Advances in Polyhydroxyalkanoate (PHA) Production / / Martin Koller, editor
| Advances in Polyhydroxyalkanoate (PHA) Production / / Martin Koller, editor |
| Pubbl/distr/stampa | [Place of publication not identified] : , : MDPI AG - Multidisciplinary Digital Publishing Institute, , [2017] |
| Descrizione fisica | 1 online resource (258 pages) |
| Disciplina | 620.192323 |
| Soggetto topico |
Biodegradable plastics
Poly-beta-hydroxyalkanoates |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | About the Special Issue Editor v -- Preface to "Advances in Polyhydroxyalkanoate (PHA) Production" vii Martin Koller -- Advances in Polyhydroxyalkanoate (PHA) Production -- Reprinted from: Bioengineering 2017, 4(4), 88; doi: 10.3390/bioengineering4040088 1 -- Constantina Kourmentza, Jersson Plácido, Nikolaos Venetsaneas, Anna Burniol‐Figols, -- Cristiano Varrone, Hariklia N. Gavala and Maria A. M. Reis Recent Advances and Challenges towards Sustainable Polyhydroxyalkanoate (PHA) Production -- Reprinted from: Bioengineering 2017, 4(2), 55; doi: 10.3390/bioengineering4020055 8 -- Rodrigo Yoji Uwamori Takahashi, Nathalia Aparecida Santos Castilho, Marcus Adonai Castro da Silva, Maria Cecilia Miotto and André Oliveira de Souza Lima Prospecting for Marine Bacteria for Polyhydroxyalkanoate Production on Low‐Cost Substrates -- Reprinted from: Bioengineering 2017, 4(3), 60; doi: 10.3390/bioengineering4030060 51 Sourish Bhattacharya, Sonam Dubey, Priyanka Singh, Anupama Shrivastava and Sandhya Mishra -- Biodegradable Polymeric Substances Produced by a Marine Bacterium from a Surplus Stream of the Biodiesel Industry -- Reprinted from: Bioengineering 2016, 3(4), 34; doi: 10.3390/bioengineering3040034 64 Bhakti B. Salgaonkar and Judith M. Bragança -- Utilization of Sugarcane Bagasse by Halogeometricum borinquense Strain E3 for Biosynthesis of Poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) -- Reprinted from: Bioengineering 2017, 4(2), 50; doi: 10.3390/bioengineering4020050 75 -- Dan Kucera, Pavla Benesova, Peter Ladicky, Miloslav Pekar, Petr Sedlacek and Stanislav Obruca Production of Polyhydroxyalkanoates Using Hydrolyzates of Spruce Sawdust: Comparison of Hydrolyzates Detoxification by Application of Overliming, Active Carbon, and Lignite Reprinted from: Bioengineering 2017, 4(2), 53; doi: 10.3390/bioengineering4020053 93 -- Ayaka Hokamura, Yuko Yunoue, Saki Goto and Hiromi Matsusaki -- Biosynthesis of Polyhydroxyalkanoate from Steamed Soybean Wastewater by a Recombinant -- Strain of Pseudomonas sp. 61‐3 -- Reprinted from: Bioengineering 2017, 4(3), 68; doi: 10.3390/bioengineering4030068 102 -- Brian Johnston, Guozhan Jiang, David Hill, Grazyna Adamus, Iwona Kwiecień, Magdalena Zięba, Wanda Sikorska, Matthew Green, Marek Kowalczuk and Iza Radecka -- The Molecular Level Characterization of Biodegradable Polymers Originated from Polyethylene -- Using Non‐Oxygenated Polyethylene Wax as a Carbon Source for Polyhydroxyalkanoate Production -- Reprinted from: Bioengineering 2017, 4(3), 73; doi: 10.3390/bioengineering4030073 112 -- Stephanie Karmann, Sven Panke and Manfred Zinn -- The Bistable Behaviour of Pseudomonas putida KT2440 during PHA Depolymerization under Carbon Limitation -- Reprinted from: Bioengineering 2017, 4(2), 58; doi: 10.3390/bioengineering4020058 126 -- Liliana Montano‐Herrera, Bronwyn Laycock, Alan Werker and Steven Pratt -- The Evolution of Polymer Composition during PHA Accumulation: The Significance of Reducing Equivalents -- Reprinted from: Bioengineering 2017, 4(1), 20; doi: 10.3390/bioengineering4010020. 138 -- Eduarda Morgana da Silva Montenegro, Gabriela Scholante Delabary, Marcus Adonai Castro da Silva, Fernando Dini Andreote and André Oliveira de Souza Lima -- Molecular Diagnostic for Prospecting Polyhydroxyalkanoate‐Producing Bacteria -- Reprinted from: Bioengineering 2017, 4(2), 52; doi: 10.3390/bioengineering4020052 155 -- Clemens Troschl, Katharina Meixner and Bernhard Drosg -- Cyanobacterial PHA Production-Review of Recent Advances and a Summary of Three Years'-- Working Experience Running a Pilot Plant -- Reprinted from: Bioengineering 2017, 4(2), 26; doi: 10.3390/bioengineering4020026 165-- Timo Pittmann and Heidrun Steinmetz -- Polyhydroxyalkanoate Production on Waste Water Treatment Plants: Process Scheme, Operating Conditions and Potential Analysis for German and European Municipal Waste -- Water Treatment Plants -- Reprinted from: Bioengineering 2017, 4(2), 54; doi: 10.3390/bioengineering4020054 184 -- Miguel Miranda De Sousa Dias, Martin Koller, Dario Puppi, Andrea Morelli, -- Federica Chiellini and Gerhart Braunegg -- Fed‐Batch Synthesis of Poly(3‐Hydroxybutyrate) and Poly(3‐Hydroxybutyrate‐co‐4‐Hydroxybutyrate) from Sucrose and 4‐Hydroxybutyrate Precursors by Burkholderia sacchari Strain DSM 17165 -- Reprinted from: Bioengineering 2017, 4(2), 36; doi: 10.3390/bioengineering4020036 208 -- Dario Puppi, Andrea Morelli and Federica Chiellini -- Additive Manufacturing of Poly(3‐hydroxybutyrate‐co‐3‐hydroxyhexanoate)/poly(ε‐caprolactone) -- Blend Scaffolds for Tissue Engineering -- Reprinted from: Bioengineering 2017, 4(2), 49; doi: 10.3390/bioengineering4020049 227. |
| Altri titoli varianti | Advances in Polyhydroxyalkanoate |
| Record Nr. | UNINA-9910598003903321 |
| [Place of publication not identified] : , : MDPI AG - Multidisciplinary Digital Publishing Institute, , [2017] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Advances in Polyhydroxyalkanoate (PHA) production / / edited by Martin Koller
| Advances in Polyhydroxyalkanoate (PHA) production / / edited by Martin Koller |
| Pubbl/distr/stampa | Basel, Switzerland : , : MDPI, , 2017 |
| Descrizione fisica | 1 online resource (258 pages) |
| Disciplina | 620.192323 |
| Soggetto topico |
Biodegradable plastics
Poly-beta-hydroxyalkanoates |
| ISBN | 3-03842-636-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | About the Special Issue Editor -- Preface to "Advances in Polyhydroxyalkanoate (PHA) Production" -- Martin Koller Advances in Polyhydroxyalkanoate (PHA) Production Reprinted from: Bioengineering 2017, 4(4), 88; doi: 10.3390/bioengineering4040088 -- Constantina Kourmentza, Jersson Placido, Nikolaos Venetsaneas, Anna Burniol-Figols, Cristiano Varrone, Hariklia N. Gavala and Maria A. M. Reis Recent Advances and Challenges towards Sustainable Polyhydroxyalkanoate (PHA) Production -- Reprinted from: Bioengineering 2017, 4(2), 55; doi: 10.3390/bioengineering4020055 -- Rodrigo Yoji Uwamori Takahashi, Nathalia Aparecida Santos Castilho, Marcus Adonai Castro da Silva, Maria Cecilia Miotto and Andre Oliveira de Souza Lima Prospecting for Marine Bacteria for Polyhydroxyalkanoate Production on Low-Cost Substrates Reprinted from: Bioengineering 2017, 4(3), 60; doi: 10.3390/bioengineering4030060 -- Sourish Bhattacharya, Sonam Dubey, Priyanka Singh, Anupama Shrivastava and Sandhya Mishra Biodegradable Polymeric Substances Produced by a Marine Bacterium from a Surplus Stream of the Biodiesel Industry Reprinted from: Bioengineering 2016, 3(4), 34; doi: 10.3390/bioengineering3040034 -- Bhakti B. Salgaonkar and Judith M. Braganc¸a Utilization of Sugarcane Bagasse by Halogeometricum borinquense Strain E3 for Biosynthesis of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Reprinted from: Bioengineering 2017, 4(2), 50; doi: 10.3390/bioengineering4020050 -- Dan Kucera, Pavla Benesova, Peter Ladicky, Miloslav Pekar, Petr Sedlacek and Stanislav Obruca Production of Polyhydroxyalkanoates Using Hydrolyzates of Spruce Sawdust: Comparison of Hydrolyzates Detoxification by Application of Overliming, Active Carbon, and Lignite Reprinted from: Bioengineering 2017, 4(2), 53; doi: 10.3390/bioengineering4020053 -- Ayaka Hokamura, Yuko Yunoue, Saki Goto and Hiromi Matsusaki Biosynthesis of Polyhydroxyalkanoate from Steamed Soybean Wastewater by a Recombinant Strain of Pseudomonas sp. 61-3 Reprinted from: Bioengineering 2017, 4(3), 68; doi: 10.3390/bioengineering4030068 -- Brian Johnston, Guozhan Jiang, David Hill, Grazyna Adamus, Iwona Kwiecien, Magdalena Zie?ba, Wanda Sikorska, Matthew Green, Marek Kowalczuk and Iza Radecka The Molecular Level Characterization of Biodegradable Polymers Originated from Polyethylene Using Non-Oxygenated Polyethylene Wax as a Carbon Source for Polyhydroxyalkanoate Production Reprinted from: Bioengineering 2017, 4(3), 73; doi: 10.3390/bioengineering4030073 -- Stephanie Karmann, Sven Panke and Manfred Zinn The Bistable Behaviour of Pseudomonas putida KT2440 during PHA Depolymerization under Carbon Limitation Reprinted from: Bioengineering 2017, 4(2), 58; doi: 10.3390/bioengineering4020058 -- Liliana Montano-Herrera, Bronwyn Laycock, Alan Werker and Steven Pratt The Evolution of Polymer Composition during PHA Accumulation: The Significance of Reducing Equivalents Reprinted from: Bioengineering 2017, 4(1), 20; doi: 10.3390/bioengineering4010020 -- Eduarda Morgana da Silva Montenegro, Gabriela Scholante Delabary, Marcus Adonai Castro da Silva, Fernando Dini Andreote and Andre Oliveira de Souza Lima Molecular Diagnostic for Prospecting Polyhydroxyalkanoate-Producing Bacteria Reprinted from: Bioengineering 2017, 4(2), 52; doi: 10.3390/bioengineering4020052 -- Clemens Troschl, Katharina Meixner and Bernhard Drosg Cyanobacterial PHA Production-Review of Recent Advances and a Summary of Three Years' Working Experience Running a Pilot Plant Reprinted from: Bioengineering 2017, 4(2), 26; doi: 10.3390/bioengineering4020026 -- Timo Pittmann and Heidrun Steinmetz Polyhydroxyalkanoate Production on Waste Water Treatment Plants: Process Scheme, Operating Conditions and Potential Analysis for German and European Municipal Waste Water Treatment Plants Reprinted from: Bioengineering 2017, 4(2), 54; doi: 10.3390/bioengineering4020054 -- Miguel Miranda De Sousa Dias, Martin Koller, Dario Puppi, Andrea Morelli, Federica Chiellini and Gerhart Braunegg Fed-Batch Synthesis of Poly(3-Hydroxybutyrate) and Poly(3-Hydroxybutyrate-co-4-Hydroxybutyrate) from Sucrose and 4-Hydroxybutyrate Precursors by Burkholderia sacchari Strain DSM 17165 Reprinted from: Bioengineering 2017, 4(2), 36; doi: 10.3390/bioengineering4020036 -- Dario Puppi, Andrea Morelli and Federica Chiellini Additive Manufacturing of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)/poly(e-caprolactone) Blend Scaffolds for Tissue Engineering Reprinted from: Bioengineering 2017, 4(2), 49; doi: 10.3390/bioengineering4020049. |
| Altri titoli varianti | Advances in Polyhydroxyalkanoate |
| Record Nr. | UNINA-9910688468303321 |
| Basel, Switzerland : , : MDPI, , 2017 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Agro-Waste Derived Biopolymers and Biocomposites : Innovations and Sustainability in Food Packaging
| Agro-Waste Derived Biopolymers and Biocomposites : Innovations and Sustainability in Food Packaging |
| Autore | Kumar Santosh |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2024 |
| Descrizione fisica | 1 online resource (474 pages) |
| Disciplina | 664.09 |
| Altri autori (Persone) |
MukherjeeAvik
KatiyarVimal |
| Soggetto topico |
Biopolymers
Biodegradable plastics |
| ISBN |
9781394175161
1394175167 9781394175154 1394175159 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Promising Agro-Wastes for Food Packaging -- 1.1 Introduction -- 1.2 Current Global Status of Agro-Wastes -- 1.3 Types of Agro-Wastes -- 1.3.1 Agro-Industrial Waste -- 1.3.2 Crop Residues -- 1.3.3 Animal Waste -- 1.3.4 Aquatic Waste -- 1.4 Extraction of Biopolymers from Agro-Wastes -- 1.4.1 Chemical Treatment -- 1.4.1.1 Acid Treatment -- 1.4.1.2 Alkali Treatment -- 1.4.1.3 Organic Solvent Treatment -- 1.4.2 Biological Treatment -- 1.4.3 Mechanical Processing -- 1.4.4 Thermochemical Processing -- 1.5 Extraction of Bioactive Compounds from Agro-Wastes -- 1.6 Conclusion and Future Perspectives -- References -- Chapter 2 Natural Fiber-Based Composite for Food Packaging -- 2.1 Introduction -- 2.2 Fiber Types -- 2.2.1 Natural Fibers -- 2.2.1.1 Plant-Based Fibers -- 2.2.1.2 Animal-Based Fibers -- 2.2.2 Man-Made Fibers -- 2.3 Plant Fiber-Based Composite for Food Packaging -- 2.3.1 Wood-Based Composite for Food Packaging -- 2.3.2 Stem/Bast-Based Composite for Food Packaging -- 2.3.2.1 Kenaf Fiber -- 2.3.2.2 Jute Fiber -- 2.3.2.3 Ramie Fiber -- 2.3.2.4 Hemp Fiber -- 2.3.3 Leaf-Based Composite for Food Packaging -- 2.3.3.1 Palm Fiber -- 2.3.3.2 Sisal Fiber -- 2.3.3.3 Pineapple Leaf Fiber -- 2.3.3.4 Banana Fiber -- 2.3.4 Seed/Fruit-Based Composite for Food Packaging -- 2.3.5 Grass-Based Composite for Food Packaging -- 2.3.5.1 Bamboo Fiber -- 2.3.5.2 Rice Husk and Wheat Straw -- 2.4 Animal Fiber-Based Composite for Food Packaging -- 2.4.1 Silk-Based Composite for Food Packaging -- 2.4.2 Wool-Based Composite for Food Packaging -- 2.4.3 Other Animal Fiber-Based Composite -- 2.5 Nanomaterials from Natural Fiber -- 2.6 Natural Fiber-Based Composite for Circular Economy -- 2.7 Conclusion and Future Perspective -- Acknowledgment -- References.
Chapter 3 Corncob Waste for Food Packaging -- 3.1 Introduction -- 3.2 Isolation of Cellulose from Corncob -- 3.2.1 Pretreatment of Corncob Waste Residues -- 3.2.1.1 Acidic Hydrolysis -- 3.2.1.2 Alkaline Treatment -- 3.2.2 Bleaching Process -- 3.2.3 Extraction of Nanocellulose -- 3.3 Isolation of Hemicellulose from Corncob -- 3.4 Microbial Biosynthesis of Polyhydroxy Butyrate (PHB)from Corncobs -- 3.5 Biopolymers-Based Food Packaging Reinforced with Corncob Fibers -- 3.6 Hybrid Nanocomposite of Corncob for Food Packaging -- 3.7 Conclusion and Future Perspectives -- References -- Chapter 4 Coir Fibers for Sustainable Food Packaging -- 4.1 Introduction -- 4.2 Coir Fibers as Reinforcement Material for Synthetic Polymers -- 4.2.1 Polyethylene-Based Composites Reinforced with Coir Fibers -- 4.2.2 Polypropylene-Based Composites Reinforced with Coir Fibers -- 4.2.3 Polyester-Based Composites Reinforced with Coir Fibers -- 4.3 Coir Fibers as Reinforcement Material in Biopolymers -- 4.3.1 Composites of Coir and Polylactic Acid (PLA) -- 4.3.2 Composites of Coir and Protein -- 4.3.3 Composites of Coir with Starch -- 4.3.4 Hybrid Composites of Coir -- 4.4 Biodegradable Package/Container from Coconut Coir -- 4.5 Conclusion and Future Perspective -- References -- Chapter 5 Sugarcane Bagasse for Sustainable Food Packaging -- 5.1 Introduction -- 5.2 Chemical Composition and Characteristics of Sugarcane Bagasse (SB) -- 5.3 Cellulosic and Hemicellulosic Fractions of Sugarcane Bagasse -- 5.4 Pretreatment Approaches for SB -- 5.4.1 Physical Pretreatments -- 5.4.1.1 Mechanical Pretreatment -- 5.4.1.2 Microwave Pretreatment (MWP) -- 5.4.1.3 Ultrasound Pretreatment (USP) -- 5.4.2 Chemical Pretreatments -- 5.4.2.1 Acidic Pretreatment (AP) -- 5.4.2.2 Alkaline Treatment -- 5.4.2.3 Ionic Liquids Pretreatment -- 5.4.3 Physiochemical Pretreatment. 5.4.3.1 Organosolv Pretreatments -- 5.4.3.2 Steam Explosion Pretreatment -- 5.4.3.3 Hot Water Pretreatments -- 5.4.4 Biological Treatment -- 5.5 Sugarcane Bagasse in Biopolymer Matrix as Reinforcement Filler -- 5.6 Food Containers and Trays Made From SB -- 5.7 Conclusion and Future Perspective -- References -- Chapter 6 Husk and Straw of Cereals Grains for Sustainable Food Packaging -- Abbreviations -- 6.1 Introduction -- 6.2 Extraction and Purification of Cellulose from Husk and Straw 156 -- 6.2.1 Pretreatment Methods -- 6.2.2 Purification Methods -- 6.2.2.1 Alkali Treatment -- 6.2.2.2 Bleaching -- 6.2.3 Extraction Methods -- 6.3 Cellulose Nanocrystals -- 6.3.1 Modifications and Functionalization of CNC -- 6.3.2 Applications of CNC in Packaging Films -- 6.4 Use of Cellulose and Its Derivatives in Food Packaging -- 6.4.1 Cellulose Ethers -- 6.4.1.1 Ethyl Cellulose (EC) and Methyl Cellulose (MC) -- 6.4.1.2 Carboxymethyl Cellulose (CMC) -- 6.4.1.3 Hydroxyethyl Cellulose (HEC) -- 6.4.1.4 Hydroxypropyl Cellulose (HPC) -- 6.4.2 Cellulose Esters -- 6.4.2.1 Cellulose Acetate (CA) -- 6.4.2.2 Cellulose Nitrate (CN) -- 6.4.2.3 Cellulose Sulfate (CS) -- 6.5 Paper-Based Package from Straw and Husk -- 6.6 Tableware and Food Containers from Straw and Husk -- 6.6.1 Compostable and Biodegradable Tableware and Containers -- 6.6.2 Wheat Straw Plastic -- 6.7 Conclusion and Future Perspective -- References -- Chapter 7 Sericulture Waste for Edible Films and Coating of Fruits and Vegetables -- 7.1 Introduction -- 7.2 Sericulture Wastes -- 7.3 Extraction and Purification of Silk Protein/Fibroin -- 7.4 Silk Protein-Based Active Food Packaging -- 7.4.1 Silk Protein/Fibroin-Based Active Films -- 7.4.2 Silk Protein/Fibroin-Based Edible Coating -- 7.5 Toxicological and Food Allergy Assessment of Silk Protein/Fibroin -- 7.6 Conclusion and Future Perspective -- References. Chapter 8 Functional Agents from Agro-Waste for Active and Intelligent Food Packaging -- 8.1 Introduction -- 8.2 Functional Agents in Active and Intelligent Packaging -- 8.2.1 Polyphenolic Compounds from Agro-Waste -- 8.2.1.1 Polyphenolic Compounds from Apple Peel -- 8.2.1.2 Polyphenolic Compounds from Citrus Fruit -- 8.2.1.3 Polyphenolic Compounds from Potato Peel -- 8.2.1.4 Polyphenolic Compounds from Pineapple Peel -- 8.2.1.5 Polyphenolic Compounds from Mango Kernel -- 8.2.1.6 Polyphenolic Compounds from Grape -- 8.2.1.7 Polyphenolic Compounds from Pomegranate Peel -- 8.2.1.8 Polyphenolic Compounds from Banana Peel -- 8.2.1.9 Polyphenolic Compounds from Corncob -- 8.2.1.10 Polyphenolic Compounds from Wheat Straw -- 8.2.2 Antioxidants from Agro-Waste -- 8.2.2.1 Antioxidant Compounds from Apple Peel -- 8.2.2.2 Antioxidant Compounds from Citrus Fruit -- 8.2.2.3 Antioxidant Compounds from Potato Peel -- 8.2.2.4 Antioxidant Compounds from Pineapple Peel -- 8.2.2.5 Antioxidant Compounds from Mango Kernel -- 8.2.2.6 Antioxidant Compounds from Grape Pomace -- 8.2.2.7 Antioxidant Compounds from Pomegranate Peel -- 8.2.2.8 Antioxidant Compounds from Banana Peel -- 8.2.2.9 Antioxidant Compounds from Corncob -- 8.2.2.10 Antioxidant Compounds from Wheat Straw -- 8.2.3 Antimicrobials Compounds from Agro-Waste -- 8.2.3.1 Antimicrobials Compounds from Pomegranate Peel -- 8.2.3.2 Antimicrobials Compounds from Grape Pomace -- 8.2.3.3 Antimicrobials Compounds from Mango Kernel -- 8.2.3.4 Antimicrobials Compounds from Citrus Fruit -- 8.2.3.5 Antimicrobials Compounds from Banana Peel -- 8.2.3.6 Antimicrobials Compounds from Pineapple Peel -- 8.2.4 Biobased Indicators -- 8.3 Active and Intelligent Agents in Biopolymer-Based Food Packaging -- 8.3.1 Oxygen and Carbon Dioxide Indicators -- 8.3.2 Moisture or Humidity Indicator -- 8.3.3 pH Indicators. 8.3.4 Temperature Indicator -- 8.3.5 Specific Chemical Indicator -- 8.4 Conclusion and Perspective -- References -- Chapter 9 Starch from Agro-Waste for Food Packaging Applications -- 9.1 Introduction -- 9.2 Starch from Agro-Waste -- 9.2.1 Tuber Wastes -- 9.2.2 Seed Wastes -- 9.3 Modifications in Starch for Food Packaging -- 9.3.1 Chemical Modification -- 9.3.1.1 Acetylation -- 9.3.1.2 Acid Chloride Modification -- 9.3.1.3 Octenyl Succinic Anhydride (OSA) Modification -- 9.3.1.4 Hydropropylation -- 9.3.1.5 Oxidation of Starch -- 9.3.1.6 Cross-Linking of Starch -- 9.3.2 Physical Modification of Starch to Thermoplastic Starch (TPS) -- 9.4 Starch-Based Composite, Nanocomposite, and Hybrid Films -- 9.4.1 Starch-Based Blends -- 9.4.2 Starch-Based Composite and Nanocomposite -- 9.5 Food Packaging Applications -- 9.6 Conclusion and Perspectives -- References -- Chapter 10 Chitosan from Agro-Waste for Food Packaging Applications -- List of Abbreviations -- 10.1 Introduction -- 10.2 Sources of Chitosan -- 10.2.1 Agro-Waste -- 10.2.2 Sources Other Than Agro-Waste -- 10.2.2.1 Terrestrial Insects -- 10.2.2.2 Microbial Sources -- 10.2.2.3 Marine Sources -- 10.3 Chitosan Extraction -- 10.4 Chitosan and Its Functional Properties -- 10.4.1 Antimicrobial Activity -- 10.4.2 Antioxidant Properties -- 10.4.3 Film-Forming Ability -- 10.4.4 Solubility -- 10.5 Chitosan-Based Composites and Nanocomposites -- 10.5.1 Coating Formulations -- 10.5.2 Packaging Films -- 10.6 Food Packaging Applications -- 10.6.1 Fish and Meat Products -- 10.6.2 Fruits and Vegetables -- 10.7 Conclusion and Future Perspectives -- References -- Chapter 11 Biodegradable Synthetic Poly(Lactic Acid) (PLA) for Food Packaging Application -- 11.1 Introduction -- 11.2 Synthesis of PLA -- 11.3 Properties of PLA -- 11.3.1 Composites of PLA -- 11.3.2 Stereocomplex of PLA -- 11.3.2.1 Stereocomplex PLA. 11.3.2.2 Additives to Enhance Stereocomplexation of PLA. |
| Record Nr. | UNINA-9911019653103321 |
Kumar Santosh
|
||
| Newark : , : John Wiley & Sons, Incorporated, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Biodegradable and biobased polymers for environmental and biomedical applications / / edited by Susheel Kalia and Luc Avérous
| Biodegradable and biobased polymers for environmental and biomedical applications / / edited by Susheel Kalia and Luc Avérous |
| Pubbl/distr/stampa | Salem, Massachusetts ; ; Hoboken, New Jersey : , : Scrivener Publishing : , : Wiley, , 2016 |
| Descrizione fisica | 1 online resource |
| Disciplina | 572 |
| Soggetto topico |
Biopolymers - Industrial applications
Biodegradable plastics |
| ISBN |
1-119-11734-8
1-119-11736-4 1-119-11735-6 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910136253503321 |
| Salem, Massachusetts ; ; Hoboken, New Jersey : , : Scrivener Publishing : , : Wiley, , 2016 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Biodegradable and biobased polymers for environmental and biomedical applications / / edited by Susheel Kalia and Luc Avérous
| Biodegradable and biobased polymers for environmental and biomedical applications / / edited by Susheel Kalia and Luc Avérous |
| Pubbl/distr/stampa | Salem, Massachusetts ; ; Hoboken, New Jersey : , : Scrivener Publishing : , : Wiley, , 2016 |
| Descrizione fisica | 1 online resource |
| Disciplina | 572 |
| Soggetto topico |
Biopolymers - Industrial applications
Biodegradable plastics |
| ISBN |
1-119-11734-8
1-119-11736-4 1-119-11735-6 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910815059803321 |
| Salem, Massachusetts ; ; Hoboken, New Jersey : , : Scrivener Publishing : , : Wiley, , 2016 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Biodegradable Metals / / E. Aghion
| Biodegradable Metals / / E. Aghion |
| Autore | Aghion E. |
| Pubbl/distr/stampa | Basel, Switzerland : , : MDPI, , 2018 |
| Descrizione fisica | 1 online resource (242 pages) |
| Disciplina | 620.192323 |
| Soggetto topico | Biodegradable plastics |
| ISBN | 3-03897-387-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910688444203321 |
Aghion E.
|
||
| Basel, Switzerland : , : MDPI, , 2018 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Biodegradable polyesters / / edited by Stoyko Fakirov
| Biodegradable polyesters / / edited by Stoyko Fakirov |
| Pubbl/distr/stampa | Weinheim, Germany : , : Wiley-VCH, , 2015 |
| Descrizione fisica | 1 online resource (370 p.) |
| Disciplina | 668.4225 |
| Soggetto topico |
Polyesters
Biodegradable plastics |
| ISBN |
1-5231-1008-2
3-527-65697-9 3-527-65695-2 3-527-65698-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | ger |
| Nota di contenuto |
Cover; Contents; List of Contributors; List of Abbreviations and Symbols; Preface; Chapter 1 Biodegradable Polyesters: Synthesis, Properties, Applications; 1.1 Historical Overview on the Origin of Polymer Science and Synthesis of Polyamides and Polyesters; 1.1.1 Synthesis of Polyamides; 1.1.2 Initial Knowledge about Polyesters; 1.2 Publication Trend of Representative Biodegradable and Nonbiodegradable Polyesters in the Past Century; 1.3 Biodegradable Polyesters; 1.3.1 Biodegradable Aliphatic Polyesters and Their Copolymers; 1.3.1.1 Poly(lactic acid)
1.3.1.2 Polyglycolide or Poly(glycolic acid)1.3.1.3 Poly(caprolactone); 1.4 Concluding Remarks; Acknowledgment; References; Chapter 2 Functional (Bio)degradable Polyesters by Radical Ring-Opening Polymerization; 2.1 Introduction; 2.2 Radical Ring-Opening Polymerization (RROP) of Cyclic Ketene Acetals; 2.2.1 Starting Monomers: Cyclic Ketene Acetals; 2.2.2 Radical Ring-Opening Polymerization Mechanism; 2.2.3 Functional Polyesters by Conventional and Controlled Radical Homopolymerization of CKAs; 2.2.4 Functional Polyesters by Copolymerization of CKAs and Vinyl Monomers; 2.3 Conclusions References Chapter 3 Microbial Synthesis of Biodegradable Polyesters: Processes, Products, Applications; 3.1 Introduction; 3.2 Biogenesis of Microbial Polyhydroxyalkanoate Granules; 3.3 The Diversity of Biopolyesters; 3.4 Polyester (PHA) Synthases are the Key Enzymes; 3.5 Catalytic Reaction Mechanism; 3.6 PHA Inclusions: Self-Assembly and Structure; 3.7 Industrial Production of Bacterial Polyhydroxyalkanoates: PHAs via Fermentation; 3.8 Application Opportunities of Bacterial Polyhydroxyalkanoates; 3.8.1 In Energy Industry: Biofuels Based on PHAs 3.8.2 In Material Industry: PHAs as Polymeric Materials 3.8.2.1 PHAs as Biodegradable Plastics and Fiber Materials; 3.8.2.2 PHAs as Medical Implant Materials; 3.8.2.3 PHAs as Drug Delivery Carrier; 3.8.3 Fine Chemical Industry: PHA Chiral Monomers; 3.8.4 Application of PHA Granule Surface Proteins; 3.8.5 Production of Tailor-Made Biopolyester Nanoparticles and Potential Applications; 3.8.6 Future Development of PHA-Based Industry; 3.8.6.1 The Development of Low-Cost PHA Production Technology; 3.8.6.2 Unusual PHAs with Special Properties; 3.8.6.3 High Value Added Applications 3.8.6.4 Other Future Applications 3.8.6.5 Microbial Synthesis of Poly(lactic acid) (PLA); 3.8.7 Applications of PHA Inclusions as Functionalized Biobeads; 3.8.7.1 Bioseparations; 3.8.7.2 Drug Delivery; 3.8.7.3 Protein Purification; 3.8.7.4 Enzyme Immobilization; 3.8.7.5 Diagnostics and Imaging; 3.8.7.6 Vaccine Delivery; 3.9 Conclusions and Outlook; Acknowledgments; References; Chapter 4 Synthesis, Properties, and Mathematical Modeling of Biodegradable Aliphatic Polyesters Based on 1,3-Propanediol and Dicarboxylic Acids; 4.1 Introduction; 4.1.1 Aliphatic Polyesters 4.1.2 Production of 1,3-Propanediol |
| Record Nr. | UNINA-9910132410003321 |
| Weinheim, Germany : , : Wiley-VCH, , 2015 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Biodegradable polyesters / / edited by Stoyko Fakirov
| Biodegradable polyesters / / edited by Stoyko Fakirov |
| Pubbl/distr/stampa | Weinheim, Germany : , : Wiley-VCH, , 2015 |
| Descrizione fisica | 1 online resource (370 p.) |
| Disciplina | 668.4225 |
| Soggetto topico |
Polyesters
Biodegradable plastics |
| ISBN |
9783527656981 (ebook)
3-527-65697-9 3-527-65695-2 3-527-65698-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | ger |
| Nota di contenuto |
Cover; Contents; List of Contributors; List of Abbreviations and Symbols; Preface; Chapter 1 Biodegradable Polyesters: Synthesis, Properties, Applications; 1.1 Historical Overview on the Origin of Polymer Science and Synthesis of Polyamides and Polyesters; 1.1.1 Synthesis of Polyamides; 1.1.2 Initial Knowledge about Polyesters; 1.2 Publication Trend of Representative Biodegradable and Nonbiodegradable Polyesters in the Past Century; 1.3 Biodegradable Polyesters; 1.3.1 Biodegradable Aliphatic Polyesters and Their Copolymers; 1.3.1.1 Poly(lactic acid)
1.3.1.2 Polyglycolide or Poly(glycolic acid)1.3.1.3 Poly(caprolactone); 1.4 Concluding Remarks; Acknowledgment; References; Chapter 2 Functional (Bio)degradable Polyesters by Radical Ring-Opening Polymerization; 2.1 Introduction; 2.2 Radical Ring-Opening Polymerization (RROP) of Cyclic Ketene Acetals; 2.2.1 Starting Monomers: Cyclic Ketene Acetals; 2.2.2 Radical Ring-Opening Polymerization Mechanism; 2.2.3 Functional Polyesters by Conventional and Controlled Radical Homopolymerization of CKAs; 2.2.4 Functional Polyesters by Copolymerization of CKAs and Vinyl Monomers; 2.3 Conclusions References Chapter 3 Microbial Synthesis of Biodegradable Polyesters: Processes, Products, Applications; 3.1 Introduction; 3.2 Biogenesis of Microbial Polyhydroxyalkanoate Granules; 3.3 The Diversity of Biopolyesters; 3.4 Polyester (PHA) Synthases are the Key Enzymes; 3.5 Catalytic Reaction Mechanism; 3.6 PHA Inclusions: Self-Assembly and Structure; 3.7 Industrial Production of Bacterial Polyhydroxyalkanoates: PHAs via Fermentation; 3.8 Application Opportunities of Bacterial Polyhydroxyalkanoates; 3.8.1 In Energy Industry: Biofuels Based on PHAs 3.8.2 In Material Industry: PHAs as Polymeric Materials 3.8.2.1 PHAs as Biodegradable Plastics and Fiber Materials; 3.8.2.2 PHAs as Medical Implant Materials; 3.8.2.3 PHAs as Drug Delivery Carrier; 3.8.3 Fine Chemical Industry: PHA Chiral Monomers; 3.8.4 Application of PHA Granule Surface Proteins; 3.8.5 Production of Tailor-Made Biopolyester Nanoparticles and Potential Applications; 3.8.6 Future Development of PHA-Based Industry; 3.8.6.1 The Development of Low-Cost PHA Production Technology; 3.8.6.2 Unusual PHAs with Special Properties; 3.8.6.3 High Value Added Applications 3.8.6.4 Other Future Applications 3.8.6.5 Microbial Synthesis of Poly(lactic acid) (PLA); 3.8.7 Applications of PHA Inclusions as Functionalized Biobeads; 3.8.7.1 Bioseparations; 3.8.7.2 Drug Delivery; 3.8.7.3 Protein Purification; 3.8.7.4 Enzyme Immobilization; 3.8.7.5 Diagnostics and Imaging; 3.8.7.6 Vaccine Delivery; 3.9 Conclusions and Outlook; Acknowledgments; References; Chapter 4 Synthesis, Properties, and Mathematical Modeling of Biodegradable Aliphatic Polyesters Based on 1,3-Propanediol and Dicarboxylic Acids; 4.1 Introduction; 4.1.1 Aliphatic Polyesters 4.1.2 Production of 1,3-Propanediol |
| Record Nr. | UNINA-9910825637803321 |
| Weinheim, Germany : , : Wiley-VCH, , 2015 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Biodegradable polymer blends and composites from renewable resources [[electronic resource] /] / Long Yu
| Biodegradable polymer blends and composites from renewable resources [[electronic resource] /] / Long Yu |
| Autore | Yu Long |
| Pubbl/distr/stampa | Hoboken, N.J., : Wiley, c2009 |
| Descrizione fisica | 1 online resource (501 p.) |
| Disciplina |
620.1
620.1/92323 620.192 |
| Altri autori (Persone) | YuLong |
| Soggetto topico |
Biodegradable plastics
Polymeric composites Renewable natural resources |
| Soggetto genere / forma | Electronic books. |
| ISBN |
1-282-11272-4
9786612112720 0-470-39150-2 1-61583-602-0 0-470-39155-3 |
| Classificazione | UV 9450 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | pt. 1. Natural polymer blends and composites -- pt. 2. Aliphatic polyester blends -- pt. 3. Hydrophobic and hydrophilic polymeric blends -- pt. 4. Natural fiber-reinforced composites -- pt. 5. Biodegradable composites -- pt. 6. Multilayer designed materials. |
| Record Nr. | UNINA-9910146150303321 |
Yu Long
|
||
| Hoboken, N.J., : Wiley, c2009 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Biodegradable polymer blends and composites from renewable resources [[electronic resource] /] / Long Yu
| Biodegradable polymer blends and composites from renewable resources [[electronic resource] /] / Long Yu |
| Autore | Yu Long |
| Pubbl/distr/stampa | Hoboken, N.J., : Wiley, c2009 |
| Descrizione fisica | 1 online resource (501 p.) |
| Disciplina |
620.1
620.1/92323 620.192 |
| Altri autori (Persone) | YuLong |
| Soggetto topico |
Biodegradable plastics
Polymeric composites Renewable natural resources |
| ISBN |
1-282-11272-4
9786612112720 0-470-39150-2 1-61583-602-0 0-470-39155-3 |
| Classificazione | UV 9450 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | pt. 1. Natural polymer blends and composites -- pt. 2. Aliphatic polyester blends -- pt. 3. Hydrophobic and hydrophilic polymeric blends -- pt. 4. Natural fiber-reinforced composites -- pt. 5. Biodegradable composites -- pt. 6. Multilayer designed materials. |
| Record Nr. | UNINA-9910830896303321 |
Yu Long
|
||
| Hoboken, N.J., : Wiley, c2009 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||