rees
Autore Ellner Stephen P
Edizione [1st ed. 2016.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2016
Descrizione fisica 1 online resource (339 p.)
Disciplina 333.95411072
Collana Lecture Notes on Mathematical Modelling in the Life Sciences
Soggetto topico Biomathematics
Bioinformatics
Bioinformàtica
Computational biology
Biomatemàtica
Biologia computacional
Mathematical and Computational Biology
Computer Appl. in Life Sciences
ISBN 3-319-28893-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- Simple Deterministic IPM -- Basic Analysis 1: Demographic Measures and Events in the Life Cycle -- Basic Analysis 2: Prospective Perturbation Analysis -- Density Dependence -- General Deterministic IPM -- Environmental Stochasticity -- Spatial Models -- Evolutionary Demography -- Future Directions and Advanced Topics.
Record Nr. UNINA-9910254076603321
Ellner Stephen P  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Evolutionary intelligence
Evolutionary intelligence
Pubbl/distr/stampa [Heidelberg] : , : Springer-Verlag, , ©2008-
Descrizione fisica 1 online resource
Soggetto topico Artificial intelligence
Artificial intelligence - Mathematical models
Artificial Intelligence
Computational Biology
Intelligence artificielle
Bio-informatique
Intel·ligència artificial
Biologia computacional
Bioinformàtica
Soggetto genere / forma Periodicals.
Revistes electròniques.
ISSN 1864-5917
Formato Materiale a stampa
Livello bibliografico Periodico
Lingua di pubblicazione eng
Altri titoli varianti Evol. intel
Record Nr. UNINA-9910143844403321
[Heidelberg] : , : Springer-Verlag, , ©2008-
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Handbook of statistical bioinformatics / / Henry Horng-Shing Lu [and three others]
Handbook of statistical bioinformatics / / Henry Horng-Shing Lu [and three others]
Edizione [2nd ed.]
Pubbl/distr/stampa Berlin : , : Springer, , [2022]
Descrizione fisica 1 online resource (406 pages)
Disciplina 570.285
Collana Springer Handbooks of Computational Statistics
Soggetto topico Bioinformatics - Statistical methods
Bioinformatics
Bioinformàtica
Biologia computacional
Informàtica mèdica
Estadística matemàtica
Soggetto genere / forma Llibres electrònics
ISBN 3-662-65902-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- Part I Single-Cell Analysis -- Computational and Statistical Methods for Single-Cell RNA Sequencing Data -- 1 Introduction -- 2 Data Preprocessing -- 2.1 Reads Mapping -- 2.2 Cell Barcodes Demultiplexing -- 2.3 UMI Collapsing -- 2.4 Cell Barcodes Selection -- 2.5 Summary -- 3 Data Normalization and Visualization -- 3.1 Background -- 3.2 Global Scaling Normalization for UMI Data -- 3.3 Probabilistic Model-Based Normalization for UMI Data -- 3.4 Dimension Reduction and Cell Clustering -- 4 Dropout Imputation -- 4.1 Background -- 4.2 Cell-Cell Similarity-Based Imputation -- 4.3 Gene-Gene Similarity-Based Imputation -- 4.4 Gene-Gene and Cell-Cell Similarity-Based Imputation -- 4.5 Deep Neural Network-Based Imputation -- 4.6 G2S3 -- 4.7 Methods Evaluation and Comparison -- 5 Differential Expression Analysis -- 5.1 Background -- 5.2 DE Methods Ignoring Subject Effects -- 5.3 DE Methods Considering Subject Effects -- 5.4 iDESC -- 5.5 DE Methods Evaluation and Comparison -- 5.5.1 Type I Error Comparison -- 5.5.2 Statistical Power Comparison -- 6 Concluding Remarks -- References -- Pre-processing, Dimension Reduction, and Clustering for Single-Cell RNA-seq Data -- 1 Introduction -- 2 Pre-processing of scRNA-seq Data -- 2.1 Removal of Batch Effects -- 2.2 Quality Control and Feature Selection -- 3 Dimension Reduction and Clustering -- 3.1 Dimension Reduction -- 3.2 Clustering -- 4 Conclusion -- References -- Integrative Analyses of Single-Cell Multi-Omics Data: A Review from a Statistical Perspective -- 1 Multi-Omics Data Profiled on Different Cells -- 2 Multi-Omics Data Profiled on the Same Single Cells -- 3 Challenges and Future Perspectives -- References -- Approaches to Marker Gene Identification from Single-Cell RNA-Sequencing Data -- 1 Introduction.
2 Marker Gene Selection Relies on Identifying Differentially Expressed Genes -- 3 Methods for Marker Gene Selection -- 3.1 Highest Expressed, Highest Variable -- 4 Supervised Methods -- 4.1 COMET -- 4.2 scGeneFit -- 5 Unsupervised Methods -- 5.1 Seurat -- 5.2 SC3 -- 5.3 SCMarker -- 5.4 scTIM -- 5.5 RankCorr -- 6 Discussion -- References -- Model-Based Clustering of Single-Cell Omics Data -- 1 Introduction -- 2 Single-Cell Transcriptomic Data Clustering -- 2.1 Single-Cell Transcriptomic Data Structure -- 2.2 DIMM-SC -- 2.3 Real Data Example -- 3 Population-Scale Single-Cell Transcriptomic Data Clustering -- 3.1 Population-Scale Single-Cell Transcriptomic Data Structure -- 3.2 BAMM-SC -- 3.3 Real Data Example -- 4 Single-Cell Multi-omics Data Clustering -- 4.1 CITE-seq Data Structure -- 4.2 BREM-SC -- 4.3 Real Data Example -- 5 Concluding Remarks -- References -- Deep Learning Methods for Single-Cell Omics Data -- 1 Introduction -- 2 Factor-Model-Based Deep Learning Approaches -- 2.1 Regularization and Priors on the Latent Factors -- 2.1.1 Gaussian Prior and Variational Inference -- 2.1.2 Adjust for Batch Effects and Confounding Covariates: Identifiability -- 2.1.3 Adjust for Batch Effects and Confounding Covariates: Implementation -- 2.1.4 Model Cell Population Structure in the Latent Space -- 2.2 Distributional Assumptions on Observed Data -- 2.2.1 Model Observed Data from scRNA-seq -- 2.2.2 Model Observed Data from scATAC-seq -- 2.2.3 Model Observed Data from Single-Cell Multiomics Technologies -- 2.3 Post-training Statistical Analyses -- 2.3.1 Denoising -- 2.3.2 Visualization, Clustering, and Trajectory Analysis -- 2.3.3 Prediction -- 3 Deep Learning Methods for Dimension Reduction -- 3.1 Construct the Loss Function -- 3.2 Extra Penalties and Regularization -- 4 Discussion -- References -- Part II Network Analysis.
Probabilistic Graphical Models for Gene Regulatory Networks -- 1 Introduction -- 2 Probabilistic Graphical Models -- 2.1 Graphical Model Basics -- 2.2 Markov Networks -- 2.3 Bayesian Networks -- 3 Classic Graphical Models for Reconstructing GRNs -- 3.1 Frequentist Approach -- 3.2 Bayesian Approach -- 3.3 Graphical Models Incorporating Prior Knowledge -- 4 Testing in Graphical Models -- 4.1 Parametric Test -- 4.2 Non-parametric Test for Global Graph Structure -- 5 Conclusion -- References -- Additive Conditional Independence for Large and Complex Biological Structures -- 1 Additive Conditional Independence (ACI) -- 1.1 Additive Reproducing Kernel Hilbert Spaces and Relevant Linear Operators -- 2 Variable Selection via ACI -- 2.1 Nonparametric Variable Selection -- 2.2 Penalized Least-Square Estimation with RKHS Operators -- 2.3 Matrix Representation of Operators and Algorithm -- 2.4 Data Example -- 3 Graphical Modeling Through ACI -- 3.1 Nonparametric Graphical Models -- 3.2 The Additive Conditional Covariance and Partial Correlation Operators -- 3.3 Operator-Level Estimation and the Algorithm -- 3.4 Data Examples -- References -- Integration of Boolean and Bayesian Networks -- 1 Introduction -- 2 Methods -- 2.1 s-p-scores Associated with Networks, SPAN -- 2.2 Network Learning -- 3 Results -- 3.1 An Example -- 3.2 Real Example -- 3.3 Complex Example -- 4 Discussion -- References -- Computational Methods for Identifying MicroRNA-Gene Regulatory Modules -- 1 Introduction -- 2 Identifying MiRNA-Gene Modules by Integrating Heterogeneous Data Sources -- 2.1 Bipartite Graph-Based Methods -- 2.2 Nonnegative Matrix Factorization Methods -- 2.3 Statistical Modeling Approaches -- 3 Evaluating the Performance of MiRNA-Gene Module Identification Methods -- 4 Discussion -- 5 Conclusions -- References -- Causal Inference in Biostatistics -- 1 Introduction.
1.1 Causation and Association -- 1.2 Two Conceptual Frameworks: Causal Effect and Causal Discovery -- 2 Causal Effect -- 2.1 Approaches to Causal Inference -- 2.2 Randomized Clinical Trials -- 2.2.1 Perfect Randomized Trials -- 2.2.2 Randomized Trials with Missing Data -- 2.2.3 Randomized Trials with Post-treatment Variables -- 2.3 Observational Studies -- 2.3.1 Unconfounded Treatment Assignment Conditional on Measured Covariates -- 2.3.2 Unmeasured Cofounding -- 3 Some Current Research Topics -- 3.1 Heterogenous Treatment Effect and Precision Medicine -- 3.2 Integrating Data from Randomized Controlled Trials and Observational Studies -- 3.3 Multiple Treatments -- 4 Software Appendix -- References -- Bayesian Balance Mediation Analysis in Microbiome Studies -- 1 Introduction -- 2 Bayesian Balance Mediation Model -- 2.1 Bayesian Balance Mediation Model with a Binary Treatment -- 2.2 Direct and Mediation Effect and Estimation Based on Predictive Posterior Distribution -- 3 MCMC Sampling -- 3.1 MCMC Sampling -- 3.2 Conditional Distributions -- 4 Applications to Real Data -- 4.1 Mediation Analysis at the Phylum Level -- 4.2 Analysis at the Order Level -- 5 Simulation Studies -- 5.1 Data Generation -- 5.2 Simulation Result -- 6 Discussion -- References -- Part III Systems Biology -- Identifying Genetic Loci Associated with Complex Trait Variability -- 1 Introduction -- 2 The Concept of vQTL -- 3 Statistical Methods for vQTL Mapping -- 3.1 Classical Nonparametric Tests -- 3.2 Regression-Based Methods -- 3.3 Two-Stage Methods -- 3.4 Quantile Integral Linear Model (QUAIL) -- 3.5 Dispersion Effects -- 4 Applications of vQTL -- 4.1 Examples of vQTL -- 4.2 Screening vQTL for Candidate Loci Involved in GxE Interaction -- 4.3 Variance Polygenic Score -- 4.4 Other Applications and Future Directions -- References.
