top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Tactics, techniques, and procedures for the field artillery cannon battery [[electronic resource]]
Tactics, techniques, and procedures for the field artillery cannon battery [[electronic resource]]
Pubbl/distr/stampa Washington, DC : , : Headquarters, Dept. of the Army, US Marine Corps, , [1996]
Descrizione fisica 1 electronic text : HTML file
Collana FM
MCWP
Soggetto topico Fire control (Gunnery)
Batteries (Ordnance)
Artillery
Soggetto genere / forma Handbooks and manuals.
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910697442403321
Washington, DC : , : Headquarters, Dept. of the Army, US Marine Corps, , [1996]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Towards Next Generation Energy Storage Technologies : From Fundamentals to Commercial Applications
Towards Next Generation Energy Storage Technologies : From Fundamentals to Commercial Applications
Autore Chen Minghua
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2024
Descrizione fisica 1 online resource (477 pages)
Soggetto topico Energy storage
Batteries (Ordnance)
ISBN 9783527845293
3527845291
9783527845316
3527845313
9783527845309
3527845305
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Preface -- Acknowledgments -- Chapter 1 Introduction -- Chapter 2 Fundamentals of Electrochemical Energy Storage Technologies -- 2.1 Typical Battery Patterns and Corresponding Functions -- 2.1.1 Cathode -- 2.1.2 Anode -- 2.1.3 Electrolyte -- 2.2 Operating Mechanism of Devices -- 2.2.1 Potential and Thermodynamics -- 2.2.2 Kinetics of Electrode Reactions -- 2.3 Critical Parameters and Design Proposal -- 2.4 Common Investigation Technologies -- 2.4.1 Structural Characterizations -- 2.4.2 Electrochemical Measurements -- 2.4.3 Energy Storage Mechanism Investigations -- 2.5 Common Design Strategies for High‐Performance Electrode Materials -- References -- Chapter 3 Lithium‐Ion Batteries -- 3.1 Brief Introduction -- 3.2 Cathode Materials -- 3.2.1 LiFePO4 -- 3.2.2 LiNixCoyMnzO2 -- 3.2.3 Spinel (LiM2O4 -- M = Mn, Ni) -- 3.2.4 Organic Cathodes -- 3.3 Anode Materials -- 3.3.1 Graphite -- 3.3.2 Silicon‐Based Materials -- 3.3.3 Lithium Metal -- 3.3.4 Other Anode Materials -- 3.4 Application and Critical Challenges -- 3.4.1 Trends in LIBs for Applications -- 3.4.2 Recycling of LIBs -- 3.4.3 Critical Challenges -- References -- Chapter 4 Sodium‐Ion Batteries -- 4.1 Introduction -- 4.2 Energy Storage Mechanism -- 4.3 Cathode Materials -- 4.3.1 Layered Oxides -- 4.3.1.1 Classification of Layered Structures -- 4.3.1.2 Challenges -- 4.3.1.3 Strategies for Layered Oxide Materials for SIBs -- 4.3.2 Polyanion‐Type Materials -- 4.3.2.1 Phosphate‐Based Polyanion Electrode Materials -- 4.3.2.2 Pyrophosphate‐Based Polyanion Electrode Materials -- 4.3.2.3 Fluoride‐Phosphate‐Based Polyanion Electrode Materials -- 4.3.2.4 Mixed‐Phosphate‐Based Polyanion Electrode Materials -- 4.3.2.5 Sulfate‐Based Polyanion Electrode Materials -- 4.3.2.6 Silicate‐Based Polyanion Electrode Materials -- 4.4 Anode Materials.
4.4.1 Alloy‐Type Anode Materials -- 4.4.2 Intercalation‐Type Anode Materials -- 4.4.3 Conversion‐/Conversion‐Alloying‐Type Anode Materials -- 4.4.4 Organic‐Type Anode Materials -- 4.5 Electrolyte -- 4.5.1 Liquid Electrolytes -- 4.5.2 Solid Electrolytes -- 4.6 Sodium‐Ion Batteries at Extreme Temperatures -- 4.7 Other Na‐Based Technologies -- 4.7.1 Sodium Metal Batteries (SMBs) -- 4.7.2 Sodium Metal Batteries: S, Se, and SSe Systems -- 4.8 Summary and Outlook -- References -- Chapter 5 All‐Solid‐State Batteries -- 5.1 Introduction -- 5.2 Ion Transport Mechanism -- 5.2.1 Ion Transport of Inorganic Solid Electrolytes -- 5.2.2 Ion Transport in Solid Polymer Electrolytes -- 5.2.3 Ion Transport of Complex Solid Electrolytes -- 5.3 Key Performance Parameters -- 5.3.1 Ionic Conductivity -- 5.3.2 Li+ Transference Number -- 5.3.3 Electrochemical Stability Window -- 5.3.4 Mechanical Property -- 5.3.5 Thermal Property -- 5.3.6 Electrolyte Uptake -- 5.4 Classification of Solid Electrolytes -- 5.4.1 Inorganic Solid Electrolytes -- 5.4.1.1 Oxide Solid Electrolytes -- 5.4.1.2 Sulfide Solid Electrolytes -- 5.4.1.3 Halide Solid Electrolytes -- 5.4.2 Polymer Electrolytes and Composite Electrolytes -- 5.4.2.1 Solid Polymer and Composite Electrolytes -- 5.4.2.2 Gel Polymer Electrolytes -- 5.4.3 Performance Requirements and Design Strategies -- 5.5 Practical Problems and Critical Challenges -- 5.5.1 Slow Li+ Transportation -- 5.5.2 Chemical and Electrochemical Instabilities -- 5.5.2.1 Chemical and Electrochemical Instability of SPEs -- 5.5.2.2 Chemical and Electrochemical Instability of Solid Oxide Electrolytes -- 5.5.2.3 Chemical Instability and Electrochemical Instability of Solid Sulfide Electrolytes -- 5.5.3 Ineffective Facial Contact -- 5.5.4 Solid‐State Composite Cathodes -- 5.5.5 High Manufacturing Costs -- 5.6 Practical Advances in Electric Vehicles and Other Areas.
References -- Chapter 6 Lithium-Sulfur Battery -- 6.1 Fundamental Understanding of Li‐S Batteries -- 6.1.1 Reaction Mechanism -- 6.1.2 Challenges -- 6.2 Sulfur Cathode -- 6.2.1 Sulfur Cathode -- 6.2.1.1 S8 Cathode -- 6.2.1.2 Li2S Cathode -- 6.2.1.3 SPAN Cathode -- 6.2.2 Typical Strategy -- 6.2.2.1 Physical Confinement -- 6.2.2.2 Chemical Adsorption -- 6.2.2.3 Catalytic Conversion -- 6.3 Electrolyte -- 6.3.1 Liquid Electrolyte -- 6.3.1.1 Solvent -- 6.3.1.2 Salt -- 6.3.1.3 Additive -- 6.3.2 Solid Electrolytes -- 6.3.2.1 Inorganic Solid Electrolytes -- 6.3.2.2 Solid Polymer Electrolytes -- 6.4 Anode -- 6.5 Li‐S Pouch Cell Analysis -- 6.5.1 Limitations of Coin Cells in Li‐S Research -- 6.5.2 The Main Difference Between Pouch Cell and Coin Cell -- 6.5.3 Key Challenges and Solutions for Pouch Cells -- 6.5.3.1 Cathode -- 6.5.3.2 Electrolyte -- 6.5.3.3 Separator -- 6.5.3.4 Anode -- 6.5.4 Application Prospect Analysis -- References -- Chapter 7 Aqueous Multivalent Metal Ion Batteries: Fundamental Mechanism and Applications -- 7.1 Introduction -- 7.2 Classification Based on Energy Storage Mechanism -- 7.2.1 Insertion/Extraction Mechanism of Ions -- 7.2.2 Chemical Conversion Mechanism -- 7.3 Highly Stable and Energetic Cathodes -- 7.3.1 Mn‐Based Materials -- 7.3.2 V‐Based Materials -- 7.3.3 Organic Compounds -- 7.3.4 Prussian Blue Analogues -- 7.3.5 Other Cathodes -- 7.4 Strategies for Dendrite‐Free Metal Anodes -- 7.4.1 Optimization Strategy of Zn Anodes -- 7.4.2 Anode Materials of Mg‐Ion Batteries -- 7.5 Strategies for Designing Electrolytes -- 7.5.1 Liquid Electrolytes -- 7.5.1.1 Aqueous Liquid Electrolytes -- 7.5.1.2 Ionic Liquid Electrolytes -- 7.5.1.3 Organic Liquid Electrolytes -- 7.5.2 Solid‐State Electrolytes -- 7.5.3 Gel Electrolytes -- 7.6 Design Strategies for Extreme Temperatures -- 7.6.1 Mechanisms and Challenges at Extreme Temperatures.
7.6.2 Challenges of AZIBs at Low Temperatures -- 7.6.3 Challenges of AZIBs at High Temperatures -- 7.6.4 Mechanism and Strategies of AZIBs at Low Temperatures -- 7.7 Practical Progress in Grid‐Scale Energy Storage and Wearable Devices -- References -- Chapter 8 Li‐O2 and Li‐CO2 Batteries -- 8.1 Introduction -- 8.2 The Mechanism for Li‐O2 and Li‐CO2 Batteries -- 8.2.1 Classification of Li‐O2 Batteries -- 8.2.1.1 Nonaqueous Electrolyte Li‐O2 Batteries -- 8.2.1.2 Aqueous Electrolyte Li‐O2 Batteries -- 8.2.1.3 All‐Solid‐State Li‐O2 Battery -- 8.2.1.4 Organic-Aqueous Hybrid Electrolyte Li‐O2 Batteries -- 8.2.2 Reaction Mechanism of Charge and Discharge Process of Organic Li‐O2 Batteries -- 8.2.2.1 Discharge Reaction (ORR) Mechanism of Organic Li‐O2 Batteries -- 8.2.2.2 The Charging Reaction (OER) Mechanism of Organic Li‐O2 Batteries -- 8.2.3 The Mechanism of Li‐CO2 Batteries -- 8.2.3.1 CO2 ↔ Li2CO3 + C Reaction Mechanism -- 8.2.3.2 CO2 ↔ Li2C2O4 Reaction Mechanism -- 8.2.3.3 CO2↔CO Reaction Mechanism -- 8.3 Design Strategy of Cathode Materials -- 8.3.1 Cathode Structural Design -- 8.3.2 Selection of Efficient Catalysts -- 8.3.2.1 Carbon Materials and Their Derivatives -- 8.3.2.2 Precious Metals and Precious Metal Oxides -- 8.3.2.3 Non‐precious Metal‐Based Catalysts -- 8.3.2.4 Metal‐Organic Frames and Their Derivatives -- 8.3.2.5 Soluble Catalysts -- 8.4 Electrolyte and Electrolyte Stability -- 8.4.1 Nonaqueous Aprotic Electrolyte System -- 8.4.1.1 Variety of Solvents -- 8.4.1.2 Compatibility of Lithium Salts -- 8.4.2 Aqueous Aprotic Electrolyte System -- 8.4.3 Solid‐State Electrolyte System -- 8.5 Stable Anode/Electrolyte Interface Construction -- 8.6 Application Potential Analysis -- References -- Chapter 9 Supercapacitors -- 9.1 Brief Introduction -- 9.2 Energy Storage Mechanism -- 9.2.1 EDLCs -- 9.2.2 Pseudocapacitors.
9.2.2.1 Conductive‐Polymer‐Based Pseudocapacitors -- 9.2.2.2 Metal Compound Pseudocapacitors -- 9.3 Electrode Materials -- 9.3.1 Activated‐Carbon‐Based Electrode -- 9.3.1.1 Activation of AC -- 9.3.1.2 Development of AC for Supercapacitors -- 9.3.2 Conductive‐Polymer‐Based Electrodes -- 9.3.2.1 Preparation of CPs -- 9.3.2.2 Development of CPs for Supercapacitors -- 9.3.3 Metal Compounds -- 9.3.3.1 Preparation of Metal Compounds -- 9.3.3.2 Development of Metal Compounds in Supercapacitors -- 9.4 Electrolytes -- 9.4.1 Liquid Electrolytes -- 9.4.2 (Quasi)‐Solid‐State Electrolytes -- 9.4.3 Optimizing the Electrolyte Properties -- 9.4.3.1 Adjusting pH Level -- 9.4.3.2 Introducing Redox Mediators -- 9.4.3.3 Constructing "Water‐in‐Salt" Electrolytes -- 9.5 Conclusion -- References -- Chapter 10 Battery-Supercapacitor Hybrid Devices -- 10.1 Introduction -- 10.2 Classification Based on Energy Storage Mechanism -- 10.2.1 The Basic Classifications of LICs -- 10.2.1.1 Battery Cathode and Capacitor Anode -- 10.2.1.2 Capacitive Cathode and Battery Anode -- 10.2.1.3 Capacitive Cathode and Pre‐lithium Battery Anode -- 10.2.1.4 Hybrid Cathode and Pre‐lithium Battery Type Anode -- 10.2.2 The Energy Storage Mechanism of LICs -- 10.3 Key Scientific Problems -- 10.3.1 Electrode Design for LICs -- 10.3.2 Electrolyte Design for LICs -- 10.3.3 Pre‐lithium Technologies -- 10.3.4 Capacity Ratio of Anode and Cathode -- 10.3.5 Conductive Electron/Ion Networks -- 10.3.6 Dense, Continuous, and Robust SEI -- 10.4 Electrode Materials -- 10.4.1 Lithium‐Ion Capacitor Positive Electrode -- 10.4.1.1 Carbon‐Based Materials -- 10.4.1.2 Metal Oxide Materials -- 10.4.1.3 MXene‐Based Materials -- 10.4.2 Lithium‐Ion Supercapacitor Negative Electrodes -- 10.4.2.1 Silicon‐Based Material -- 10.4.2.2 Graphite‐Based Materials -- 10.5 Microgrid Energy Storage -- 10.6 Summary and Perspectives.
References.
Record Nr. UNINA-9911019194503321
Chen Minghua  
Newark : , : John Wiley & Sons, Incorporated, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui