top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
2030.1.1-2021 - IEEE Standard for Technical Specifications of a DC Quick and Bidirectional Charger for Use with Electric Vehicles - Redline / / IEEE
2030.1.1-2021 - IEEE Standard for Technical Specifications of a DC Quick and Bidirectional Charger for Use with Electric Vehicles - Redline / / IEEE
Pubbl/distr/stampa New York : , : IEEE, , 2022
Descrizione fisica 1 online resource (263 pages)
Disciplina 629.286
Soggetto topico Battery charging stations (Electric vehicles)
ISBN 1-5044-8645-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996574942903316
New York : , : IEEE, , 2022
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
946-2020 - IEEE Recommended Practice for the Design of DC Power Systems for Stationary Applications - Redline / / Institute of Electrical and Electronics Engineers
946-2020 - IEEE Recommended Practice for the Design of DC Power Systems for Stationary Applications - Redline / / Institute of Electrical and Electronics Engineers
Pubbl/distr/stampa [Place of publication not identified] : , : IEEE, , 2020
Descrizione fisica 1 online resource (149 pages)
Disciplina 621.31242
Soggetto topico Battery chargers
Battery charging stations (Electric vehicles)
ISBN 1-5044-7415-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910440014603321
[Place of publication not identified] : , : IEEE, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
946-2020 - IEEE Recommended Practice for the Design of DC Power Systems for Stationary Applications - Redline / / Institute of Electrical and Electronics Engineers
946-2020 - IEEE Recommended Practice for the Design of DC Power Systems for Stationary Applications - Redline / / Institute of Electrical and Electronics Engineers
Pubbl/distr/stampa [Place of publication not identified] : , : IEEE, , 2020
Descrizione fisica 1 online resource (149 pages)
Disciplina 621.31242
Soggetto topico Battery chargers
Battery charging stations (Electric vehicles)
ISBN 1-5044-7415-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996574638603316
[Place of publication not identified] : , : IEEE, , 2020
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Battery extreme fast charge : a thermal prospective / / Aron Saxon
Battery extreme fast charge : a thermal prospective / / Aron Saxon
Autore Saxon Aron
Pubbl/distr/stampa Golden, CO : , : National Renewable Energy Laboratory, , 2019
Descrizione fisica 1 online resource (16 pages) : color illustrations
Collana NREL/PR
Soggetto topico Electric automobiles - Batteries
Battery charging stations (Electric vehicles)
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Battery extreme fast charge
Record Nr. UNINA-9910713721003321
Saxon Aron  
Golden, CO : , : National Renewable Energy Laboratory, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Cost reduction of school bus fleet electrification with optimized charging and distributed energy resources : preprint / / William Becker, Eric Miller, Partha Pratim Mishra, Rishabh Jain, Dan Olis and Xiangkun Li
Cost reduction of school bus fleet electrification with optimized charging and distributed energy resources : preprint / / William Becker, Eric Miller, Partha Pratim Mishra, Rishabh Jain, Dan Olis and Xiangkun Li
Autore Becker William
Pubbl/distr/stampa Golden, CO : , : National Renewable Energy Laboratory, , 2020
Descrizione fisica 1 online resource (6 pages) : color illustrations
Collana NREL/CP
Soggetto topico School buses - Fuel systems
Buses, Electric - Cost of operation
Battery charging stations (Electric vehicles)
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Cost reduction of school bus fleet electrification with optimized charging and distributed energy resources
Record Nr. UNINA-9910713946203321
Becker William  
Golden, CO : , : National Renewable Energy Laboratory, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Electric vehicle integration via smart charging : technology, standards, implementation, and applications / / Vahid Vahidinasab, Behnam Mohammadi-Ivatloo, editors
Electric vehicle integration via smart charging : technology, standards, implementation, and applications / / Vahid Vahidinasab, Behnam Mohammadi-Ivatloo, editors
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (250 pages)
Disciplina 629.286
Collana Green energy and technology
Soggetto topico Battery charging stations (Electric vehicles)
ISBN 3-031-05909-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- Editors and Contributors -- About the Editors -- Contributors -- 1 Standardised Domestic EV Smart Charging for Interoperable Demand Side Response: PAS 1878 and 1879 -- 1.1 Introduction -- 1.1.1 Purpose of Demand-Side Response -- 1.1.2 Status Quo, Challenges and Outlook -- 1.1.3 Assumptions of the Standardised Framework -- 1.1.4 Overview of Operation -- 1.1.5 Underpinning Principles -- 1.1.6 Scope -- 1.2 System Architecture -- 1.2.1 Functional Architecture -- 1.2.1.1 Compatibility with International Standards -- 1.2.1.2 Key Requirements -- 1.2.2 Descriptions of Functional Devices and Entities -- 1.2.2.1 DSR Service Provider (DSRSP) -- 1.2.2.2 Customer Energy Manager (CEM) -- 1.2.2.3 Home Energy Management System (HEMS) -- 1.2.2.4 Chargepoint (The ESA Functionality) -- 1.2.2.5 Chargepoint Manufacturer -- 1.2.2.6 Electric Vehicle (EV) -- 1.2.2.7 System Operators and Market Participants (SOMPs) -- 1.2.2.8 Electricity Supplier -- 1.2.2.9 National Electricity Regulator -- 1.2.3 Descriptions of Interfaces -- 1.2.3.1 Interface A -- 1.2.3.2 Interface B -- 1.2.3.3 Manufacturer Interface -- 1.2.3.4 Interface C -- 1.2.3.5 Interface M -- 1.2.3.6 External System Interface -- 1.2.3.7 Chargepoint and EV Interface -- 1.3 Operation Framework -- 1.3.1 Operation Process and DSR Modes -- 1.3.1.1 (a) Consumer Registration with the DSRSP -- 1.3.1.2 (b) Discovery, Authentication and Device Registration -- 1.3.1.3 (c) Initialisation -- 1.3.1.4 (d) Normal Operation -- 1.3.1.5 (e) De-registration -- 1.3.2 Power Profiles for DSR -- 1.3.2.1 Flexibility Offers as Power Profiles -- 1.3.2.2 Frequency Response Indicator -- 1.3.2.3 Information Required for Power Profiles -- 1.3.2.4 Power Reporting -- 1.3.3 Cyber Security Approach -- 1.4 EV Smart Charging for DSR Services -- 1.4.1 Mapping to IEC/ISO Standards for EVs.
