Agricultural and Environmental Applications of Biochar : Advances and Barriers / / Mingxin Guo, Zhongqi He, and Sophie Minori Uchimiya, editors |
Pubbl/distr/stampa | John Wiley & Sons, Inc |
Disciplina | 333.95/39 |
Soggetto topico | Biochar |
ISBN | 0-89118-967-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Introduction to Biochar as an Agricultural and Environmental Amendment -- Pyrogenic Carbon in Terra Preta Soils -- Pyrogenic Organic Matter in Japanese Andosols: Occurrence, Transformation, and Function -- Production and Characterization of Biochar from Agricultural By-Products: Overview and Use of Cotton Biomass Residues -- Considerations in Biochar Characterization -- Application of Biochar for Soil Physical Improvement -- The Effects of Biochar Amendment on Soil Fertility -- Application of Biochar for Soil Biological Improvement -- Biochar and Soil Carbon Sequestration -- Use and Impact of Biochar and Charcoal in Animal Production Systems -- Interaction Mechanisms between Biochar and Organic Pollutants -- Impacts of Biochar Amendment on Greenhouse Gas Emissions from Agricultural Soils -- Application of Biochar for Soil Remediation -- Biochar Application for Abandoned Mine Land Reclamation -- Aqueous Contaminant Removal and Stormwater Treatment Using Biochar -- Research and Application of Biochar in China -- Research and Application of Biochar in Europe -- Research and Application of Biochar in New Zealand -- Regional Considerations for Targeted Use of Biochar in Agriculture and Remediation in Australia -- Research and Application of Biochar in North America -- Agricultural and Environmental Applications of Biochar: Advances and Barriers. |
Altri titoli varianti | Agricultural and Environmental Applications of Biochar |
Record Nr. | UNINA-9910555085403321 |
John Wiley & Sons, Inc | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Agricultural and Environmental Applications of Biochar : Advances and Barriers / / Mingxin Guo, Zhongqi He, and Sophie Minori Uchimiya, editors |
Pubbl/distr/stampa | John Wiley & Sons, Inc |
Disciplina | 333.95/39 |
Soggetto topico | Biochar |
ISBN | 0-89118-967-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Introduction to Biochar as an Agricultural and Environmental Amendment -- Pyrogenic Carbon in Terra Preta Soils -- Pyrogenic Organic Matter in Japanese Andosols: Occurrence, Transformation, and Function -- Production and Characterization of Biochar from Agricultural By-Products: Overview and Use of Cotton Biomass Residues -- Considerations in Biochar Characterization -- Application of Biochar for Soil Physical Improvement -- The Effects of Biochar Amendment on Soil Fertility -- Application of Biochar for Soil Biological Improvement -- Biochar and Soil Carbon Sequestration -- Use and Impact of Biochar and Charcoal in Animal Production Systems -- Interaction Mechanisms between Biochar and Organic Pollutants -- Impacts of Biochar Amendment on Greenhouse Gas Emissions from Agricultural Soils -- Application of Biochar for Soil Remediation -- Biochar Application for Abandoned Mine Land Reclamation -- Aqueous Contaminant Removal and Stormwater Treatment Using Biochar -- Research and Application of Biochar in China -- Research and Application of Biochar in Europe -- Research and Application of Biochar in New Zealand -- Regional Considerations for Targeted Use of Biochar in Agriculture and Remediation in Australia -- Research and Application of Biochar in North America -- Agricultural and Environmental Applications of Biochar: Advances and Barriers. |
Altri titoli varianti | Agricultural and Environmental Applications of Biochar |
Record Nr. | UNINA-9910877245603321 |
John Wiley & Sons, Inc | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Biochar : an imperative amendment for soil and the environment / / edited by Vikas Abrol, Peeyush Sharma |
Autore | Abrol Vikas |
Edizione | [1st ed.] |
Pubbl/distr/stampa | IntechOpen, 2019 |
Descrizione fisica | 1 online resource (124 pages) : illustrations |
Disciplina | 631.4 |
Soggetto topico |
Soil science
Biochar |
Soggetto non controllato | Soil science, sedimentology |
ISBN |
1-83881-989-4
1-83881-988-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Altri titoli varianti | Biochar |
Record Nr. | UNINA-9910353351603321 |
Abrol Vikas | ||
IntechOpen, 2019 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Biochar : Productive Technologies, Properties and Applications / / edited by Mattia Bartoli, Mauro Giorcelli and Alberto Tagliaferro |
Pubbl/distr/stampa | London : , : IntechOpen, , 2023 |
Descrizione fisica | 1 online resource (xi, 392 pages) : illustrations |
Disciplina | 631.86 |
Soggetto topico | Biochar |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Preface -- Section 1 Perspectives on the Biochar Future -- Chapter 1 Review: Heads or Tails? Toward a Clear Role of Biochar as a Feed Additive on Ruminant's Methanogenesis by Ana R.F. Rodrigues, Margarida R.G. Maia, Ana R.J. Cabrita, Hugo M. Oliveira, Inês M. Valente, José L. Pereira, Henrique Trindade and António J.M. Fonseca -- Chapter 2 Biochar: Production, Application and the Future by Edward Kwaku Armah, Maggie Chetty, Jeremiah Adebisi Adedeji, Denzil Erwin Estrice, Boldwin Mutsvene, Nikita Singh and Zikhona Tshemese -- Chapter 3 Biochar from Cassava Waste: A Paradigm Shift from Waste to Wealth by Minister Obonukut, Sunday Alabi and Alexander Jock -- Section 2 Environmental Applications -- Chapter 4 79 Biochar for Environmental Remediation by Dinesh Chandola and Smita Rana -- Chapter 5 The Potential Roles of Biochar in Restoring Heavy-Metal-Polluted Tropical Soils and Plant Growth by Abdul Kadir Salam -- Chapter 6 Biochar Application in Soil Management Systems by Theophilus Olufemi Isimikalu -- Chapter 7 Aged Biochar for the Remediation of Heavy Metal Contaminated Soil: Analysis through an Experimental Case the Physicochemical Property Changes of Field Aging Biochar and Its Effects on the Immobilization Mechanism for Heavy Metal by Run-Hua Zhang, Lin-Fang Shi, Zhi-Guo Li, Guo-Lin Zhou, Yan-Lan Xie, Xing-Xue Huang, An-Hua Ye and Chu-Fa Lin -- Chapter 8 Sustainable and Eco-Friendly Biomass Derived Biochars for the Removal of Contaminants from Wastewater: Current Status and Perspectives by Uplabdhi Tyagi and Neeru Anand -- Section 3 Biochar Uses in Energy Sector and Chemical Productions -- Chapter 9 Prospects of Biochar as a Renewable Resource for Electricity by Ariharaputhiran Anitha and Nagarajan Ramila Devi -- Chapter 10 Biochar Synergistic New Ammonia Capture of CO2 and High-Value Utilization of Intermediate Products by Yu Zhang, Yalong Zhang, Dongdong Feng, Jiabo Wu, Jianmin Gao, Qian Du and Yudong Huang -- Chapter 11 Microwaved Flux Matter- Char Sand Production of Waste Coal Char/Biochar/Gypsium Ash and Fly Ash Mixtures for Mortar- Fire Retardent Composite by Yıldırım İsmail Tosun -- Chapter 12 Biofuel and Biorefinery Technologies by Abdulkareem Ghassan Alsultan, Nurul Asikin-Mijan, Laith Kareem Obeas, Aminul Isalam, Nasar Mansir, Maadh Fawzi Nassar, Siti Zulaika Razali, Robiah Yunus and Yun Hin Taufiq-Yap -- Chapter 13 Biochar Development as a Catalyst and Its Application by Stephen Okiemute Akpasi, Ifeanyi Michael Smarte Anekwe, Jeremiah Adedeji and Sammy Lewis Kiambi -- Section 4 Biochar Unveiled: Advanced Investigation -- Chapter 14 Biochar and Application of Machine Learning: A Review by Kingsley Ukoba and Tien-Chien Jen -- Chapter 15 Applications and Data Analysis Using Bayesian and Conventional Statistics in Biochar Adsorption Studies for Environmental Protection by Obey Gotore, Tirivashe Phillip Masere, Osamu Nakagoe, Vadzanayi Mushayi, Ramaraj Rameshprabu, Yuwalee Unpaprom and Tomoaki Itayama -- Chapter 16 PAHs, PCBs and Environmental Contamination in Char Products by Karl Williams, Ala Khodier and Peter Bentley. |
Altri titoli varianti | Biochar |
Record Nr. | UNINA-9910647203103321 |
London : , : IntechOpen, , 2023 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Biochar |
Pubbl/distr/stampa | [Singapore] : , : Springer, , [2019]- |
Descrizione fisica | 1 online resource |
Soggetto topico |
Biochar
Biocharbon |
Soggetto genere / forma |
Serial publications
Periodicals. Serial publications. |
ISSN | 2524-7867 |
Formato | Materiale a stampa |
Livello bibliografico | Periodico |
Lingua di pubblicazione | eng |
Record Nr. | UNISA-996473370303316 |
[Singapore] : , : Springer, , [2019]- | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Biochar |
Pubbl/distr/stampa | [Singapore] : , : Springer, , [2019]- |
Descrizione fisica | 1 online resource |
Soggetto topico |
Biochar
Biocharbon |
Soggetto genere / forma |
Serial publications
Periodicals. Serial publications. |
ISSN | 2524-7867 |
Formato | Materiale a stampa |
Livello bibliografico | Periodico |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910481998503321 |
[Singapore] : , : Springer, , [2019]- | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Biochar : a regional supply chain approach in view of climate change mitigation / / edited by Viktor J. Bruckman [and three others] [[electronic resource]] |
Pubbl/distr/stampa | Cambridge : , : Cambridge University Press, , 2016 |
Descrizione fisica | 1 online resource (xvii, 398 pages) : digital, PDF file(s) |
Disciplina | 577.2/2 |
Soggetto topico |
Biochar
Greenhouse gas mitigation Climate change mitigation |
ISBN |
1-316-83907-9
1-316-83991-5 1-316-84005-0 1-316-84019-0 1-316-33797-9 1-316-84033-6 1-316-84075-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910150170903321 |
Cambridge : , : Cambridge University Press, , 2016 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Biochar and Its Composites : Fundamentals and Applications |
Autore | Nadda Ashok Kumar |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Singapore : , : Springer, , 2023 |
Descrizione fisica | 1 online resource (241 pages) |
Disciplina | 662.88 |
Collana | Materials Horizons: from Nature to Nanomaterials Series |
Soggetto topico |
Biochar
Climate change mitigation |
ISBN |
9789819952397
9819952395 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Contents -- About the Editor -- 1 Introduction of Biochar: Sources, Composition, and Recent Updates -- 1 Introduction -- 2 Sources of Biochar -- 3 Composition of Biochar -- 4 Biochar Production -- 4.1 Pyrolysis -- 4.2 Hydrothermal Carbonization -- 4.3 Gasification -- 4.4 Torrefaction and Quick Carbonization -- 5 Properties of Biochar -- 5.1 Physical Properties -- 5.2 Chemical Properties -- 6 Applications of Biochar -- 7 Potentials of Biochar in India -- 8 Conclusion -- References -- 2 Biochar in Catalysis and Biotransformation -- 1 Introduction -- 2 Characterization of Biochar -- 3 Properties of Biochar -- 3.1 Hydrogen Ion Strength (pH) of Biochar (BC) -- 3.2 Biochar Cation Exchange Capacity (CEC) -- 3.3 Stability of Biochar (BC) -- 4 Biochar in Catalysis -- 5 Classification of Biochar-Derived Solid Catalysts -- 5.1 Acid Catalysts -- 5.2 Alkali Catalysts -- 6 Biochar-A Favorable Catalyst -- 6.1 Biodiesel Production with Biochar-Derived Catalysts -- 6.2 Energy Storage -- 6.3 Remediation -- 6.4 Soil Amelioration -- 7 Biochar and Biotransformation -- 8 Bicohar in Bioremediation -- 9 Role of Biochar in Biotransformation-A Few Studies -- 9.1 Degradation of Roxarsone by Shewanella oneidensis MR-1 -- 9.2 Glucose to L-Histidine Through Escherichia Coli Metabolism -- 9.3 Denitrification and Mitigation of N2O Production -- 9.4 Biotransformation of Phosphorous -- 9.5 Remediation of Chromium Toxicity by Biochar, Poultry Manure, and Sewage Sludge (Biosolids) in Rice Crop -- 9.6 Adsorption of Manganese and Its Biotransformation by Streptomyces Violarus Strain SBP1 Cell-Immobilized Biochar -- 9.7 Microbial Biotransformation of Arsenic in Paddy Soil After Straw-Biochar and Straw-Amendments -- 9.8 De-chlorination of Pentachlorophenol in a Microbial Consortium -- 9.9 Chemical and Microbial Transformation of Pentachlorophenol in Paddy Soil.
10 Conclusion -- 11 Future Perspectives -- References -- 3 Biochar: A Potent Adsorbent -- 1 Introduction -- 2 Effects of Properties of Biochar on Adsorption Performance -- 2.1 Surface Functional Groups -- 2.2 Specific Surface Area (SSA) -- 2.3 Pore Size Distribution and Pore Volume -- 2.4 The pH Value of Biochar -- 3 Biochar for Water Treatment -- 3.1 Adsorption of Organic Contaminants -- 3.2 Adsorption of Inorganic Contaminants -- 3.3 Microbial Contaminants Removal -- 4 Biochar for Air Treatment -- 4.1 Adsorption of Organic Contaminants -- 4.2 Adsorption of Inorganic Contaminants -- 5 Future Directions -- 6 Conclusion -- References -- 4 Biochar in Carbon Sequestration -- 1 Introduction -- 2 Biochar -- 2.1 Biochar Production -- 2.2 Biochar Modification -- 3 Biochar for CO2 Sequestration -- 3.1 Wooden Biochar -- 3.2 Seeds/Kernel-Originated Biochar -- 3.3 Shell/Husk-Originated Biochar -- 4 Conclusions and Future Directions -- References -- 5 Biochar for Management of Wastewater -- 1 Introduction -- 2 Modification of Biochar -- 2.1 Biochar Activation by Physical Methods -- 2.2 Biochars Chemical Activation Using Acidic and Alkaline Solutions -- 3 Biochar as an Adsorbent of Organic and Inorganic Pollutants -- 3.1 Organic Pollutants -- 3.2 Inorganic Pollutant Removal -- 4 Future Prospective and Outlook -- 5 Conclusion -- References -- 6 Biochar for Climate Change Mitigation -- 1 Introduction -- 1.1 Carbon Capture and Climate Change -- 1.2 Biochar -- 1.3 Sustainable Development and Climate Change -- 1.4 Applying Biomass/Biochar for Development -- 2 Sustainability and Development Indexes -- 2.1 Human Development Index (HDI) -- 2.2 HDI Calculation -- 2.3 Sustainable Development -- 2.4 HDI: Progress and Improvement -- 2.5 Potential of Biochar to Bring PHDI Closer to HDI -- 3 Climate Change: International Security Paradigm. 3.1 Climate Change and Global Warming -- 3.2 Consequences of Global Warming and Climate Changes -- 4 The Evolution of the Security Paradigm -- 4.1 Climate Change Mitigation: Global Efforts -- 5 Conclusions -- References -- 7 Clay-Biochar Composites for the Agriculture Industry -- 1 Introduction -- 2 Document Search and the Co-occurrence-Keywords Analysis -- 3 Clay-Biochar Composites: Production Methods and Current Applications -- 4 Improvement in the Physico-Chemical Characteristics of Clay-Biochar Composites -- 5 Clay-Biochar Composite Applications for Agriculture Industry -- 5.1 Clay-Biochar Composite Application in Soil Remediation -- 5.2 Clay-Biochar Composite Application in the Removal of the Contaminant in Agricultural Wastewater -- 5.3 Clay-Biochar Composite Application as Fertilizer -- 6 Conclusion -- References -- 8 New Trends in Biochar-Mineral Composites -- 1 Introduction -- 2 Nanoscale Influence in Composite Synthesis and Properties -- 3 Biotechnology and Interaction of Composites with Living Organisms -- 3.1 Interaction of Biochar with Rhizosphere in Natural Environments -- 4 Environmental Applications of Biochar-Mineral Composites -- 4.1 Inorganic Substance Remotion -- 4.2 Emerging Organic Substances Remotion -- 5 Conclusion -- References -- 9 Magnetic Composites of Biochar and Its Applications -- 1 Introduction -- 2 Synthetic Methods of Magnetic Composites of Biochar -- 2.1 Impregnation-Pyrolysis -- 2.2 Co-precipitation -- 2.3 Hydrothermal Carbonization -- 3 Utilization of Magnetic Composite of Biochar for the Adsorption of Several EPs -- 3.1 Adsorption of Dye -- 3.2 Adsorption of Heavy Metals -- 3.3 Adsorption of EPs for Wastewater Treatment -- 4 Adsorption Mechanism -- 5 Conclusion and Future Perspectives -- References -- 10 Biochar Composites for Environmental and Energy Applications -- 1 Introduction -- 2 Biochar Activation. 2.1 Physical Activation -- 2.2 Chemical Activation -- 3 Biochar Composites -- 3.1 Clay-Biochar Composites -- 3.2 Metal-Biochar Composites -- 3.3 Carbonaceous Material-Biochar Composites -- 3.4 Microorganism-Biochar Composites -- 3.5 Summary of Biochar Composites -- 4 Environmental Application of Biochar Composites -- 4.1 Water and Wastewater Treatment -- 4.2 Soil Remediation -- 4.3 Catalyst and Activator -- 4.4 Supercapacitor -- 4.5 Fuel Cell -- 5 Future Directions -- 6 Conclusion -- References. |
Record Nr. | UNINA-9910746291003321 |
Nadda Ashok Kumar | ||
Singapore : , : Springer, , 2023 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Biochar Applications for Wastewater Treatment |
Autore | Tsang Daniel C. W |
Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2023 |
Descrizione fisica | 1 online resource (338 pages) |
Altri autori (Persone) | SunYuqing |
Soggetto topico |
Biochar
Land treatment of wastewater |
ISBN |
9781119764403
1119764408 9781119764380 1119764386 9781119764397 1119764394 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Biochar Applications for Wastewater Treatment -- Contents -- Editors Biography -- List of Contributors -- Preface -- 1 Engineered Biochar -- 1.1 Overview of Biochar Production -- 1.2 Biochar Properties and Characterization -- 1.3 Pre- and Post-Modification of Biochar -- 1.3.1 Physical Modification -- 1.3.2 Chemical Modification -- 1.3.3 Biochar Composites -- 1.4 Sustainability Considerations -- 2 Adsorption of Nutrients -- 2.1 Nutrients in Wastewater -- 2.2 Biochar Performance in Nutrients Removal from Wastewater -- 2.2.1 Removal of Ammonium Using Modified and Pristine Biochars -- 2.2.2 Removal of Nitrate Using Pristine and Modified Biochars -- 2.2.3 Removal of Phosphate Using Pristine and Modified Biochars -- 2.3 Biochar Mechanisms of Nutrients Removal from Wastewater -- 2.3.1 Specific Surface Area -- 2.3.2 Ion Exchange -- 2.3.3 Surface Functional Groups -- 2.3.4 Precipitation -- 2.4 Factors Influencing Biochar Performance in Nutrients Removal -- 2.4.1 Pyrolysis Temperature -- 2.4.2 Metallic Oxides on Biochar -- 2.4.3 Solution pH -- 2.4.4 Contact Time -- 2.4.5 Ambient Temperature -- 2.4.6 Coexisting Ions -- 2.5 Nutrients Desorption from Biochar -- 2.5.1 Ammonium Desorption -- 2.5.2 Nitrate Desorption -- 2.5.3 Phosphorous Desorption -- 2.6 Nutrient-loaded Biochar as Potential Nutrient Suppliers -- 3 Adsorption of Metals/Metalloids -- 3.1 Metals/Metalloids in Wastewater -- 3.2 Mechanisms of Biochar for Adsorption of Metals/Metalloids -- 3.2.1 Physical Adsorption -- 3.2.2 Electrostatic Interaction -- 3.2.3 Ion Exchange -- 3.2.4 Surface Complexation -- 3.2.5 Precipitation -- 3.2.6 Reduction -- 3.3 Modified Biochar for Adsorption of Metals/Metalloids -- 3.3.1 Biochar/Layered Double Hydroxide Composites -- 3.3.2 Magnetic Biochar Composites -- 3.3.3 Biochar-Supported nZVI Composites.
3.3.4 Comparison of Different Modification Methods for Metals/Metalloids -- 3.4 Biochar Recycling after Adsorption of Metals/Metalloids -- 4 Adsorption of PPCPs -- 4.1 PPCPs in Wastewater -- 4.2 Biochar Mechanisms for PPCPs Adsorption -- 4.2.1 π-π Interaction -- 4.2.2 Hydrogen Bonding -- 4.2.3 Electrostatic Interaction -- 4.2.4 Other Mechanisms -- 4.3 Factors Affecting PPCPs Adsorption by Biochar -- 4.3.1 Pyrolysis Temperature -- 4.3.2 Biochar Surface Modification -- 4.3.3 Properties of PPCPs -- 4.3.4 Environmental pH -- 4.3.5 Wastewater Composition -- 5 Stormwater Biofiltration Media -- 5.1 Introduction -- 5.2 Common Pollutants in Stormwater -- 5.3 Biochar for Biofiltration Media -- 5.3.1 Production of Biochar -- 5.3.2 Physicochemical Properties of Biochar -- 5.4 Removal of Pollutants in Biochar-Based Biofiltration Systems -- 5.4.1 Metals/Metalloids -- 5.4.2 Nutrient -- 5.4.3 Organic Chemicals -- 5.5 Microplastic in Urban Runoff -- 5.6 Challenge and Perspective -- 5.7 Conclusion -- 6 Biochar Solution for Anaerobic Digestion -- 6.1 Introduction -- 6.2 Application of BC as an Additive in Anaerobic Digestion -- 6.2.1 pH Buffering -- 6.2.2 Adsorption of Inhibitors -- 6.2.3 Effects on Microbial Growth and Activities -- 6.3 Effects of BC on Digestate Quality -- 6.4 Conclusions and Perspectives -- 7 Biochar-Assisted Anaerobic Ammonium Oxidation -- 7.1 Overview of Anaerobic Ammonium Oxidation -- 7.1.1 Introduction -- 7.1.2 Constraints -- 7.2 Roles of Biochar in Promoting Anammox -- 7.2.1 pH and Inhibitor Buffer -- 7.2.2 Electron Transfer Promotion -- 7.2.3 Microbial Immobilization -- 7.3 Future Perspectives -- 8 Application of Biochar for Sludge Dewatering -- 8.1 Introduction -- 8.2 Preparation of Biochar-Based Sludge Conditioner -- 8.3 Efficacy of Biochar Conditioning on Enhanced Sludge Dewaterability. 8.4 Variations of Sludge Physicochemical Characteristics via Biochar Conditioning -- 8.5 Technical Mechanism and Implementation Prospects -- 9 Effects of Biochar on Sludge Composting -- 9.1 Introduction -- 9.2 Effects of Biochar Addition on Sludge Composting -- 9.2.1 Effects on Compost Parameters Effect on C/N -- 9.2.2 Effects on Heavy Metals -- 9.2.3 Effects on Organic Matters -- 9.2.4 Effects on Gaseous Emissions -- 9.2.5 Effects on Microbial Community and Activities -- 9.2.6 Effects on Quality of Sludge Compost -- 9.3 Future Perspectives -- 9.4 Summary -- 10 Sludge Utilization as Biochar for Nutrient Recovery -- 10.1 Sewage Sludge (SS) Management -- 10.2 Importance of Sludge as a Feedstock for Biochar -- 10.3 Factors Affecting the Properties of SDBC -- 10.3.1 Raw Material -- 10.3.2 Temperature -- 10.3.3 Heating Rates -- 10.3.4 Retention Time -- 10.4 Nutrients in SDBC -- 10.4.1 Nitrogen (N) -- 10.4.2 Phosphorus (P) -- 10.4.3 Potassium (K) -- 10.5 SDBC for Soil Amendment and Nutrient Utilization -- 10.6 Current Challenges for SDBC -- 10.7 Conclusions -- 11 Biochar for Electrochemical Treatment of Wastewater -- 11.1 Introduction -- 11.2 Different Electrochemical Behavior of Biochar -- 11.2.1 Electron Exchange -- 11.2.2 Electron Donor or Acceptor -- 11.2.3 Electrosorption Capacity -- 11.3 Preparation of Biochar Electrode Materials -- 11.3.1 Carbonization -- 11.3.2 Activation -- 11.3.3 Template -- 11.3.4 Composite Materials -- 11.4 Application in Electrochemical Wastewater Treatment -- 11.4.1 Electrochemical Oxidation -- 11.4.2 Electrochemical Deposition -- 11.4.3 Electro-adsorption -- 11.4.4 Electrochemical Disinfection -- 11.5 Future Perspectives -- 11.6 Summary -- 12 Peroxide-Based Biochar-Assisted Advanced Oxidation -- 12.1 Introduction -- 12.2 Biochar-Based Catalysts -- 12.2.1 Pristine Biochar -- 12.2.2 Redox Metal-Loaded Biochar. 12.2.3 Heteroatom-Doped Biochar -- 12.3 Peroxide-Based Advanced Oxidation -- 12.3.1 Fenton-Like System -- 12.3.2 Persulfate Activation System -- 12.3.3 Photocatalytic System -- 12.4 Conclusion and Future Perspectives -- 13 Persulfate-Based Biochar-Assisted Advanced Oxidation -- 13.1 Introduction -- 13.2 Activation Pathway and Reaction Mechanism of Persulfate by Biochar -- 13.2.1 Distinction between Different Pathways -- 13.2.2 Properties Necessitating the Generation of Radicals with PS -- 13.2.3 Nonradical Degradation with Biochar -- 13.2.4 Modifying Biochar for Enhanced Properties Related to the Degradation Process -- 13.3 Metal-Biochar Composites in Persulfate Activation System -- 13.3.1 Iron-Biochar -- 13.3.2 Copper-biochar -- 13.3.3 Cobalt Biochar -- 13.3.4 Biochar of Other Metal and Mixed Metal -- 13.4 Heteroatom-Doped Biochar for PS Activation -- 13.4.1 Nitrogen-doped Biochar -- 13.4.2 Sulfur-Doped Biochar -- 13.5 Conclusion and Perspectives -- 14 Biochar-Enhanced Ozonation for Sewage Treatment -- 14.1 Introduction -- 14.2 Preparation of Biochar-Based Catalyst for Ozonation -- 14.3 Efficacy of Biochar-Catalytic Ozonation on Sewage Treatment -- 14.4 Effects of Process Conditions on Biochar-Enhanced Ozonation Sewage Treatment -- 14.5 Technical Mechanism and Implementation Prospects -- 15 Biochar-Supported Odor Control -- 15.1 Causes and Treatment of Odor -- 15.2 Odor Pollutants -- 15.3 Properties of Biochar for the Removal of Odor Pollutants -- 15.3.1 Surface Area and Total Pore Volume -- 15.3.2 Pore Size Distribution -- 15.3.3 Chemical Functional Group -- 15.3.4 Noncarbonized Organic Matter -- 15.3.5 Mineral constituents -- 15.4 Application of Biochar in Odor Control -- 15.4.1 Biochar as Adsorbent -- 15.4.2 Biochar as Additives -- 15.5 Conclusion and Perspective -- 16 Fate, Transport, and Impact of Biochar in the Environment. 16.1 Transport Mechanism of Biochar in the Environment -- 16.2 Stability of Biochar -- 16.2.1 Physical Degradation of Biochar -- 16.2.2 Chemical Decomposition of Biochar -- 16.2.3 Microbial Decomposition of Biochar -- 16.3 Contaminants in Biochar and the Environmental Impact -- 16.3.1 Polycyclic Aromatic Hydrocarbons (PAHs) -- 16.3.2 Heavy Metals (HMs) -- 16.3.3 Persistent Free Radicals (PFRs) -- 16.3.4 Dioxins -- 16.3.5 Metal Cyanide (MCN) -- 16.3.6 Volatile Organic Compounds (VOCs) -- 17 Environmental and Economic Evaluation of Biochar Application in Wastewater and Sludge Treatment -- 17.1 Introduction -- 17.2 Environmental Evaluation -- 17.2.1 LCA Insights into Biochar Production and Applications -- 17.2.2 Main LCA Literature Studies of Biochar Applications in Wastewater and Sludge Treatments -- 17.3 Technical, Economic, and Sustainability Considerations -- 17.4 Future Trends -- 17.5 Conclusions -- Index. |
Record Nr. | UNINA-9910877865503321 |
Tsang Daniel C. W | ||
Newark : , : John Wiley & Sons, Incorporated, , 2023 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Biochar from biomass and waste : fundamentals and applications / / edited by Yong Sik Ok [and three others] |
Pubbl/distr/stampa | Amsterdam, Netherlands : , : Elsevier, , 2019 |
Descrizione fisica | 1 online resource (463 pages) |
Disciplina | 333.9539 |
Soggetto topico |
Biochar
Biomass Biomass energy |
ISBN |
0-12-811730-3
0-12-811729-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Front Cover -- Biochar from Biomass and Waste -- Copyright Page -- Contents -- List of Contributors -- I. Biochar Production -- 1 Production and Formation of Biochar -- 1.1 Introduction -- 1.2 Raw Materials of Biochar -- 1.3 Processes for Biochar Production -- 1.3.1 Pyrolysis -- 1.3.2 Hydrothermal Carbonization -- 1.4 Mechanism of the Formation of Biochar -- 1.4.1 Formation of Biochar Via Pyrolysis -- 1.4.2 Formation of Biochar Via Hydrothermal Carbonization -- 1.5 Conclusions -- References -- II. Biochar Characterization -- 2 Physical Characteristics of Biochars and Their Effects on Soil Physical Properties -- 2.1 Introduction -- 2.2 Biochar Structure and Microstructure -- 2.2.1 Surface Properties of Biochars -- 2.2.2 Pore Distribution and Surface Area of Biochars -- 2.3 Soil Physical Properties of Biochar-Amended Soils -- 2.3.1 Effects of Biochars on CO2 Emission -- 2.3.2 Nutrients Retention of Biochar-Amended Soils -- 2.4 Future Research -- References -- 3 Elemental and Spectroscopic Characterization of Low-Temperature (350°C) Lignocellulosic- and Manure-Based Designer Biocha... -- Disclaimer -- 3.1 Introduction -- 3.2 Biochar Definition -- 3.3 Biochar Feedstocks -- 3.4 Biochar Products -- 3.5 General Characteristics of Biochars -- 3.6 Low-Temperature Pyrolyzed Designer Biochars -- 3.6.1 Ultimate, Proximate, and Inorganic Composition -- 3.6.2 Spectroscopic Characteristics -- 3.6.2.1 SEM Images -- 3.6.2.2 Structural and Functional Group Properties of Biochars Revealed With 13C NMR and FTIR Spectroscopy -- 3.7 Comparison of Low versus High Temperature-Produced Biochars as a Soil Amendment -- 3.8 Conclusions -- References -- Further Reading -- 4 Modeling the Surface Chemistry of Biochars -- 4.1 Introduction -- 4.2 Surface Complexation Modeling -- 4.3 Spectroscopic and Calorimetric Approaches -- 4.4 State of Biochar Surface Chemistry Modeling.
4.5 Outlook -- References -- III. Applications -- 5 Biochar for Mine-land Reclamation -- Disclaimer -- 5.1 Introduction -- 5.1.1 Cadmium -- 5.1.2 Copper -- 5.1.3 Lead -- 5.1.4 Zinc -- 5.1.5 Recent Case Study-Biochar Use in Multielement-Contaminated Mine Waste -- 5.1.6 Recent Case Study-Biochar Use in Cd- and Zn-Contaminated Paddy Soil -- 5.1.7 Recent Case Study-Designing Biochar Production and Use for Mine-Spoil Remediation -- 5.2 Conclusions -- References -- Further Reading -- 6 Potential of Biochar for Managing Metal Contaminated Areas, in Synergy With Phytomanagement or Other Management Options -- 6.1 Introduction -- 6.2 Metals and Metalloids in Soil -- 6.3 Biochar as a Soil Amendment for Risk-Based Land Management -- 6.4 Properties of Biochar in Relation to Trace Element Sorption -- 6.5 Effects of Adding Biochar to Soil -- 6.6 Management Options -- 6.6.1 Biochar Amendment in Combination With Phytomanagement -- 6.6.2 Biochar to Reduce Uptake of Hazardous Elements to Vegetable Crops -- 6.7 Field Experience to Date -- 6.8 Conclusions -- References -- 7 Biochar and Its Composites for Metal(loid) Removal From Aqueous Solutions -- 7.1 Metal Sorption on Various Biochars -- 7.1.1 Effect of Biochar Characteristics -- 7.1.2 Optimization of Metal Sorption -- 7.1.3 Metal-Sorption Mechanisms -- 7.2 Biochar Modifications -- 7.2.1 Chemical Activation -- 7.2.2 Iron Modifications -- 7.2.2.1 Magnetic Impregnation -- 7.2.2.2 Nano Zero-Valent Iron Modification -- 7.2.3 Layered Double-Hydroxide Modification -- 7.2.3.1 Synthesis of LDH/Biochar Composites -- 7.2.3.2 Adsorption Properties of LDH/Biochar Composites -- 7.2.4 Manganese-Oxide Coating -- 7.3 Engineering Implications of Biochar and Its Modifications -- Acknowledgments -- References -- Further Reading -- 8 Biochar for Anionic Contaminants Removal From Water -- 8.1 Anionic Contaminants in Water/Wastewater. 8.2 Sorption Properties of Biochar -- 8.2.1 Anionic Nutrients in Water -- 8.2.1.1 Phosphate (PO43−) -- 8.2.1.2 Nitrate (NO3−) -- 8.2.2 Anionic Heavy Metals in Water -- 8.2.2.1 Hexavalent Chromium -- 8.2.2.2 Arsenic -- 8.2.3 Other Anionic Contaminants in Water -- 8.3 Biochar Sorption of Anionic Contaminants -- 8.3.1 Pore Filling -- 8.3.2 Hydrogen Bonding -- 8.3.3 Surface Complexation/Precipitation -- 8.3.4 Electrostatic Attraction -- 8.3.5 π-π Interaction -- 8.4 Factors Influencing the Sorption of Anionic Contaminants -- 8.4.1 Pyrolysis Temperature -- 8.4.2 pH of the Solution -- 8.4.3 Coexisting Ions -- 8.4.4 Temperature -- 8.5 Conclusions and Perspectives -- References -- 9 Biochar for Soil Water Conservation and Salinization Control in Arid Desert Regions -- 9.1 Arid Desert Ecosystem -- 9.2 Methods for Water Conservation and Salinization Control in Arid Desert Regions -- 9.3 Application of Biochar to Soils -- 9.3.1 Application of Biochar for Water Conservation in Arid Desert Regions -- 9.3.2 Application of Biochar for Soil Salinization Control in Arid Desert Regions -- 9.4 Other Advantages of Biochar Application in Arid Desert Regions -- 9.5 Conclusions -- References -- 10 Biochars and Biochar Composites: Low-Cost Adsorbents for Environmental Remediation -- 10.1 Introduction -- 10.2 Common Adsorbent Materials -- 10.2.1 Silica -- 10.2.2 Zeolites -- 10.2.3 Activated Alumina -- 10.2.4 Activated Carbon -- 10.2.5 Polymeric Resins -- 10.3 Biochar as Adsorbent -- 10.3.1 Surface Area and Porosity -- 10.3.2 pH and Surface Charge -- 10.3.3 Functional Groups, Aromaticity, and Polarity -- 10.3.4 Mineral Components -- 10.4 Biochar for Adsorption of Organic Molecules -- 10.4.1 Adsorption of Antibiotics -- 10.4.2 Adsorption of Pesticides, Herbicides, and Fumigants -- 10.4.3 Adsorption of Color/Dyes -- 10.4.4 Adsorption of Polycyclic Aromatic Hydrocarbons. 10.4.5 Adsorption of Polychlorinated Biphenyls -- 10.4.5.1 Adsorption of Volatile Organic Compounds -- 10.5 Biochar for Adsorption of Inorganic Species -- 10.5.1 Adsorption of Heavy Metal Ions -- 10.5.1.1 Adsorption of Heavy Metal Ions From Water -- 10.5.1.2 Adsorption of Heavy Metals From Soil -- 10.5.2 Adsorption of Anions and Other Inorganic Pollutants -- 10.6 Modified Biochar as Adsorbent -- 10.6.1 Surface Functionalized Biochar as Adsorbent -- 10.6.1.1 Steam-Activated Biochar -- 10.6.1.2 Heat-Treated Biochar -- 10.6.1.3 Acid-Treated Biochar -- 10.6.1.4 Alkali-Treated Biochar -- 10.6.1.5 Biochar Modified With Nitrogen-Based Functional Groups -- 10.6.2 Biochar-Based Composite as Adsorbent -- 10.6.2.1 Nanometal Oxide/Hydroxide-Biochar Composites -- 10.6.2.2 Magnetic Biochar Composites as Adsorbent -- 10.6.2.3 Functional Nanoparticles-Coated Biochar -- 10.6.2.4 Impregnation of Functional Nanoparticles After Pyrolysis -- 10.7 Concluding Remarks and Future Perspectives -- References -- 11 Biochar for Sustainable Agriculture: Nutrient Dynamics, Soil Enzymes, and Crop Growth -- 11.1 Introduction -- 11.2 Evolution of Sustainable Agriculture -- 11.2.1 Malthusian Catastrophe and Green Revolution -- 11.2.2 Role of Biochar in Sustainable Agriculture -- 11.3 Influence of Biochar on Soil Nutrient Dynamics -- 11.3.1 Direct Nutrient Values of Biochar -- 11.3.2 Indirect Nutrient Values of Biochar -- 11.4 Influence of Biochar on Soil Enzymes -- 11.4.1 Influence of Biochar on Microorganism-Derived Soil Enzymes -- 11.4.2 Faunal Population Response to Biochar in Soil -- 11.4.3 Plant Root Response to Biochar in Soil -- 11.5 Effect of Biochar on Crop Growth -- 11.6 Conclusions -- References -- 12 Biochar Is a Potential Source of Silicon Fertilizer: An Overview -- 12.1 Introduction -- 12.2 Silicon -- 12.2.1 Forms of Silicon in Soil -- 12.2.2 Bioavailable Si in Soil. 12.2.3 Effect of Si on Plants -- 12.3 Biochar -- 12.3.1 Sources of Feedstock for Biochar -- 12.3.2 Characterization of Biochar -- 12.3.3 Benefits of Biochar in Agricultural Practices -- 12.4 Biochar Is a Potential Source of Bioavailable Si -- 12.5 Conclusion and Perspectives -- Acknowledgments -- References -- 13 Sludge-Derived Biochar and Its Application in Soil Fixation -- 13.1 Sewage Sludge Production and Disposal in China -- 13.2 Pyrolysis of Sewage Sludge and the Environmental Safety of Heavy Metals in Sludge-Derived Biochars -- 13.2.1 Pyrolysis of Sewage Sludge Under Various Conditions -- 13.2.2 Environmental Safety of Heavy Metals in Sludge-Derived Biochars -- 13.3 Adsorption of Contaminants in Sludge-Derived Biochars -- 13.3.1 Cationic Metals -- 13.3.2 Oxyanionic Metals -- 13.3.3 Organic Contaminants -- 13.4 Metal Stabilization in Soils by Sludge-Derived Biochars -- 13.5 Ageing of Sludge-Derived Biochars in the Environment -- 13.6 Conclusions -- References -- Further Reading -- 14 Biochar as an (Im)mobilizing Agent for the Potentially Toxic Elements in Contaminated Soils -- 14.1 Introduction -- 14.2 Biochar as an Immobilizing Agent for Potentially Toxic Elements in Contaminated Soils -- 14.2.1 Reducing Mobility and Phytoavailability of Potentially Toxic Elements in Soils Using Biochar -- 14.2.2 Immobilization Mechanisms of Potentially Toxic Elements by Biochar -- 14.3 Biochar as a Mobilizing Agent for Potentially Toxic Elements in Contaminated Soils: Mobilization Mechanisms -- 14.4 Conclusions -- Acknowledgments -- References -- 15 Hydrothermal Carbonization for Hydrochar Production and Its Application -- 15.1 Introduction -- 15.2 Production of Hydrochar -- 15.2.1 Influence of Feedstock -- 15.2.2 Influence of Reaction Temperature -- 15.2.3 Influence of Retention Time -- 15.2.4 Influence of Catalyst -- 15.3 Properties of Hydrochar. 15.3.1 Heating Value. |
Record Nr. | UNINA-9910583008803321 |
Amsterdam, Netherlands : , : Elsevier, , 2019 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|