Cell Type-Specific Analysis for High-throughput Data -- 1 Introduction -- 2 Cell Type Composition Estimation -- 3 Cell Type-Specific Differential Analysis -- 4 Step-by-step Tutorial -- References -- Recent Development of Computational Methods in the Field of Epitranscriptomics -- 1 Introduction -- 2 MeRIP-seq and Other Technologies for RNA Modification Profiling -- 3 Methods to Analyze MeRIP-seq Data -- 3.1 Count-Based Methods for Simple Study Designs -- 3.2 Methods Compatible with Confounding Factors -- 3.3 A Guide for RNA Differential Methylation Analysis Using RADAR -- 4 Web Resources on m6A Epitranscriptome -- 4.1 Web Servers with m6A Site Prediction -- 4.2 m6A Epitranscriptome Database -- 5 Discussion -- References -- Estimation of Tumor Immune Signatures from Transcriptomics Data -- 1 Introduction -- 2 Regression-Based Deconvolution Algorithms -- 2.1 Linear Least Squares Regression -- 2.2 Support Vector Regression -- 2.3 Other Deconvolution Methods -- 3 Gene Set Enrichment-Based Methods and Other Gene-Based Algorithms -- 3.1 Gene Set Enrichment Analysis (GSEA) -- 3.2 Single-Sample GSEA (ssGSEA) -- 4 Benchmark Studies -- 5 Discussions -- References -- Cross-Linking Mass Spectrometry Data Analysis -- 1 Introduction -- 1.1 Peptide Identification Based on Mass Spectrometry -- 1.2 Cross-Linked Peptides Identification -- 1.2.1 Cross-Linker Selection -- 1.2.2 Chemical Reaction -- 1.2.3 Enzyme Digestion -- 1.2.4 Enrichment of Cross-Linked Peptides -- 1.2.5 LC-MS and MS2 Acquisition -- 1.2.6 Data Interpretation -- 1.2.7 Quality Control -- 1.2.8 Downstream Applications -- 2 Non-cleavable Cross-Linking Methods -- 3 Cleavable Cross-Linking Methods -- 4 Time-Complexity Comparison Between Non-cleavable Methods and Cleavable Methods -- 5 False Discovery Rate in CL-MS -- 5.1 Target-Decoy Approach in Linear Peptides Identification.
5.2 TDA in Cross-Linked Peptides Identification.
Record Nr. UNINA-9910634054103321
Berlin : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Handbook of statistical bioinformatics / / Henry Horng-Shing Lu [and three others]
Handbook of statistical bioinformatics / / Henry Horng-Shing Lu [and three others]
Edizione [2nd ed.]
Pubbl/distr/stampa Berlin : , : Springer, , [2022]
Descrizione fisica 1 online resource (406 pages)
Disciplina 570.285
Collana Springer Handbooks of Computational Statistics
Soggetto topico Bioinformatics - Statistical methods
Bioinformatics
Bioinformàtica
Biologia computacional
Informàtica mèdica
Estadística matemàtica
Soggetto genere / forma Llibres electrònics
ISBN 3-662-65902-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- Part I Single-Cell Analysis -- Computational and Statistical Methods for Single-Cell RNA Sequencing Data -- 1 Introduction -- 2 Data Preprocessing -- 2.1 Reads Mapping -- 2.2 Cell Barcodes Demultiplexing -- 2.3 UMI Collapsing -- 2.4 Cell Barcodes Selection -- 2.5 Summary -- 3 Data Normalization and Visualization -- 3.1 Background -- 3.2 Global Scaling Normalization for UMI Data -- 3.3 Probabilistic Model-Based Normalization for UMI Data -- 3.4 Dimension Reduction and Cell Clustering -- 4 Dropout Imputation -- 4.1 Background -- 4.2 Cell-Cell Similarity-Based Imputation -- 4.3 Gene-Gene Similarity-Based Imputation -- 4.4 Gene-Gene and Cell-Cell Similarity-Based Imputation -- 4.5 Deep Neural Network-Based Imputation -- 4.6 G2S3 -- 4.7 Methods Evaluation and Comparison -- 5 Differential Expression Analysis -- 5.1 Background -- 5.2 DE Methods Ignoring Subject Effects -- 5.3 DE Methods Considering Subject Effects -- 5.4 iDESC -- 5.5 DE Methods Evaluation and Comparison -- 5.5.1 Type I Error Comparison -- 5.5.2 Statistical Power Comparison -- 6 Concluding Remarks -- References -- Pre-processing, Dimension Reduction, and Clustering for Single-Cell RNA-seq Data -- 1 Introduction -- 2 Pre-processing of scRNA-seq Data -- 2.1 Removal of Batch Effects -- 2.2 Quality Control and Feature Selection -- 3 Dimension Reduction and Clustering -- 3.1 Dimension Reduction -- 3.2 Clustering -- 4 Conclusion -- References -- Integrative Analyses of Single-Cell Multi-Omics Data: A Review from a Statistical Perspective -- 1 Multi-Omics Data Profiled on Different Cells -- 2 Multi-Omics Data Profiled on the Same Single Cells -- 3 Challenges and Future Perspectives -- References -- Approaches to Marker Gene Identification from Single-Cell RNA-Sequencing Data -- 1 Introduction.
2 Marker Gene Selection Relies on Identifying Differentially Expressed Genes -- 3 Methods for Marker Gene Selection -- 3.1 Highest Expressed, Highest Variable -- 4 Supervised Methods -- 4.1 COMET -- 4.2 scGeneFit -- 5 Unsupervised Methods -- 5.1 Seurat -- 5.2 SC3 -- 5.3 SCMarker -- 5.4 scTIM -- 5.5 RankCorr -- 6 Discussion -- References -- Model-Based Clustering of Single-Cell Omics Data -- 1 Introduction -- 2 Single-Cell Transcriptomic Data Clustering -- 2.1 Single-Cell Transcriptomic Data Structure -- 2.2 DIMM-SC -- 2.3 Real Data Example -- 3 Population-Scale Single-Cell Transcriptomic Data Clustering -- 3.1 Population-Scale Single-Cell Transcriptomic Data Structure -- 3.2 BAMM-SC -- 3.3 Real Data Example -- 4 Single-Cell Multi-omics Data Clustering -- 4.1 CITE-seq Data Structure -- 4.2 BREM-SC -- 4.3 Real Data Example -- 5 Concluding Remarks -- References -- Deep Learning Methods for Single-Cell Omics Data -- 1 Introduction -- 2 Factor-Model-Based Deep Learning Approaches -- 2.1 Regularization and Priors on the Latent Factors -- 2.1.1 Gaussian Prior and Variational Inference -- 2.1.2 Adjust for Batch Effects and Confounding Covariates: Identifiability -- 2.1.3 Adjust for Batch Effects and Confounding Covariates: Implementation -- 2.1.4 Model Cell Population Structure in the Latent Space -- 2.2 Distributional Assumptions on Observed Data -- 2.2.1 Model Observed Data from scRNA-seq -- 2.2.2 Model Observed Data from scATAC-seq -- 2.2.3 Model Observed Data from Single-Cell Multiomics Technologies -- 2.3 Post-training Statistical Analyses -- 2.3.1 Denoising -- 2.3.2 Visualization, Clustering, and Trajectory Analysis -- 2.3.3 Prediction -- 3 Deep Learning Methods for Dimension Reduction -- 3.1 Construct the Loss Function -- 3.2 Extra Penalties and Regularization -- 4 Discussion -- References -- Part II Network Analysis.
Probabilistic Graphical Models for Gene Regulatory Networks -- 1 Introduction -- 2 Probabilistic Graphical Models -- 2.1 Graphical Model Basics -- 2.2 Markov Networks -- 2.3 Bayesian Networks -- 3 Classic Graphical Models for Reconstructing GRNs -- 3.1 Frequentist Approach -- 3.2 Bayesian Approach -- 3.3 Graphical Models Incorporating Prior Knowledge -- 4 Testing in Graphical Models -- 4.1 Parametric Test -- 4.2 Non-parametric Test for Global Graph Structure -- 5 Conclusion -- References -- Additive Conditional Independence for Large and Complex Biological Structures -- 1 Additive Conditional Independence (ACI) -- 1.1 Additive Reproducing Kernel Hilbert Spaces and Relevant Linear Operators -- 2 Variable Selection via ACI -- 2.1 Nonparametric Variable Selection -- 2.2 Penalized Least-Square Estimation with RKHS Operators -- 2.3 Matrix Representation of Operators and Algorithm -- 2.4 Data Example -- 3 Graphical Modeling Through ACI -- 3.1 Nonparametric Graphical Models -- 3.2 The Additive Conditional Covariance and Partial Correlation Operators -- 3.3 Operator-Level Estimation and the Algorithm -- 3.4 Data Examples -- References -- Integration of Boolean and Bayesian Networks -- 1 Introduction -- 2 Methods -- 2.1 s-p-scores Associated with Networks, SPAN -- 2.2 Network Learning -- 3 Results -- 3.1 An Example -- 3.2 Real Example -- 3.3 Complex Example -- 4 Discussion -- References -- Computational Methods for Identifying MicroRNA-Gene Regulatory Modules -- 1 Introduction -- 2 Identifying MiRNA-Gene Modules by Integrating Heterogeneous Data Sources -- 2.1 Bipartite Graph-Based Methods -- 2.2 Nonnegative Matrix Factorization Methods -- 2.3 Statistical Modeling Approaches -- 3 Evaluating the Performance of MiRNA-Gene Module Identification Methods -- 4 Discussion -- 5 Conclusions -- References -- Causal Inference in Biostatistics -- 1 Introduction.
1.1 Causation and Association -- 1.2 Two Conceptual Frameworks: Causal Effect and Causal Discovery -- 2 Causal Effect -- 2.1 Approaches to Causal Inference -- 2.2 Randomized Clinical Trials -- 2.2.1 Perfect Randomized Trials -- 2.2.2 Randomized Trials with Missing Data -- 2.2.3 Randomized Trials with Post-treatment Variables -- 2.3 Observational Studies -- 2.3.1 Unconfounded Treatment Assignment Conditional on Measured Covariates -- 2.3.2 Unmeasured Cofounding -- 3 Some Current Research Topics -- 3.1 Heterogenous Treatment Effect and Precision Medicine -- 3.2 Integrating Data from Randomized Controlled Trials and Observational Studies -- 3.3 Multiple Treatments -- 4 Software Appendix -- References -- Bayesian Balance Mediation Analysis in Microbiome Studies -- 1 Introduction -- 2 Bayesian Balance Mediation Model -- 2.1 Bayesian Balance Mediation Model with a Binary Treatment -- 2.2 Direct and Mediation Effect and Estimation Based on Predictive Posterior Distribution -- 3 MCMC Sampling -- 3.1 MCMC Sampling -- 3.2 Conditional Distributions -- 4 Applications to Real Data -- 4.1 Mediation Analysis at the Phylum Level -- 4.2 Analysis at the Order Level -- 5 Simulation Studies -- 5.1 Data Generation -- 5.2 Simulation Result -- 6 Discussion -- References -- Part III Systems Biology -- Identifying Genetic Loci Associated with Complex Trait Variability -- 1 Introduction -- 2 The Concept of vQTL -- 3 Statistical Methods for vQTL Mapping -- 3.1 Classical Nonparametric Tests -- 3.2 Regression-Based Methods -- 3.3 Two-Stage Methods -- 3.4 Quantile Integral Linear Model (QUAIL) -- 3.5 Dispersion Effects -- 4 Applications of vQTL -- 4.1 Examples of vQTL -- 4.2 Screening vQTL for Candidate Loci Involved in GxE Interaction -- 4.3 Variance Polygenic Score -- 4.4 Other Applications and Future Directions -- References.
Cell Type-Specific Analysis for High-throughput Data -- 1 Introduction -- 2 Cell Type Composition Estimation -- 3 Cell Type-Specific Differential Analysis -- 4 Step-by-step Tutorial -- References -- Recent Development of Computational Methods in the Field of Epitranscriptomics -- 1 Introduction -- 2 MeRIP-seq and Other Technologies for RNA Modification Profiling -- 3 Methods to Analyze MeRIP-seq Data -- 3.1 Count-Based Methods for Simple Study Designs -- 3.2 Methods Compatible with Confounding Factors -- 3.3 A Guide for RNA Differential Methylation Analysis Using RADAR -- 4 Web Resources on m6A Epitranscriptome -- 4.1 Web Servers with m6A Site Prediction -- 4.2 m6A Epitranscriptome Database -- 5 Discussion -- References -- Estimation of Tumor Immune Signatures from Transcriptomics Data -- 1 Introduction -- 2 Regression-Based Deconvolution Algorithms -- 2.1 Linear Least Squares Regression -- 2.2 Support Vector Regression -- 2.3 Other Deconvolution Methods -- 3 Gene Set Enrichment-Based Methods and Other Gene-Based Algorithms -- 3.1 Gene Set Enrichment Analysis (GSEA) -- 3.2 Single-Sample GSEA (ssGSEA) -- 4 Benchmark Studies -- 5 Discussions -- References -- Cross-Linking Mass Spectrometry Data Analysis -- 1 Introduction -- 1.1 Peptide Identification Based on Mass Spectrometry -- 1.2 Cross-Linked Peptides Identification -- 1.2.1 Cross-Linker Selection -- 1.2.2 Chemical Reaction -- 1.2.3 Enzyme Digestion -- 1.2.4 Enrichment of Cross-Linked Peptides -- 1.2.5 LC-MS and MS2 Acquisition -- 1.2.6 Data Interpretation -- 1.2.7 Quality Control -- 1.2.8 Downstream Applications -- 2 Non-cleavable Cross-Linking Methods -- 3 Cleavable Cross-Linking Methods -- 4 Time-Complexity Comparison Between Non-cleavable Methods and Cleavable Methods -- 5 False Discovery Rate in CL-MS -- 5.1 Target-Decoy Approach in Linear Peptides Identification.
5.2 TDA in Cross-Linked Peptides Identification.
Record Nr. UNISA-996503551803316
Berlin : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
IEEE/ACM transactions on computational biology and bioinformatics
IEEE/ACM transactions on computational biology and bioinformatics
Pubbl/distr/stampa New York, NY, : IEEE Computer Society, ©2004-
Disciplina 572
Soggetto topico Computational biology
Bioinformatics
Computational Biology
Bio-informatique
Biologia computacional
Bioinformàtica
Soggetto genere / forma Periodicals.
Revistes electròniques.
ISSN 1557-9964
Formato Materiale a stampa
Livello bibliografico Periodico
Lingua di pubblicazione eng
Altri titoli varianti Computational biology and bioinformatics
Computational biology and bioinformatics, IEEE/ACM transactions on
Record Nr. UNINA-9910143539403321
New York, NY, : IEEE Computer Society, ©2004-
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Molecular informatics
Molecular informatics
Pubbl/distr/stampa [Weinheim, Germany], : Wiley-VCH Verlag
Descrizione fisica 1 online resource
Soggetto topico Cheminformatics
Bioinformatics
Drugs - Structure-activity relationships
Structure-activity relationships (Biochemistry)
QSAR (Biochemistry)
Computational Biology
Computer-Aided Design
Biochemical Phenomena
Chimio-informatique
Relations structure-activité (Biochimie)
Médicaments - Relations structure-activité
Bio-informatique
Conception assistée par ordinateur
computer-aided designs (visual works)
computer-aided design (process)
Structuur-activiteit-relatie
Bioinformàtica
Biologia computacional
Soggetto genere / forma Periodical
periodicals.
Periodicals.
Périodiques.
Revistes electròniques.
ISSN 1868-1751
Formato Materiale a stampa
Livello bibliografico Periodico
Lingua di pubblicazione eng
Record Nr. UNINA-9910143076903321
[Weinheim, Germany], : Wiley-VCH Verlag
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Network modeling and analysis in health informatics and bioinformatics
Network modeling and analysis in health informatics and bioinformatics
Pubbl/distr/stampa [Wien], : Springer-Verlag, 2012-
Descrizione fisica 1 online resource
Soggetto topico Bioinformatics
Medical informatics
Medical Informatics
Computational Biology
Bioinformàtica
Informàtica mèdica
Biologia computacional
Soggetto genere / forma Periodical
Periodicals.
Revistes electròniques.
ISSN 2192-6670
Formato Materiale a stampa
Livello bibliografico Periodico
Lingua di pubblicazione eng
Altri titoli varianti NetMAHIB
Netw model anal health inform bioinforma
Record Nr. UNINA-9910307953403321
[Wien], : Springer-Verlag, 2012-
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui