Axioms for lattices and boolean algebras [[electronic resource] /] / R. Padmanabhan, S. Rudeanu
| Axioms for lattices and boolean algebras [[electronic resource] /] / R. Padmanabhan, S. Rudeanu |
| Autore | Padmanabhan R (Ranganathan), <1938-> |
| Pubbl/distr/stampa | Hackensack, NJ, : World Scientific, c2008 |
| Descrizione fisica | 1 online resource (228 p.) |
| Disciplina | 511.33 |
| Altri autori (Persone) | RudeanuSergiu |
| Soggetto topico |
Lattice theory
Algebra, Boolean Axioms |
| Soggetto genere / forma | Electronic books. |
| ISBN | 981-283-455-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | 1. Semilattices and lattices -- 2. Modular lattices -- 3. Distributive lattices -- 4. Boolean algebras -- 5. Further topics and open problems. |
| Record Nr. | UNINA-9910455550403321 |
Padmanabhan R (Ranganathan), <1938->
|
||
| Hackensack, NJ, : World Scientific, c2008 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Axioms for lattices and boolean algebras [[electronic resource] /] / R. Padmanabhan, S. Rudeanu
| Axioms for lattices and boolean algebras [[electronic resource] /] / R. Padmanabhan, S. Rudeanu |
| Autore | Padmanabhan R (Ranganathan), <1938-> |
| Pubbl/distr/stampa | Hackensack, NJ, : World Scientific, c2008 |
| Descrizione fisica | 1 online resource (228 p.) |
| Disciplina | 511.33 |
| Altri autori (Persone) | RudeanuSergiu |
| Soggetto topico |
Lattice theory
Algebra, Boolean Axioms |
| ISBN | 981-283-455-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | 1. Semilattices and lattices -- 2. Modular lattices -- 3. Distributive lattices -- 4. Boolean algebras -- 5. Further topics and open problems. |
| Record Nr. | UNINA-9910777941003321 |
Padmanabhan R (Ranganathan), <1938->
|
||
| Hackensack, NJ, : World Scientific, c2008 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Compute as fast as the engineers can think! : ultrafast computing team final report / / R.T. Biedron [and eight others]
| Compute as fast as the engineers can think! : ultrafast computing team final report / / R.T. Biedron [and eight others] |
| Autore | Biedron Robert T. |
| Pubbl/distr/stampa | Hampton, Virginia : , : National Aeronautics and Space Administration, Langley Research Center, , September 1999 |
| Descrizione fisica | 1 online resource (49 pages) : illustration |
| Collana | NASA/TM |
| Soggetto topico |
Computer systems design
Architecture (computers) Axioms Heterogeneity Massively parallel processors |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Altri titoli varianti | Compute as fast as the engineers can think! |
| Record Nr. | UNINA-9910706118803321 |
Biedron Robert T.
|
||
| Hampton, Virginia : , : National Aeronautics and Space Administration, Langley Research Center, , September 1999 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Filosofia della probabilità / Domenico Costantini, Ludovico Geymonat
| Filosofia della probabilità / Domenico Costantini, Ludovico Geymonat |
| Autore | Costantini, Domenico |
| Pubbl/distr/stampa | Milano : Feltrinelli, c1982 |
| Descrizione fisica | 215 p. ; 23 cm. |
| Disciplina | 519.2 |
| Altri autori (Persone) | Geymonat, Ludovicoauthor |
| Collana | Filosofia della scienza ; 23 |
| Soggetto topico | Axioms |
| Classificazione | AMS 60A05 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | ita |
| Record Nr. | UNISALENTO-991000888449707536 |
Costantini, Domenico
|
||
| Milano : Feltrinelli, c1982 | ||
| Lo trovi qui: Univ. del Salento | ||
| ||
Introduzione alla probabilità / Domenico Costantini
| Introduzione alla probabilità / Domenico Costantini |
| Autore | Costantini, Domenico |
| Pubbl/distr/stampa | Torino : Boringhieri, 1977 |
| Descrizione fisica | 173 p. ; 22 cm. |
| Disciplina | 519.2 |
| Collana | Testi e manuali della scienza contemporanea. Serie di logica matematica |
| Soggetto topico | Axioms |
| Classificazione | AMS 60A05 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | ita |
| Record Nr. | UNISALENTO-991001037769707536 |
Costantini, Domenico
|
||
| Torino : Boringhieri, 1977 | ||
| Lo trovi qui: Univ. del Salento | ||
| ||
A mathematical theory of evidence / Glenn Shafer
| A mathematical theory of evidence / Glenn Shafer |
| Autore | Shafer, Glenn |
| Pubbl/distr/stampa | Princeton, N.J. : Princeton Univ. Press |
| Descrizione fisica | xiii, 297 p. ; 24 cm. |
| Disciplina | 519.2 |
| Soggetto topico |
Axioms
Evidence Mathematical statistics Philosophy of mathematics Probabilities |
| ISBN | 0691081751 |
| Classificazione |
AMS 00A30
AMS 60A05 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNISALENTO-991001119899707536 |
Shafer, Glenn
|
||
| Princeton, N.J. : Princeton Univ. Press | ||
| Lo trovi qui: Univ. del Salento | ||
| ||
The natural axiom system of probability theory [[electronic resource] ] : mathematical model of the random universe / / Daguo Xiong ; translated from Chinese by Wu Jian
| The natural axiom system of probability theory [[electronic resource] ] : mathematical model of the random universe / / Daguo Xiong ; translated from Chinese by Wu Jian |
| Autore | Xiong Daguo |
| Pubbl/distr/stampa | River Edge, N.J., : World Scientific, 2003 |
| Descrizione fisica | 1 online resource (xiv, 184 p.) |
| Disciplina | 519.2 |
| Soggetto topico |
Probabilities
Axioms Random variables |
| Soggetto genere / forma | Electronic books. |
| ISBN |
1-281-93556-5
9786611935566 981-279-513-8 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Preliminary -- 1. Real background of probability theory. 1.1. Research object. 1.2. Research task. 1.3. Probability -- 2. Natural axiom system of probability theory. 2.1. Element of probability theory and six groups of axioms. 2.2. The first group of axioms: the group of axioms of event space. 2.3. The second group of axioms: the group of axioms of causal space. 2.4. The third group of axioms: the group of axioms of random test. 2.5. Several kinds of typical random tests. 2.6. Joint random tests. 2.7. The forth group of axioms: the group of axioms of probability measure. 2.8. Point functions on random test. 2.9. The fifth group of axioms: the group of axioms of conditional probability measure. 2.10. Point functions on random test (continued). 2.11. The sixth group of axioms: the group of axioms of probability modelling -- 3. Introduction of random variables. 3.1. Intuitive background of random variables. 3.2. Basic conceptions of random variable. 3.3. Basic conceptions of random vector. 3.4. Basic conceptions of broad stochastic process. |
| Record Nr. | UNINA-9910454305803321 |
Xiong Daguo
|
||
| River Edge, N.J., : World Scientific, 2003 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
The natural axiom system of probability theory [[electronic resource] ] : mathematical model of the random universe / / Daguo Xiong ; translated from Chinese by Wu Jian
| The natural axiom system of probability theory [[electronic resource] ] : mathematical model of the random universe / / Daguo Xiong ; translated from Chinese by Wu Jian |
| Autore | Xiong Daguo |
| Pubbl/distr/stampa | River Edge, N.J., : World Scientific, 2003 |
| Descrizione fisica | 1 online resource (xiv, 184 p.) |
| Disciplina | 519.2 |
| Soggetto topico |
Probabilities
Axioms Random variables |
| ISBN |
1-281-93556-5
9786611935566 981-279-513-8 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Preliminary -- 1. Real background of probability theory. 1.1. Research object. 1.2. Research task. 1.3. Probability -- 2. Natural axiom system of probability theory. 2.1. Element of probability theory and six groups of axioms. 2.2. The first group of axioms: the group of axioms of event space. 2.3. The second group of axioms: the group of axioms of causal space. 2.4. The third group of axioms: the group of axioms of random test. 2.5. Several kinds of typical random tests. 2.6. Joint random tests. 2.7. The forth group of axioms: the group of axioms of probability measure. 2.8. Point functions on random test. 2.9. The fifth group of axioms: the group of axioms of conditional probability measure. 2.10. Point functions on random test (continued). 2.11. The sixth group of axioms: the group of axioms of probability modelling -- 3. Introduction of random variables. 3.1. Intuitive background of random variables. 3.2. Basic conceptions of random variable. 3.3. Basic conceptions of random vector. 3.4. Basic conceptions of broad stochastic process. |
| Record Nr. | UNINA-9910782118303321 |
Xiong Daguo
|
||
| River Edge, N.J., : World Scientific, 2003 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Notes on forcing axioms / / Stevo Todorcevic, University of Toronto, Canada ; edited by Chitat Chong, National University of Singapore, Singapore [and four others]
| Notes on forcing axioms / / Stevo Todorcevic, University of Toronto, Canada ; edited by Chitat Chong, National University of Singapore, Singapore [and four others] |
| Autore | Todorcevic Stevo |
| Pubbl/distr/stampa | New Jersey : , : World Scientific, , [2014] |
| Descrizione fisica | 1 online resource (234 p.) |
| Disciplina | 511.3 |
| Altri autori (Persone) | ChongC.-T <1949-> (Chi-Tat) |
| Collana | Lecture notes series (Institute for Mathematical Sciences, National University of Singapore) |
| Soggetto topico |
Forcing (Model theory)
Axioms Baire classes |
| Soggetto genere / forma | Electronic books. |
| ISBN | 981-4571-58-X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Contents; Foreword by Series Editors; Foreword by Volume Editors; Preface; 1 Baire Category Theorem and the Baire Category Numbers; 1.1 The Baire category method - a classical example; 1.2 Baire category numbers; 1.3 P-clubs; 1.4 Baire category numbers of posets; 1.5 Proper and semi-proper posets; 2 Coding Sets by the Real Numbers; 2.1 Almost-disjoint coding; 2.2 Coding families of unordered pairs of ordinals; 2.3 Coding sets of ordered pairs; 2.4 Strong coding; 2.5 Solovay's lemma and its corollaries; 3 Consequences in Descriptive Set Theory; 3.1 Borel isomorphisms between Polish spaces
3.2 Analytic and co-analytic sets 3.3 Analytic and co-analytic sets under p > ω1; 4 Consequences in Measure Theory; 4.1 Measure spaces; 4.2 More on measure spaces; 5 Variations on the Souslin Hypothesis; 5.1 The countable chain condition; 5.2 The Souslin Hypothesis; 5.3 A selective ultrafilter from m > ω1; 5.4 The countable chain condition versus the separability; 6 The S-spaces and the L-spaces; 6.1 Hereditarily separable and hereditarily Lindelof spaces; 6.2 Countable tightness and the S- and L-space problems; 7 The Side-condition Method; 7.1 Elementary submodels as side conditions 7.2 Open graph axiom 8 Ideal Dichotomies; 8.1 Small ideal dichotomy; 8.2 Sparse set-mapping principle; 8.3 P-ideal dichotomy; 9 Coherent and Lipschitz Trees; 9.1 The Lipschitz condition; 9.2 Filters and trees; 9.3 Model rejecting a finite set of nodes; 9.4 Coloring axiom for coherent trees; 10 Applications to the S-space Problem and the von Neumann Problem; 10.1 The S-space problem and its relatives; 10.2 The P-ideal dichotomy and a problem of von Neumann; 11 Biorthogonal Systems; 11.1 The quotient problem; 11.2 A topological property of the dual ball; 11.3 A problem of Rolewicz 16 Cardinal Arithmetic and mm 16.1 mm and the continuum; 16.2 mm and cardinal arithmetic above the continuum; 17 Reflection Principles; 17.1 Strong reflection of stationary sets; 17.2 Weak reflection of stationary sets; 17.3 Open stationary set-mapping reflection; Appendix A Basic Notions; A.1 Set theoretic notions; A.2 Δ-systems and free sets; A.3 Topological notions; A.4 Boolean algebras; Appendix B Preserving Stationary Sets; B.1 Stationary sets; B.2 Partial orders, Boolean algebras and topological spaces; B.3 A topological translation of stationary set preserving Appendix C Historical and Other Comments |
| Record Nr. | UNINA-9910453611103321 |
Todorcevic Stevo
|
||
| New Jersey : , : World Scientific, , [2014] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Notes on forcing axioms / / Stevo Todorcevic, University of Toronto, Canada ; editors, Chitat Chong, Qi Feng, Yue Yang, National University of Singapore, Singapore, Theodore A. Slaman, W. Hugh Woodin, University of California, Berkeley, USA
| Notes on forcing axioms / / Stevo Todorcevic, University of Toronto, Canada ; editors, Chitat Chong, Qi Feng, Yue Yang, National University of Singapore, Singapore, Theodore A. Slaman, W. Hugh Woodin, University of California, Berkeley, USA |
| Autore | Todorcevic Stevo |
| Pubbl/distr/stampa | New Jersey : , : World Scientific, , [2014] |
| Descrizione fisica | 1 online resource (xiii, 219 pages) : illustrations |
| Disciplina | 511.3 |
| Collana | Lecture notes series (Institute for Mathematical Sciences, National University of Singapore) |
| Soggetto topico |
Forcing (Model theory)
Axioms Baire classes |
| ISBN | 981-4571-58-X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Contents; Foreword by Series Editors; Foreword by Volume Editors; Preface; 1 Baire Category Theorem and the Baire Category Numbers; 1.1 The Baire category method - a classical example; 1.2 Baire category numbers; 1.3 P-clubs; 1.4 Baire category numbers of posets; 1.5 Proper and semi-proper posets; 2 Coding Sets by the Real Numbers; 2.1 Almost-disjoint coding; 2.2 Coding families of unordered pairs of ordinals; 2.3 Coding sets of ordered pairs; 2.4 Strong coding; 2.5 Solovay's lemma and its corollaries; 3 Consequences in Descriptive Set Theory; 3.1 Borel isomorphisms between Polish spaces
3.2 Analytic and co-analytic sets 3.3 Analytic and co-analytic sets under p > ω1; 4 Consequences in Measure Theory; 4.1 Measure spaces; 4.2 More on measure spaces; 5 Variations on the Souslin Hypothesis; 5.1 The countable chain condition; 5.2 The Souslin Hypothesis; 5.3 A selective ultrafilter from m > ω1; 5.4 The countable chain condition versus the separability; 6 The S-spaces and the L-spaces; 6.1 Hereditarily separable and hereditarily Lindelof spaces; 6.2 Countable tightness and the S- and L-space problems; 7 The Side-condition Method; 7.1 Elementary submodels as side conditions 7.2 Open graph axiom 8 Ideal Dichotomies; 8.1 Small ideal dichotomy; 8.2 Sparse set-mapping principle; 8.3 P-ideal dichotomy; 9 Coherent and Lipschitz Trees; 9.1 The Lipschitz condition; 9.2 Filters and trees; 9.3 Model rejecting a finite set of nodes; 9.4 Coloring axiom for coherent trees; 10 Applications to the S-space Problem and the von Neumann Problem; 10.1 The S-space problem and its relatives; 10.2 The P-ideal dichotomy and a problem of von Neumann; 11 Biorthogonal Systems; 11.1 The quotient problem; 11.2 A topological property of the dual ball; 11.3 A problem of Rolewicz 16 Cardinal Arithmetic and mm 16.1 mm and the continuum; 16.2 mm and cardinal arithmetic above the continuum; 17 Reflection Principles; 17.1 Strong reflection of stationary sets; 17.2 Weak reflection of stationary sets; 17.3 Open stationary set-mapping reflection; Appendix A Basic Notions; A.1 Set theoretic notions; A.2 Δ-systems and free sets; A.3 Topological notions; A.4 Boolean algebras; Appendix B Preserving Stationary Sets; B.1 Stationary sets; B.2 Partial orders, Boolean algebras and topological spaces; B.3 A topological translation of stationary set preserving Appendix C Historical and Other Comments |
| Record Nr. | UNINA-9910790973803321 |
Todorcevic Stevo
|
||
| New Jersey : , : World Scientific, , [2014] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||