1.4.2 Example Use Case: EV Implementation for DSR Services -- 1.4.2.1 Registration -- 1.4.2.2 Normal Operation -- 1.4.2.3 De-registration -- Bibliography -- 2 The Concept of Li-Ion Battery Control Strategies to Improve Reliability in Electric Vehicle (EV) Applications -- 2.1 Introduction -- 2.2 Battery Management System (BMS) -- 2.3 Battery Fault Detection -- 2.4 Battery State-of-Function Estimation -- 2.4.1 Battery SoH Estimation -- 2.4.2 Battery SoC Estimation -- 2.5 Conclusions -- References -- 3 Recognition of Electric Vehicles Charging Patterns with Machine Learning Techniques -- 3.1 Introduction -- 3.1.1 Electric Vehicles -- 3.1.1.1 Taxonomy of EVs -- 3.1.1.2 EV Integration's Benefits -- 3.1.1.3 Challenges and Problems of EVs High Penetration -- 3.1.2 Data Challenges of the High Penetration of the EVs -- 3.1.3 Energy Management of the EVs' Smart Charging -- 3.1.3.1 Concepts and Applications -- 3.1.3.2 Challenges and Opportunities -- 3.1.4 Literature Review on EV Integration -- 3.2 Identification of EV Charging Patterns -- 3.2.1 Clustering Concept and Principles -- 3.2.1.1 Concept of the Clustering -- 3.2.1.2 Principles of the Clustering -- 3.2.2 Clustering of the Charging Patterns -- 3.2.3 Utilization of ML Algorithms for Clustering the Charging Patterns -- 3.2.3.1 Unsupervised Learning -- 3.2.3.2 Supervised Learning -- 3.2.4 ML-Based Approach to Cluster the EV Charging Behaviors -- 3.2.4.1 Preprocessing -- 3.2.4.2 EV's Charging Behavior Clustering Using K-Means Algorithm -- 3.2.4.3 K-NN Classification for EV Charging Behavior -- 3.2.5 A Toy Example -- 3.2.6 Application of Charging Pattern Recognition in Smart Charging -- 3.3 Status Quo, Challenges, and Outlook -- 3.4 Concluding Remarks -- References -- 4 Cybersecurity and Data Privacy Issues of Electric Vehicles Smart Charging in Smart Microgrids -- 4.1 Introduction.
4.2 Cyberattacks and Security Issues of EVs -- 4.2.1 Various Attacks on EVs -- 4.2.1.1 Attacks on Control Systems -- 4.2.1.2 Attacks on Driving System Parts -- 4.2.1.3 Attacks on V2X Communication -- 4.2.2 The Vulnerability of EV Charging Stations to Cyberattacks -- 4.2.2.1 Web-Based Vulnerabilities -- 4.2.2.2 Human-Machine Interface Vulnerabilities and Physical Access Points -- 4.2.2.3 The Vulnerability of Servers -- 4.2.2.4 The Vulnerability of Smartphones -- 4.2.2.5 The Vulnerability of Building Energy Management System and Grid Interface -- 4.2.2.6 The Vulnerability of Original Equipment Manufacturers/Vendors -- 4.2.3 Cybersecurity Challenges in EV Communication -- 4.2.3.1 Limited Connectivity -- 4.2.3.2 Limited Computational Performance -- 4.2.3.3 The Scenarios and Threats of Unpredictable Attacks -- 4.2.3.4 Critical Hazard to the Life of Drivers and Passengers -- 4.2.4 Data Privacy Challenges in Smart EV Networks -- 4.2.5 Classifying the Cybersecurity Threats of On-Board Charging -- 4.2.5.1 Modification -- 4.2.5.2 Interference -- 4.2.5.3 Interruption -- 4.2.5.4 Interception -- 4.2.6 Risk Assessment -- 4.2.7 The Review of Attacker-Defender Models -- 4.2.8 Cybersecurity Requirements -- 4.2.8.1 The Security Goals for EV Ecosystem -- 4.2.8.2 Security Requirements Based on NISTIR 7628 -- 4.3 Status Quo, Challenges, and Outlook -- 4.4 Learned Lessons and Concluding Remarks -- References -- 5 Evaluation of Cyberattacks in Distribution Network with Electric Vehicle Charging Infrastructure -- 5.1 Introduction -- 5.2 Status Quo, Challenges, and Outlook -- 5.2.1 EV2EVSE -- 5.2.2 EVSE2EVSE -- 5.2.3 EV2EV -- 5.3 Related Work -- 5.4 Cyberattack Model -- 5.4.1 Response Model -- 5.5 Experimental Results -- 5.6 Conclusion -- References -- 6 Electric Vehicle Services to Support the Power Grid -- 6.1 Introduction.
6.2 Classification of EV Services Presentable to the Power Grid -- 6.2.1 EV's Active and Reactive Power Support Services -- 6.2.1.1 Frequency Control -- 6.2.1.2 Load Variance Minimization, Peak Shaving, and Valley Filling -- 6.2.1.3 Loads Restoration -- 6.2.1.4 Loss Minimization -- 6.2.1.5 Voltage Control -- 6.2.2 Support Services for Renewable Energy Sources Integration -- 6.3 Combination Capability of EVs' Different Services -- 6.4 Mathematical Modeling of EVs' Charging and Discharging Optimization Problem in the Power System -- 6.4.1 Constraints on EVs' Charging and Discharging Optimization Problem -- 6.4.1.1 EV Constraints -- 6.4.1.2 Network Constraints -- 6.4.2 Mathematical Models and Problem-Solving Methods for Optimizing Charge and Discharge of EVs -- 6.5 Current Status, Challenges, and Outlook -- 6.6 Conclusion -- References -- 7 Smart Charging of EVs to Harvest Flexibility for PVs -- 7.1 Status Quo, Challenges and Outlook -- 7.2 Introduction -- 7.2.1 Background and Literature Review -- 7.2.2 Contributions -- 7.2.3 Chapter Organization -- 7.3 Determination of Optimal EV Demand Profile -- 7.3.1 Assumptions -- 7.3.2 Mathematical Formulation -- 7.4 Numerical Studies -- 7.4.1 Data -- 7.4.2 Case-I: EVs Profile Optimization, Without Considering PVs -- 7.4.3 Case-II: EVs Profile Optimization, Considering PVs -- 7.4.4 Comparative Analysis of Cases -- 7.5 Conclusion -- Bibliography -- 8 A Robust Optimization-Based Model for Smart Charging of PEV Under Multiple Uncertainties -- 8.1 Introduction -- 8.2 Mathematical Representation of the Deterministic PEV Smart Charging -- 8.2.1 Constraints -- 8.3 The Proposed IGDT-Based Model for Robust Smart PEV Charging -- 8.3.1 The Information Gap Decision Theory (IGDT) -- 8.3.2 The Proposed IGDT-Based PEV Smart Charging -- 8.3.3 Multi-objective Particle Swarm Optimization (MOPSO).
8.3.3.1 Concise Review of PSO Algorithm -- 8.3.3.2 The Concept of Dominance in a Multi-objective Problem -- 8.3.3.3 The MOPSO Step-by-Step Implementation -- 8.3.4 Fuzzy Satisfaction Method -- 8.4 Numerical Results -- 8.4.1 Input Data -- 8.4.2 The SOC and Power Analysis -- 8.4.3 Robustness Assessment -- 8.5 Conclusion -- References -- 9 The Role of Smart Electric Vehicle Charging in Optimal Decision-making of the Active Distribution Network -- Nomenclature -- Sets and Indices -- Parameters -- Variables -- Binary Variables -- 9.1 Introduction -- 9.2 Status Quo, Challenges, and Outlook -- 9.3 Formulation -- 9.3.1 Hybrid Stochastic Programming/Robust Optimization Model -- 9.3.2 Electric Vehicles -- 9.3.3 Combined Heat and Power Unit -- 9.3.4 Solar Distributed Generations -- 9.3.5 Distribution System -- 9.3.6 The Objective Function -- 9.4 Results and Discussions -- 9.5 Conclusion -- References -- 10 Operational Challenges of Electric Vehicle Smart Charging -- 10.1 Status Quo, Challenges, and Outlook -- 10.2 Definition -- 10.3 Electric Vehicle Technology -- 10.4 Electric Vehicles Charging -- 10.4.1 Charging Standards for Electric Vehicles -- 10.4.2 Charging Speed and Duration -- 10.4.3 Electric Vehicle Smart Charging (EVSC) -- 10.5 Control of EVSC: Centralized and Decentralized Control Approaches -- 10.6 Benefits of EVSC -- 10.7 Main Challenges of Using EVSCs -- 10.7.1 Connectivity and Infrastructure in EVSC -- 10.7.2 The Minimum Requirements for EVSC -- 10.8 Conclusion -- References -- Index.
Record Nr. UNINA-9910592991503321
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Fast charging and resilient transportation infrastructures in smart cities / / Hossam A. Gabbar
Fast charging and resilient transportation infrastructures in smart cities / / Hossam A. Gabbar
Autore Gabbar Hossam A.
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (295 pages)
Disciplina 629.286
Soggetto topico Transportation - Planning
Battery charging stations (Electric vehicles)
ISBN 9783031095009
9783031094996
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Contents -- Chapter 1: Introduction -- 1.1 Mobility -- 1.2 Transitioning of Transportation Technologies -- 1.3 Transportation Electrification and Charging Technologies -- 1.4 Challenges of Fast-Charging Station Development -- 1.5 Summary -- References -- Chapter 2: Requirement Analysis of Fast-Charging Stations -- 2.1 Introduction -- 2.2 Requirement Analysis of Fast-Charging Station -- 2.3 FCS Design Requirements -- 2.3.1 [A1] Energy Management System Design -- 2.3.2 [A2] Protection System Design -- 2.3.3 [A3] Design FCS Simulation Models -- 2.3.4 [A4] Charging Unit Design -- 2.3.5 [A5] FCS Layout Design -- 2.3.6 [A6] Design Optimization -- 2.3.7 [A7] Design Grid Interface -- 2.3.8 [A8] Filter Design -- 2.3.9 [A9] AC-DC Converter Design -- 2.3.10 [A10] Transformer Design -- 2.3.11 [A11] DC-DC Converter Design -- 2.3.12 [A12] Control System Design -- 2.4 FCS Facility -- 2.4.1 [B1] Manage Incoming Vehicles -- 2.4.2 [B2] Manage Financial Model -- 2.4.3 [B3] Manage Standards -- 2.4.4 [B4] Manage FCS Risks -- 2.4.5 [B5] Manage FCS Facility Operation -- 2.4.6 [B6] Manage Charging Requests -- 2.5 Manage Energy System in FCS -- 2.5.1 [C1] Manage Power from Grid -- 2.5.2 [C2] Manage Energy Storage -- 2.5.3 [C3] Manage Energy Sources -- 2.5.4 [C4] Manage Energy to Grid -- 2.5.5 [C5] Manage Energy to Units -- 2.5.6 [C6] Manage MEG -- 2.6 Manage Charging in FCS -- 2.6.1 [D1] Manage Fast Charging -- 2.6.2 [D2] Manage Ultrafast Charging -- 2.6.3 [D3] Manage Wireless Charging -- 2.6.4 [D4] Manage Regular Charging -- 2.6.5 [D5] Manage Charge Batteries -- 2.6.6 [D6] Manage V2G -- 2.7 Analysis of Best Practice Charging Stations -- 2.7.1 European Distribution System Operators (DSO) -- 2.7.2 Next-Generation Vehicle Promotion Center: Japan -- 2.7.3 US Transport Electrification -- 2.7.4 Smart City Sweden -- 2.7.5 Electrification of Public Bus in Singapore.
2.8 Charging Technology Specifications -- 2.9 Analysis of Mobility Requirements -- 2.10 Automotive Cybersecurity -- 2.11 Summary -- References -- Chapter 3: Fast-Charging Station Design -- 3.1 Introduction -- 3.2 Conceptual Design of Fast-Charging Models -- 3.2.1 Functional Modeling of Fast-Charging Station -- 3.2.2 Fast Charging from the Grid -- 3.2.3 Fast Charging from Grid with Flywheel and Battery -- 3.2.4 Fast Charging with Micro Energy Grid -- 3.2.5 Fast Charging from Grid with Supercapacitor and Battery -- 3.2.6 Powering Charging Station -- 3.2.7 FCS Cyber Physical System Modeling -- 3.2.8 Physical System Modeling for Maritime and Charging Station -- 3.3 Detailed Design of Fast-Charging Station -- 3.3.1 Fast-Charging Station Design -- 3.3.2 Fast-Charging Station Detailed Design -- 3.3.3 Detailed Design of Multi-Input Converter for Fast-Charging Station -- 3.3.4 The Operation Modes of the Converter -- 3.3.4.1 Mode 1: Battery to DC Link -- 3.3.4.2 Mode 2: Supercapacitor to DC Link -- 3.3.4.3 Mode 3: Battery and Supercapacitor -- 3.3.4.4 Mode 4: Battery and Supercapacitor to DC Link -- 3.3.4.5 Mode 5: DC Link to Battery and Supercapacitor -- 3.4 Control System Design -- 3.4.1 Control Design for Charging Unit -- 3.4.1.1 Model Reference Adaptive Control -- 3.4.1.2 Maximum Power Point Tracking (MPPT) -- 3.4.2 Integrated Control Design for the Charging Station -- 3.4.3 Energy Management System (EMS) -- 3.5 Summary -- References -- Chapter 4: Analysis of Transportation Electrification and Fast Charging -- 4.1 Introduction -- 4.2 Analysis of Electric Buses -- 4.2.1 e-Bus Opportunities -- 4.2.2 e-Bus Challenges -- 4.2.3 Battery Technologies -- 4.2.3.1 Battery Size and Range -- 4.2.3.2 Battery Aging -- 4.2.4 Depot for Bus Charging -- 4.2.5 On-Route Charging -- 4.2.6 Conductive On-Route Charging -- 4.2.7 Inductive On-Route Charging.
4.2.8 Battery Swapping On-Route Charging -- 4.3 Analysis of Electric Trucks -- 4.3.1 Fast-Charging System of HDT -- 4.3.2 Depot Charging Electrical Distribution System -- 4.3.3 Charging Scheduling Algorithm -- 4.3.4 Electric Truck Opportunities and Challenges -- 4.3.5 HDT Fast Charging in the Market -- 4.4 EV Charging Technologies -- 4.4.1 AC Charging Station -- 4.4.1.1 Level 1 Charging -- 4.4.1.2 Level 2 Charging -- 4.4.2 DC Charging Station -- 4.4.3 EV Charging Standards -- 4.4.4 EV Fast-Charging Applications and Their Challenges -- 4.5 Summary -- References -- Chapter 5: Fast-Charging Infrastructure for Transit Buses -- 5.1 Introduction -- 5.2 Electric Bus Charging Models -- 5.3 Performance Measures -- 5.4 Case Study -- 5.5 Summary -- References -- Chapter 6: A Robust Decoupled Microgrid Charging Scheme Using a DC Green Plug-Switched Filter Compensator -- 6.1 Introduction -- 6.2 The Proposed Efficient PV-Powered Schemes -- 6.3 The Controller Design Steps and Structure -- 6.4 Digital Simulation Results -- 6.5 Conclusions -- Appendices -- Appendix A: Designed GPFC System Parameters -- Appendix B: Controller Gain Parameters -- References -- Chapter 7: Fast Charging for Railways -- 7.1 Introduction -- 7.1.1 Chapter Outlines -- 7.2 Railway Electrification Infrastructure -- 7.3 Voltage Standardization for Railway Electrification -- 7.4 Resilient Interconnected Microgrid (RIMG) -- 7.5 Requirements of the Utility -- 7.6 The Criteria of the Control System -- 7.7 Design Concepts of Multiple Interconnected Resilient Microgrids -- 7.8 Design of IMGs -- 7.9 Detailed Design of IMGs -- 7.10 Energy Storage Technologies for the Railway -- 7.10.1 Flywheel -- 7.10.2 ESS in Railway Systems -- References -- Chapter 8: Hybrid Charging Stations -- 8.1 Introduction -- 8.2 Hybrid Charging Station -- 8.3 Operation of Hybrid Charging Station.
8.4 Data Analysis of Hybrid Charging Station -- 8.4.1 EV Charging Station Data -- 8.4.2 Gas Refueling Station Data -- 8.4.3 FCV Refueling Station Data -- 8.5 Optimization of Hybrid Station Operation -- 8.5.1 Objective Functions -- 8.5.2 Constraints -- 8.5.3 Assumptions -- 8.6 Optimization Algorithm -- 8.7 Summary -- References -- Chapter 9: Fast Charging for Marine Transportation -- 9.1 Introduction -- 9.2 Functional Modeling of Hybrid Energy System for Maritime and Waterfront Applications -- 9.3 Energy System Design for Maritime and Waterfront -- 9.3.1 Energy System Design Scenarios -- 9.3.2 Performance Measures -- 9.3.3 Ship Route -- 9.3.4 System Design -- 9.3.5 Optimization -- 9.3.6 Cargo and Propulsion Modules for Nuclear-Powered Ships -- 9.4 Advances in Research and Innovation -- 9.4.1 Research on Energy Systems for Marine Transportation and Waterfront Infrastructures -- 9.4.2 Research Areas -- 9.4.3 Research and Test Facility -- 9.4.4 Research Impacts -- 9.4.5 Target Industries -- 9.5 Summary -- References -- Chapter 10: Resilient Charging Stations for Harsh Environment and Emergencies -- 10.1 Introduction -- 10.2 Charging Infrastructures -- 10.3 Charging in Harsh Environment -- 10.4 Resiliency Analysis of Charging Infrastructures -- 10.5 Emergency Analysis of Charging Stations -- 10.6 Priority Analysis of Charging Stations -- 10.7 Vehicle Energy Management in Emergencies -- 10.8 Summary -- References -- Chapter 11: Autonomous Transportation -- 11.1 Autonomous Transportation -- 11.2 Charging Requirements for Autonomous Transportation -- 11.3 Case Study -- 11.4 Base Scenario -- 11.5 The Scenario of Fixed Pick-Up and Drop-Off Points -- 11.6 Mapping CAV Routes to Charging Infrastructure -- 11.7 Summary -- References -- Chapter 12: Transportation with Electric Wheel -- 12.1 Introduction -- 12.2 Regenerative Braking System -- 12.3 Electric Wheel.
12.4 EV with Electric Wheel -- 12.5 Summary -- References -- Chapter 13: Fast-Charging Infrastructure Planning -- 13.1 Introduction -- 13.2 Charging Load Analysis -- 13.3 Load Profiles of EVs -- 13.4 Load Profiles of e-Buses -- 13.5 Load Profiles of e-Trucks -- 13.6 Load Profiles of Electric Marine -- 13.7 Load Profiles for Power Substations -- 13.8 Load Profiles for Industrial Facilities -- 13.9 Integrated Load Profiles -- 13.10 Development of Fast-Charging Station for Industrial Facilities and e-Trucks -- 13.10.1 Deployment Impacts -- 13.11 Summary -- References -- Chapter 14: Techno-economic Analysis of Fast-Charging Infrastructure -- 14.1 Introduction -- 14.2 Integrated Deployment Model of Fast-Charging Stations -- 14.3 Lifecycle Cost Analysis of Charging Station -- 14.3.1 Cost Calculation -- 14.4 Techno-economic Analysis -- 14.5 Summary -- References -- Chapter 15: Advances in Charging Infrastructures -- 15.1 Introduction -- 15.2 V2G Charging -- 15.2.1 V2G System Design -- 15.2.2 V2G Deployment -- 15.2.3 Benefits -- 15.3 Control Strategy -- 15.4 V2G Installation -- 15.5 Case Study V2G System Design -- 15.6 Flywheel-Based Fast Charging -- 15.7 Case Study V2G with Commercial Building -- 15.8 Wireless Charging -- 15.9 V2V Charging -- 15.10 Next-Generation Transportation Infrastructure -- 15.11 Summary -- References -- Chapter 16: Nuclear-Renewable Hybrid Energy Systems with Charging Stations for Transportation Electrification -- 16.1 Introduction -- 16.2 System Description -- 16.3 Case Study -- 16.4 Results -- 16.5 Nuclear-Renewable Hybrid Energy Systems with Fast-Charging Station -- 16.6 Fast-Charging Station Design -- 16.6.1 Charging Mode -- 16.6.2 Discharging Mode -- 16.7 Summary -- References -- Chapter 17: Transactive Energy for Charging Infrastructures -- 17.1 Introduction -- 17.2 Transactive Energy for Charging Station.
17.2.1 Condition to Start Searching for Charging Station.
Record Nr. UNINA-9910586583003321
Gabbar Hossam A.  
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Fast charging infrastructure for electric and hybrid electric vehicles : methods for large scale penetration into electric distribution networks / / Sivaraman Palanisamy, Sharmeela Chenniappan, and P. Sanjeevikumar
Fast charging infrastructure for electric and hybrid electric vehicles : methods for large scale penetration into electric distribution networks / / Sivaraman Palanisamy, Sharmeela Chenniappan, and P. Sanjeevikumar
Autore Palanisamy Sivaraman <1991->
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2023]
Descrizione fisica 1 online resource (242 pages)
Disciplina 629.286
Soggetto topico Battery charging stations (Electric vehicles)
Electric vehicles - Power supply
Electric vehicles - Electric equipment
ISBN 1-119-98776-8
1-119-98777-6
1-119-98775-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Dedication -- Contents -- Preface -- About the Authors -- Chapter 1 Introduction to Electric Vehicle Fast-Charging Infrastructure -- 1.1 Introduction -- 1.2 Fast-Charging Station -- 1.2.1 Power Grid or Grid Power Supply -- 1.2.2 Power Cables -- 1.2.3 Switchgears -- 1.2.4 Distribution Transformer -- 1.2.5 Energy Meters and Power Quality Meters -- 1.2.6 Fast Chargers -- 1.2.7 Plugs and Connectors -- 1.3 Fast-Charging Station Using Renewable Power Sources (RES) -- 1.4 Digital Communication for Fast-Charging Station -- 1.5 Requirements for Fast-Charging Station -- 1.6 Case Study: Public Fast-Charging Station in India -- 1.7 Conclusion -- References -- Annexure 1 Photos -- Chapter 2 Selection of Fast-Charging Station -- 2.1 Introduction -- 2.2 Business Model for Fast-Charging Stations -- 2.3 Location of Fast-Charging Station -- 2.4 Electric Supply for Fast Charging -- 2.5 Availability of Land -- 2.6 Conclusion -- References -- Chapter 3 Business Model and Tariff Structure for Fast-Charging Station -- 3.1 Introduction -- 3.2 Business Model -- 3.2.1 Integrated Model -- 3.2.2 Independent Model -- 3.2.3 Selection of Business Model for Fast-Charging Station -- 3.2.4 Fast-Charging Infrastructure and Operating Expenses -- 3.3 Battery Swapping -- 3.4 Tariff Structure -- 3.4.1 Tariff Between Electric Utilities (DISCOMs) and Fast-Charging Stations -- 3.4.2 Tariff Between Fast-Charging Stations and EV Users -- 3.5 Conclusion -- References -- Chapter 4 Batteries for Fast-Charging Infrastructure -- 4.1 Introduction -- 4.2 C-Rating of the Battery -- 4.3 Different Types of Chemistries -- 4.3.1 Li-Ion Family -- 4.3.2 Lead Acid -- 4.3.3 Nickel Family -- 4.3.4 Selection of Battery Chemistry -- 4.4 Batteries Used in EVs in the Market -- 4.5 Conclusion -- References -- Chapter 5 Distribution System Planning -- 5.1 Introduction.
5.2 Planning for Power and Energy Demand -- 5.3 Planning for Distribution System Feeders and Equipment -- 5.4 Conclusion -- References -- Chapter 6 Electric Distribution for Fast-Charging Infrastructure -- 6.1 Introduction -- 6.2 Major Components of Fast-Charging Station -- 6.3 Design of Fast-Charging Station -- 6.3.1 Single Point of Failure -- 6.3.2 Configuration of Electrical Distribution Considering the Redundancy -- 6.4 Conclusion -- References -- Chapter 7 Energy Storage System for Fast-Charging Stations -- 7.1 Introduction -- 7.2 Renewables + ESS -- 7.2.1 Solar PV System without Battery Energy Storage System - Scheme 1 AC Interconnection -- 7.2.2 Solar PV System with Battery Energy Storage System - Scheme 2 AC Interconnection -- 7.2.3 Solar PV System with Battery Energy Storage System - Scheme 3 DC Interconnection -- 7.3 Microgrid with Renewables + ESS -- 7.3.1 Grid-Connected Microgrid for Fast-Charging Stations -- 7.3.2 Standalone Microgrid for Fast-Charging Stations -- 7.4 ESS Modes of Operation -- 7.5 Conclusion -- References -- Chapter 8 Surge Protection Device for Electric Vehicle Fast-Charging Infrastructure -- 8.1 Introduction -- 8.2 Surge Protection for Fast-Charging Stations -- 8.2.1 Surge Protection for Open Locations -- 8.2.2 Surge Protection for Covered Locations -- 8.3 Surge Protection for Underground Locations -- 8.4 Conclusion -- References -- Chapter 9 Power Quality Problems Associated with Fast-Charging Stations -- 9.1 Introduction -- 9.2 Introduction to Power Quality -- 9.3 Power Quality Problems Due to Fast-Charging Stations -- 9.3.1 Impact of Poor Power Quality of Distribution Grid on Fast-Charging Station Loads -- 9.3.2 Impact of Poor Power Quality from the Fast-Charging Station Loads on the Distribution Grid -- 9.4 Analysis of Harmonic Injection into the Distribution System -- 9.4.1 Hand Calculation or Manual Calculation.
9.4.2 Conducting Field Measurements at the Site -- 9.4.3 Model Calibration -- 9.4.4 Computer Simulation -- 9.5 Analysis of System Resonance Condition -- 9.6 Analysis of Supra-Harmonics -- 9.7 Case Study: Harmonic Measurement of 30 kW DC Fast Charger -- 9.8 Conclusion -- References -- Chapter 10 Standards for Fast-Charging Infrastructure -- 10.1 Introduction -- 10.2 IEC Standards -- 10.2.1 IEC 61851 -- 10.2.2 IEC 61980 Electric Vehicle Wireless Power Transfer Systems -- 10.2.3 IEC 62196 Plugs, Socket-Outlets, Vehicle Connectors, and Vehicle Inlets - Conductive Charging of Electric Vehicles -- 10.2.4 IEC TR 62933-2-200 Electrical Energy Storage (EES) Systems - Part 2-200: Unit Parameters and Testing Methods - Case Study of EES Systems Located in EV Charging Station with PV -- 10.2.5 IEC 62893 Charging Cables for Electric Vehicles for Rated Voltages up to and Including 0.6/1 kV -- 10.2.6 IEC 60364-7-722 Low-Voltage Electrical Installations - Part 7-722: Requirements for Special Installations or Locations - Supplies for Electric Vehicles -- 10.3 IEEE Standards -- 10.3.1 IEEE Std 2030.1.1-2021 IEEE Standard for Technical Specifications for a DC Quick and Bidirectional Charger for Use with Electric Vehicles -- 10.3.2 IEEE Std 2836-2021 IEEE Recommended Practice for Performance Testing of Electrical Energy Storage (ESS) System in Electric Charging Stations in Combination with Photovoltaic (PV) -- 10.4 SAE Standards -- 10.4.1 SAE J1772 SAE Electric Vehicle and Plug-in Hybrid Electric Vehicle Conductive Charge Coupler -- 10.4.2 SAE J2894-1 2019 Power Quality Requirements for Plug-In Electric Vehicle Chargers -- 10.5 ISO 17409 Electrically Propelled Road Vehicles - Connection to an External Electric Power Supply - Safety Requirements -- 10.6 CEA Technical Standards in India.
10.6.1 Technical Standards for Connectivity of the Distributed Generation Resources - February 2019 -- 10.6.2 Technical Standards for Measures Relating to Safety and Electric Supply - June 2019 -- 10.7 BS 7671-2018 Requirements for Electrical Installations -- 10.8 Conclusion -- References -- Chapter 11 Fast-Charging Infrastructure for Electric Vehicles: Today's Situation and Future Needs -- 11.1 Batteries -- 11.1.1 Voltage -- 11.1.2 Improvements in Battery Chemistry -- 11.1.3 Standardization of Battery Ratings (Capacity, Voltage, and Dimensions) for Enabling Battery Swapping -- 11.2 Distributed Energy Storage System and Grid-Friendly Charging -- 11.3 Ultrafast Chargers -- 11.4 Interoperable Features -- 11.5 Charging the Vehicle While Driving (Wireless Charging) -- 11.6 Conclusion -- References -- Chapter 12 A Review of the Improved Structure of an Electric Vehicle Battery Fast Charger -- 12.1 Introduction -- 12.2 Types of Battery Charging -- 12.2.1 Li-Ion Battery Charger Algorithm -- 12.2.2 Constant Voltage-Current Charging Method -- 12.2.3 Constant Current Multilevel Charging Method -- 12.2.4 Method of Incremental Charging -- 12.2.5 Pulse Charging Method -- 12.2.6 Sinusoidal Pulse Charging Algorithm -- 12.2.7 Using a Different Frequency Pulse Charging Method (VFPCS) -- 12.2.8 Pulse Voltage Charging Method with Different Pulse Widths (DVVPCS) -- 12.2.9 An Overview of Lithium-Ion Batteries -- 12.2.10 Performance Comparison with Other Batteries -- 12.2.11 Lithium-Ion Battery Control System (BMS) -- 12.2.12 Cell Control -- 12.2.13 Checking Input and Output Current and Voltage -- 12.2.14 Battery Charge and Discharge Control -- 12.2.15 State Estimation -- 12.2.16 State of Charge -- 12.2.17 State of Health (SoH) -- 12.2.18 Mode of Operation (SoF) -- 12.2.19 Battery Protection -- 12.3 Temperature and Heat Control -- 12.3.1 Examining the Charger Structure.
12.4 Bidirectional AC-DC Converters -- 12.4.1 Unidirectional AC-DC Converters -- 12.4.2 Unidirectional Isolated DC-DC Converters -- 12.4.3 Bidirectional Isolated DC-DC Converters -- 12.5 High-Frequency Transformers -- 12.5.1 High-Frequency Transformer Design -- 12.5.2 Core Geometry Method -- 12.5.3 Core Losses -- 12.6 Examine Some of the Charger Examples Provided in the References -- 12.7 Conclusion -- References -- Index -- EULA.
Record Nr. UNINA-9910830337403321
Palanisamy Sivaraman <1991->  
Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
IEEE Recommended Practice for Installation Design and Installation of Large Lead Storage Batteries for Generating Stations and Substations / / IEEE
IEEE Recommended Practice for Installation Design and Installation of Large Lead Storage Batteries for Generating Stations and Substations / / IEEE
Pubbl/distr/stampa New York, N.Y. : , : IEEE, , 1987
Descrizione fisica 1 online resource (12 pages)
Disciplina 629.2
Collana IEEE/ANSI Std
Soggetto topico Battery charging stations (Electric vehicles)
ISBN 0-7381-4444-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti IEEE/ANSI Std 484-1987: IEEE Recommended Practice for Installation Design and Installation of Large Lead Storage Batteries for Generating Stations and Substations
Record Nr. UNINA-9910135331403321
New York, N.Y. : , : IEEE, , 1987
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
IEEE Recommended Practice for Installation Design and Installation of Large Lead Storage Batteries for Generating Stations and Substations / / IEEE
IEEE Recommended Practice for Installation Design and Installation of Large Lead Storage Batteries for Generating Stations and Substations / / IEEE
Pubbl/distr/stampa New York, N.Y. : , : IEEE, , 1987
Descrizione fisica 1 online resource (12 pages)
Disciplina 629.2
Collana IEEE/ANSI Std
Soggetto topico Battery charging stations (Electric vehicles)
ISBN 0-7381-4444-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti IEEE/ANSI Std 484-1987: IEEE Recommended Practice for Installation Design and Installation of Large Lead Storage Batteries for Generating Stations and Substations
Record Nr. UNISA-996279580203316
New York, N.Y. : , : IEEE, , 1987
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui