Pubbl/distr/stampa |
Hoboken, New Jersey ; ; Beverly, Massachusetts : , : Wiley : , : Scrivener Publishing, , [2023]
|
Descrizione fisica |
1 online resource (255 pages)
|
Disciplina |
629.254
|
Soggetto topico |
Automobiles - Electric equipment
Automobiles - Electric generators
Automobiles - Electronic equipment
|
ISBN |
1-119-80107-9
1-119-80106-0
|
Formato |
Materiale a stampa |
Livello bibliografico |
Monografia |
Lingua di pubblicazione |
eng
|
Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- Chapter 1 General Introduction and Classification of Electrical Powertrains -- 1.1 Introduction -- 1.2 Worldwide Background for Change -- 1.3 Influence of Electric Vehicles on Climate Change -- 1.4 Mobility Class Based on Experience in the Netherlands (Based on EU Model) -- 1.5 Type-Approval Procedure -- 1.6 Torque-Speed Characteristic of the Powertrain for Mobility Vehicles -- 1.7 Methods of Field Weakening Without a Clear Definition -- 1.8 Consideration and Literature Concerning "Electronic" Field Weakening: What Does it Mean? -- 1.9 Summary of Electronic Field Weakening Definitions -- 1.10 Critical Study of Field Weakening Definitions -- 1.11 Motor Limits -- 1.12 Concluding Remarks -- References -- Chapter 2 Comparative Analyses of the Response of Core Temperature of a Lithium Ion Battery under Various Drive Cycles -- 2.1 Introduction -- 2.2 Thermal Modeling -- 2.3 Methodology -- 2.4 Simulation Results -- 2.5 Conclusions -- References -- Chapter 3 Classification and Assessment of Energy Storage Systems for Electrified Vehicle Applications: Modelling, Challenges, and Recent Developments -- 3.1 Introduction -- 3.2 Backgrounds -- 3.2.1 EV Classifications -- 3.2.2 EV Charging/Discharging Strategies -- 3.2.2.1 Uncontrolled Charge and Discharge Strategies -- 3.2.2.2 Controlled Charge and Discharge Strategies -- 3.2.2.3 Wireless Charging of EV -- 3.2.3 Classification of ESSs in EVs -- 3.3 Modeling of ESSs Applied in EVs -- 3.3.1 Mechanical Energy Storages -- 3.3.1.1 Flywheel Energy Storages -- 3.3.2 Electrochemical Energy Storages -- 3.3.2.1 Flow Batteries -- 3.3.2.2 Secondary Batteries -- 3.3.3 Chemical Storage Systems -- 3.3.4 Electrical Energy Storage Systems -- 3.3.4.1 Ultracapacitors -- 3.3.4.2 Superconducting Magnetic -- 3.3.5 Thermal Storage Systems -- 3.3.6 Hybrid Storage Systems.
3.3.7 Modeling Electrical Behavior -- 3.3.8 Modeling Thermal Behavior -- 3.3.9 SOC Calculation -- 3.4 Characteristics of ESSs -- 3.5 Application of ESSs in EVs -- 3.6 Methodologies of Calculating the SOC -- 3.6.1 Current-Based SOC Calculation Approach -- 3.6.2 Voltage-Based SOC Calculation Approach -- 3.6.3 Extended Kalman-Filter-Based SOC Calculation Approach -- 3.6.4 SOC Calculation Approach Based on the Transient Response Characteristics -- 3.6.5 Fuzzy Logic -- 3.6.6 Neural Networks -- 3.7 Estimation of Battery Power Availability -- 3.7.1 PNGV HPPC Power Availability Estimation Approach -- 3.7.2 Revised PNGV HPPC Power Availability Estimation Approach -- 3.7.3 Power Availability Estimation Based on the Electrical Circuit Equivalent Model -- 3.8 Life Prediction of Battery -- 3.8.1 Aspects of Battery Life -- 3.8.1.1 Temperature -- 3.8.1.2 Depth of Discharge -- 3.8.1.3 Charging/Discharging Rate -- 3.8.2 Battery Life Prediction Approaches -- 3.8.2.1 Physic-Chemical Aging Method -- 3.8.2.2 Event-Oriented Aging Method -- 3.8.2.3 Lifetime Prediction Method Based on SOL -- 3.8.3 RUL Prediction Methods -- 3.8.3.1 Machine Learning Methods -- 3.8.3.2 Adaptive Filter Methods -- 3.8.3.3 Stochastic Process Methods -- 3.9 Recent Trends, Future Extensions, and Challenges of ESSs in EV Implementations -- 3.10 Government Policy Challenges for EVs -- 3.11 Conclusion -- References -- Chapter 4 Thermal Management of the Li-Ion Batteries to Improve the Performance of the Electric Vehicles Applications -- 4.1 Introduction -- 4.2 The Objective of the Research -- 4.3 Electric Vehicles Trend -- 4.4 Thermal Management of the Li-Ion Batteries -- 4.4.1 Internal Battery Thermal Management System -- 4.4.2 External Battery Thermal Management System -- 4.4.2.1 Active Cooling Systems -- 4.4.2.2 Passive Cooling Systems -- 4.5 Lifetime Performance of Li-Ion Batteries.
4.5.1 Why Do Batteries Age? -- 4.5.2 Characterisation Techniques of Aging -- 4.5.3 Lifetime Tests Protocols of the Li-Ion Batteries -- 4.5.4 Lifetime Results of Different Li-Ion Technologies -- 4.6 Basic Aspects of Safety and Reliability Evaluation of EVs -- 4.6.1 Concept Reliability Analysis of Battery Pack from Thermal Aspects -- 4.6.2 Reliability Assessment of the Li-Ion Battery at High and Low Temperatures -- 4.7 Conclusion -- References -- Chapter 5 Fault Detection and Isolation in Electric Vehicle Powertrain -- 5.1 Introduction -- 5.1.1 EV Powertrain Configurations -- 5.1.1.1 Battery Electric Vehicle (BEV) -- 5.1.1.2 Hybrid Electric Vehicle (HEV) -- 5.1.1.3 Fuel Cell Electric Vehicle (FCEV) -- 5.1.2 EV Powertrain Technologies -- 5.1.2.1 Energy Storage System -- 5.1.2.2 Electric Motor -- 5.1.2.3 Power Electronics -- 5.2 Battery Fault Diagnosis -- 5.2.1 Battery Management System (BMS) -- 5.2.2 Model-Based FDI Approach -- 5.2.2.1 Battery Modelling -- 5.2.3 Signal Processing-Based FDI Approach -- 5.2.3.1 State of Charge (SOC) Estimation -- 5.2.3.2 State of Health Estimation -- 5.3 Electric Motor Fault Diagnosis -- 5.3.1 Electric Motor Faults -- 5.3.1.1 Mechanical Fault -- 5.3.1.2 Electrical Fault -- 5.3.2 Signal Processing-Based FDI Approach -- 5.3.2.1 Motor Current Signature Analysis (MSCA) -- 5.4 Power Electronics Fault Diagnosis -- 5.4.1 Signal Processing-Based FDI Approach -- 5.4.1.1 Open Switch Fault -- 5.4.1.2 Short Switch Fault -- 5.5 Conclusions -- References -- Index -- EULA.
|
Record Nr. | UNINA-9910829908503321 |