Automotive aerodynamics / / Joseph Katz |
Autore | Katz Joseph <1947-> |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Chichester, UK ; ; Hoboken, NJ : , : John Wiley & Sons, , 2016 |
Descrizione fisica | 1 online resource (611 pages) : illustrations |
Disciplina | 629.2/31 |
Collana | Automotive series |
Soggetto topico |
Automobiles - Aerodynamics
Fluid dynamics |
Soggetto genere / forma | Electronic books. |
ISBN |
1-5231-1006-6
1-119-18574-2 1-119-18573-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Title Page -- Copyright -- Contents -- Series Preface -- Preface -- Chapter 1 Introduction and Basic Principles -- 1.1 Introduction -- 1.2 Aerodynamics as a Subset of Fluid Dynamics -- 1.3 Dimensions and Units -- 1.4 Automobile/Vehicle Aerodynamics -- 1.5 General Features of Fluid Flow -- 1.5.1 Continuum -- 1.5.2 Laminar and Turbulent Flow -- 1.5.3 Attached and Separated Flow -- 1.6 Properties of Fluids -- 1.6.1 Density -- 1.6.2 Pressure -- 1.6.3 Temperature -- 1.6.4 Viscosity -- 1.6.5 Specific Heat -- 1.6.6 Heat Transfer Coefficient, k -- 1.6.7 Modulus of Elasticity, E -- 1.6.8 Vapor Pressure -- 1.7 Advanced Topics: Fluid Properties and the Kinetic Theory of Gases -- 1.8 Summary and Concluding Remarks -- Reference -- Problems -- Chapter 2 The Fluid Dynamic Equations -- 2.1 Introduction -- 2.2 Description of Fluid Motion -- 2.3 Choice of Coordinate System -- 2.4 Pathlines, Streak Lines, and Streamlines -- 2.5 Forces in a Fluid -- 2.6 Integral Form of the Fluid Dynamic Equations -- 2.7 Differential Form of the Fluid Dynamic Equations -- 2.8 The Material Derivative -- 2.9 Alternate Derivation of the Fluid Dynamic Equations -- 2.10 Example for an Analytic Solution: Two-Dimensional, Inviscid Incompressible, Vortex Flow -- 2.10.1 Velocity Induced by a Straight Vortex Segment -- 2.10.2 Angular Velocity, Vorticity, and Circulation -- 2.11 Summary and Concluding Remarks -- References -- Problems -- Chapter 3 One-Dimensional (Frictionless) Flow -- 3.1 Introduction -- 3.2 The Bernoulli Equation -- 3.3 Summary of One-Dimensional Tools -- 3.4 Applications of the One-Dimensional Friction-Free Flow Model -- 3.4.1 Free Jets -- 3.4.2 Examples for Using the Bernoulli Equation -- 3.4.3 Simple Models for Time-Dependent Changes in a Control Volume -- 3.5 Flow Measurements (Based on Bernoulli's Equation) -- 3.5.1 The Pitot Tube -- 3.5.2 The Venturi Tube.
3.5.3 The Orifice -- 3.5.4 Nozzles and Injectors -- 3.6 Summary and Conclusions -- 3.6.1 Concluding Remarks -- Problems -- Chapter 4 Dimensional Analysis, High Reynolds Number Flows, and Definition of Aerodynamics -- 4.1 Introduction -- 4.2 Dimensional Analysis of the Fluid Dynamic Equations -- 4.3 The Process of Simplifying the Governing Equations -- 4.4 Similarity of Flows -- 4.5 High Reynolds Number Flow and Aerodynamics -- 4.6 High Reynolds Number Flows and Turbulence -- 4.7 Summary and Conclusions -- References -- Problems -- Chapter 5 The Laminar Boundary Layer -- 5.1 Introduction -- 5.2 Two-Dimensional Laminar Boundary Layer Model - The Integral Approach -- 5.3 Solutions using the von Kármán Integral Equation -- 5.4 Summary and Practical Conclusions -- 5.5 Effect of Pressure Gradient -- 5.6 Advanced Topics: The Two-Dimensional Laminar Boundary Layer Equations -- 5.6.1 Summary of the Exact Blasius Solution for the Laminar Boundary Layer -- 5.7 Concluding Remarks -- References -- Problems -- Chapter 6 High Reynolds Number Incompressible Flow Over Bodies: Automobile Aerodynamics -- 6.1 Introduction -- 6.2 The Inviscid Irrotational Flow (and Some Math) -- 6.3 Advanced Topics: A More Detailed Evaluation of the Bernoulli Equation -- 6.4 The Potential Flow Model -- 6.4.1 Methods for Solving the Potential Flow Equations -- 6.4.2 The Principle of Superposition -- 6.5 Two-Dimensional Elementary Solutions -- 6.5.1 Polynomial Solutions -- 6.5.2 Two-Dimensional Source (or Sink) -- 6.5.3 Two-Dimensional Doublet -- 6.5.4 Two-Dimensional Vortex -- 6.5.5 Advanced Topics: Solutions Based on Green's Identity -- 6.6 Superposition of a Doublet and a Free-Stream: Flow Over a Cylinder -- 6.7 Fluid Mechanic Drag -- 6.7.1 The Drag of Simple Shapes -- 6.7.2 The Drag of More Complex Shapes -- 6.8 Periodic Vortex Shedding -- 6.9 The Case for Lift. 6.9.1 A Cylinder with Circulation in a Free Stream -- 6.9.2 Two-Dimensional Flat Plate at a Small Angle of Attack (in a Free Stream) -- 6.9.3 Note About the Center of Pressure -- 6.10 Lifting Surfaces: Wings and Airfoils -- 6.10.1 The Two-Dimensional Airfoil -- 6.10.2 An Airfoil´s Lift -- 6.10.3 An Airfoil's Drag -- 6.10.4 An Airfoil Stall -- 6.10.5 The Effect of Reynolds Number -- 6.10.6 Three-Dimensional Wings -- 6.11 Summary of High Reynolds Number Aerodynamics -- 6.12 Concluding Remarks -- References -- Problems -- Chapter 7 Automotive Aerodynamics: Examples -- 7.1 Introduction -- 7.2 Generic Trends (For Most Vehicles) -- 7.2.1 Ground Effect -- 7.2.2 Generic Automobile Shapes and Vortex Flows -- 7.3 Downforce and Vehicle Performance -- 7.4 How to Generate Downforce -- 7.5 Tools used for Aerodynamic Evaluations -- 7.5.1 Example for Aero Data Collection: Wind Tunnels -- 7.5.2 Wind Tunnel Wall/Floor Interference -- 7.5.3 Simulation of Moving Ground -- 7.5.4 Expected Results of CFD, Road, or Wind Tunnel Tests (and Measurement Techniques) -- 7.6 Variable (Adaptive) Aerodynamic Devices -- 7.7 Vehicle Examples -- 7.7.1 Passenger Cars -- 7.7.2 Pickup Trucks -- 7.7.3 Motorcycles -- 7.7.4 Competition Cars (Enclosed Wheel) -- 7.7.5 Open-Wheel Racecars -- 7.8 Concluding Remarks -- References -- Problems -- Chapter 8 Introduction to Computational Fluid Mechanics (CFD) -- 8.1 Introduction -- 8.2 The Finite-Difference Formulation -- 8.3 Discretization and Grid Generation -- 8.4 The Finite-Difference Equation -- 8.5 The Solution: Convergence and Stability -- 8.6 The Finite-Volume Method -- 8.7 Example: Viscous Flow Over a Cylinder -- 8.8 Potential-Flow Solvers: Panel Methods -- 8.9 Summary -- References -- Problems -- Chapter 9 Viscous Incompressible Flow: "Exact Solutions" -- 9.1 Introduction -- 9.2 The Viscous Incompressible Flow Equations (Steady State). 9.3 Laminar Flow between Two Infinite Parallel Plates: The Couette Flow -- 9.3.1 Flow with a Moving Upper Surface -- 9.3.2 Flow between Two Infinite Parallel Plates: The Results -- 9.3.3 Flow between Two Infinite Parallel Plates - The Poiseuille Flow -- 9.3.4 The Hydrodynamic Bearing (Reynolds Lubrication Theory) -- 9.4 Flow in Circular Pipes (The Hagen-Poiseuille Flow) -- 9.5 Fully Developed Laminar Flow between Two Concentric Circular Pipes -- 9.6 Laminar Flow between Two Concentric, Rotating Circular Cylinders -- 9.7 Flow in Pipes: Darcy's Formula -- 9.8 The Reynolds Dye Experiment, Laminar/Turbulent Flow in Pipes -- 9.9 Additional Losses in Pipe Flow -- 9.10 Summary of 1D Pipe Flow -- 9.10.1 Simple Pump Model -- 9.10.2 Flow in Pipes with Noncircular Cross Sections -- 9.10.3 Examples for One-Dimensional Pipe Flow -- 9.10.4 Network of Pipes -- 9.11 Free Vortex in a Pool -- 9.12 Summary and Concluding Remarks -- Reference -- Problems -- Chapter 10 Fluid Machinery -- 10.1 Introduction -- 10.2 Work of a Continuous-Flow Machine -- 10.3 The Axial Compressor (The Mean Radius Model) -- 10.3.1 Velocity Triangles -- 10.3.2 Power and Compression Ratio Calculations -- 10.3.3 Radial Variations -- 10.3.4 Pressure Rise Limitations -- 10.3.5 Performance Envelope of Compressors and Pumps -- 10.3.6 Degree of Reaction -- 10.4 The Centrifugal Compressor (or Pump) -- 10.4.1 Torque, Power, and Pressure Rise -- 10.4.2 Impeller Geometry -- 10.4.3 The Diffuser -- 10.4.4 Concluding Remarks: Axial versus Centrifugal Design -- 10.5 Axial Turbines -- 10.5.1 Torque, Power, and Pressure Drop -- 10.5.2 Axial Turbine Geometry and Velocity Triangles -- 10.5.3 Turbine Degree of Reaction -- 10.5.4 Turbochargers (for Internal Combustion Engines) -- 10.5.5 Remarks on Exposed Tip Rotors (Wind Turbines and Propellers) -- 10.6 Concluding Remarks -- Reference -- Problems. Chapter 11 Elements of Heat Transfer -- 11.1 Introduction -- 11.2 Elementary Mechanisms of Heat Transfer -- 11.2.1 Conductive Heat Transfer -- 11.2.2 Convective Heat Transfer -- 11.2.3 Radiation Heat Transfer -- 11.3 Heat Conduction -- 11.3.1 Steady One-Dimensional Heat Conduction -- 11.3.2 Combined Heat Transfer -- 11.3.3 Heat Conduction in Cylinders -- 11.3.4 Cooling Fins -- 11.4 Heat Transfer by Convection -- 11.4.1 The Flat Plate Model -- 11.4.2 Formulas for Forced External Heat Convection -- 11.4.3 Formulas for Forced Internal Heat Convection -- 11.4.4 Formulas for Free (Natural) Heat Convection -- 11.5 Heat Exchangers -- 11.6 Concluding Remarks -- References -- Problems -- Chapter 12 Automobile Aero-Acoustics -- 12.1 Introduction -- 12.2 Sound as a Pressure Wave -- 12.3 Sound Loudness Scale -- 12.4 The Human Ear Perception -- 12.5 The One-Dimensional Linear Wave Equation -- 12.6 Sound Radiation, Transmission, Reflection, Absorption -- 12.6.1 Sound Wave Expansion (Radiation) -- 12.6.2 Reflections, Transmission, Absorption -- 12.6.3 Standing Wave (Resonance), Interference, and Noise Cancellations -- 12.7 Vortex Sound -- 12.8 Example: Sound from a Shear Layer -- 12.9 Buffeting -- 12.10 Experimental Examples for Sound Generation on a Typical Automobile -- 12.11 Sound and Flow Control -- 12.12 Concluding Remarks -- References -- Problems -- Appendix A: Conversion Factors -- Appendix B -- Index -- EULA. |
Record Nr. | UNINA-9910465128903321 |
Katz Joseph <1947-> | ||
Chichester, UK ; ; Hoboken, NJ : , : John Wiley & Sons, , 2016 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Automotive aerodynamics / / Joseph Katz |
Autore | Katz Joseph <1947-> |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Chichester, UK ; ; Hoboken, NJ : , : John Wiley & Sons, , 2016 |
Descrizione fisica | 1 online resource (611 pages) : illustrations |
Disciplina | 629.2/31 |
Collana | Automotive series |
Soggetto topico |
Automobiles - Aerodynamics
Fluid dynamics |
ISBN |
1-5231-1006-6
1-119-18574-2 1-119-18573-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Title Page -- Copyright -- Contents -- Series Preface -- Preface -- Chapter 1 Introduction and Basic Principles -- 1.1 Introduction -- 1.2 Aerodynamics as a Subset of Fluid Dynamics -- 1.3 Dimensions and Units -- 1.4 Automobile/Vehicle Aerodynamics -- 1.5 General Features of Fluid Flow -- 1.5.1 Continuum -- 1.5.2 Laminar and Turbulent Flow -- 1.5.3 Attached and Separated Flow -- 1.6 Properties of Fluids -- 1.6.1 Density -- 1.6.2 Pressure -- 1.6.3 Temperature -- 1.6.4 Viscosity -- 1.6.5 Specific Heat -- 1.6.6 Heat Transfer Coefficient, k -- 1.6.7 Modulus of Elasticity, E -- 1.6.8 Vapor Pressure -- 1.7 Advanced Topics: Fluid Properties and the Kinetic Theory of Gases -- 1.8 Summary and Concluding Remarks -- Reference -- Problems -- Chapter 2 The Fluid Dynamic Equations -- 2.1 Introduction -- 2.2 Description of Fluid Motion -- 2.3 Choice of Coordinate System -- 2.4 Pathlines, Streak Lines, and Streamlines -- 2.5 Forces in a Fluid -- 2.6 Integral Form of the Fluid Dynamic Equations -- 2.7 Differential Form of the Fluid Dynamic Equations -- 2.8 The Material Derivative -- 2.9 Alternate Derivation of the Fluid Dynamic Equations -- 2.10 Example for an Analytic Solution: Two-Dimensional, Inviscid Incompressible, Vortex Flow -- 2.10.1 Velocity Induced by a Straight Vortex Segment -- 2.10.2 Angular Velocity, Vorticity, and Circulation -- 2.11 Summary and Concluding Remarks -- References -- Problems -- Chapter 3 One-Dimensional (Frictionless) Flow -- 3.1 Introduction -- 3.2 The Bernoulli Equation -- 3.3 Summary of One-Dimensional Tools -- 3.4 Applications of the One-Dimensional Friction-Free Flow Model -- 3.4.1 Free Jets -- 3.4.2 Examples for Using the Bernoulli Equation -- 3.4.3 Simple Models for Time-Dependent Changes in a Control Volume -- 3.5 Flow Measurements (Based on Bernoulli's Equation) -- 3.5.1 The Pitot Tube -- 3.5.2 The Venturi Tube.
3.5.3 The Orifice -- 3.5.4 Nozzles and Injectors -- 3.6 Summary and Conclusions -- 3.6.1 Concluding Remarks -- Problems -- Chapter 4 Dimensional Analysis, High Reynolds Number Flows, and Definition of Aerodynamics -- 4.1 Introduction -- 4.2 Dimensional Analysis of the Fluid Dynamic Equations -- 4.3 The Process of Simplifying the Governing Equations -- 4.4 Similarity of Flows -- 4.5 High Reynolds Number Flow and Aerodynamics -- 4.6 High Reynolds Number Flows and Turbulence -- 4.7 Summary and Conclusions -- References -- Problems -- Chapter 5 The Laminar Boundary Layer -- 5.1 Introduction -- 5.2 Two-Dimensional Laminar Boundary Layer Model - The Integral Approach -- 5.3 Solutions using the von Kármán Integral Equation -- 5.4 Summary and Practical Conclusions -- 5.5 Effect of Pressure Gradient -- 5.6 Advanced Topics: The Two-Dimensional Laminar Boundary Layer Equations -- 5.6.1 Summary of the Exact Blasius Solution for the Laminar Boundary Layer -- 5.7 Concluding Remarks -- References -- Problems -- Chapter 6 High Reynolds Number Incompressible Flow Over Bodies: Automobile Aerodynamics -- 6.1 Introduction -- 6.2 The Inviscid Irrotational Flow (and Some Math) -- 6.3 Advanced Topics: A More Detailed Evaluation of the Bernoulli Equation -- 6.4 The Potential Flow Model -- 6.4.1 Methods for Solving the Potential Flow Equations -- 6.4.2 The Principle of Superposition -- 6.5 Two-Dimensional Elementary Solutions -- 6.5.1 Polynomial Solutions -- 6.5.2 Two-Dimensional Source (or Sink) -- 6.5.3 Two-Dimensional Doublet -- 6.5.4 Two-Dimensional Vortex -- 6.5.5 Advanced Topics: Solutions Based on Green's Identity -- 6.6 Superposition of a Doublet and a Free-Stream: Flow Over a Cylinder -- 6.7 Fluid Mechanic Drag -- 6.7.1 The Drag of Simple Shapes -- 6.7.2 The Drag of More Complex Shapes -- 6.8 Periodic Vortex Shedding -- 6.9 The Case for Lift. 6.9.1 A Cylinder with Circulation in a Free Stream -- 6.9.2 Two-Dimensional Flat Plate at a Small Angle of Attack (in a Free Stream) -- 6.9.3 Note About the Center of Pressure -- 6.10 Lifting Surfaces: Wings and Airfoils -- 6.10.1 The Two-Dimensional Airfoil -- 6.10.2 An Airfoil´s Lift -- 6.10.3 An Airfoil's Drag -- 6.10.4 An Airfoil Stall -- 6.10.5 The Effect of Reynolds Number -- 6.10.6 Three-Dimensional Wings -- 6.11 Summary of High Reynolds Number Aerodynamics -- 6.12 Concluding Remarks -- References -- Problems -- Chapter 7 Automotive Aerodynamics: Examples -- 7.1 Introduction -- 7.2 Generic Trends (For Most Vehicles) -- 7.2.1 Ground Effect -- 7.2.2 Generic Automobile Shapes and Vortex Flows -- 7.3 Downforce and Vehicle Performance -- 7.4 How to Generate Downforce -- 7.5 Tools used for Aerodynamic Evaluations -- 7.5.1 Example for Aero Data Collection: Wind Tunnels -- 7.5.2 Wind Tunnel Wall/Floor Interference -- 7.5.3 Simulation of Moving Ground -- 7.5.4 Expected Results of CFD, Road, or Wind Tunnel Tests (and Measurement Techniques) -- 7.6 Variable (Adaptive) Aerodynamic Devices -- 7.7 Vehicle Examples -- 7.7.1 Passenger Cars -- 7.7.2 Pickup Trucks -- 7.7.3 Motorcycles -- 7.7.4 Competition Cars (Enclosed Wheel) -- 7.7.5 Open-Wheel Racecars -- 7.8 Concluding Remarks -- References -- Problems -- Chapter 8 Introduction to Computational Fluid Mechanics (CFD) -- 8.1 Introduction -- 8.2 The Finite-Difference Formulation -- 8.3 Discretization and Grid Generation -- 8.4 The Finite-Difference Equation -- 8.5 The Solution: Convergence and Stability -- 8.6 The Finite-Volume Method -- 8.7 Example: Viscous Flow Over a Cylinder -- 8.8 Potential-Flow Solvers: Panel Methods -- 8.9 Summary -- References -- Problems -- Chapter 9 Viscous Incompressible Flow: "Exact Solutions" -- 9.1 Introduction -- 9.2 The Viscous Incompressible Flow Equations (Steady State). 9.3 Laminar Flow between Two Infinite Parallel Plates: The Couette Flow -- 9.3.1 Flow with a Moving Upper Surface -- 9.3.2 Flow between Two Infinite Parallel Plates: The Results -- 9.3.3 Flow between Two Infinite Parallel Plates - The Poiseuille Flow -- 9.3.4 The Hydrodynamic Bearing (Reynolds Lubrication Theory) -- 9.4 Flow in Circular Pipes (The Hagen-Poiseuille Flow) -- 9.5 Fully Developed Laminar Flow between Two Concentric Circular Pipes -- 9.6 Laminar Flow between Two Concentric, Rotating Circular Cylinders -- 9.7 Flow in Pipes: Darcy's Formula -- 9.8 The Reynolds Dye Experiment, Laminar/Turbulent Flow in Pipes -- 9.9 Additional Losses in Pipe Flow -- 9.10 Summary of 1D Pipe Flow -- 9.10.1 Simple Pump Model -- 9.10.2 Flow in Pipes with Noncircular Cross Sections -- 9.10.3 Examples for One-Dimensional Pipe Flow -- 9.10.4 Network of Pipes -- 9.11 Free Vortex in a Pool -- 9.12 Summary and Concluding Remarks -- Reference -- Problems -- Chapter 10 Fluid Machinery -- 10.1 Introduction -- 10.2 Work of a Continuous-Flow Machine -- 10.3 The Axial Compressor (The Mean Radius Model) -- 10.3.1 Velocity Triangles -- 10.3.2 Power and Compression Ratio Calculations -- 10.3.3 Radial Variations -- 10.3.4 Pressure Rise Limitations -- 10.3.5 Performance Envelope of Compressors and Pumps -- 10.3.6 Degree of Reaction -- 10.4 The Centrifugal Compressor (or Pump) -- 10.4.1 Torque, Power, and Pressure Rise -- 10.4.2 Impeller Geometry -- 10.4.3 The Diffuser -- 10.4.4 Concluding Remarks: Axial versus Centrifugal Design -- 10.5 Axial Turbines -- 10.5.1 Torque, Power, and Pressure Drop -- 10.5.2 Axial Turbine Geometry and Velocity Triangles -- 10.5.3 Turbine Degree of Reaction -- 10.5.4 Turbochargers (for Internal Combustion Engines) -- 10.5.5 Remarks on Exposed Tip Rotors (Wind Turbines and Propellers) -- 10.6 Concluding Remarks -- Reference -- Problems. Chapter 11 Elements of Heat Transfer -- 11.1 Introduction -- 11.2 Elementary Mechanisms of Heat Transfer -- 11.2.1 Conductive Heat Transfer -- 11.2.2 Convective Heat Transfer -- 11.2.3 Radiation Heat Transfer -- 11.3 Heat Conduction -- 11.3.1 Steady One-Dimensional Heat Conduction -- 11.3.2 Combined Heat Transfer -- 11.3.3 Heat Conduction in Cylinders -- 11.3.4 Cooling Fins -- 11.4 Heat Transfer by Convection -- 11.4.1 The Flat Plate Model -- 11.4.2 Formulas for Forced External Heat Convection -- 11.4.3 Formulas for Forced Internal Heat Convection -- 11.4.4 Formulas for Free (Natural) Heat Convection -- 11.5 Heat Exchangers -- 11.6 Concluding Remarks -- References -- Problems -- Chapter 12 Automobile Aero-Acoustics -- 12.1 Introduction -- 12.2 Sound as a Pressure Wave -- 12.3 Sound Loudness Scale -- 12.4 The Human Ear Perception -- 12.5 The One-Dimensional Linear Wave Equation -- 12.6 Sound Radiation, Transmission, Reflection, Absorption -- 12.6.1 Sound Wave Expansion (Radiation) -- 12.6.2 Reflections, Transmission, Absorption -- 12.6.3 Standing Wave (Resonance), Interference, and Noise Cancellations -- 12.7 Vortex Sound -- 12.8 Example: Sound from a Shear Layer -- 12.9 Buffeting -- 12.10 Experimental Examples for Sound Generation on a Typical Automobile -- 12.11 Sound and Flow Control -- 12.12 Concluding Remarks -- References -- Problems -- Appendix A: Conversion Factors -- Appendix B -- Index -- EULA. |
Record Nr. | UNINA-9910798364903321 |
Katz Joseph <1947-> | ||
Chichester, UK ; ; Hoboken, NJ : , : John Wiley & Sons, , 2016 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Automotive aerodynamics / / Joseph Katz |
Autore | Katz Joseph <1947-> |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Chichester, UK ; ; Hoboken, NJ : , : John Wiley & Sons, , 2016 |
Descrizione fisica | 1 online resource (611 pages) : illustrations |
Disciplina | 629.2/31 |
Collana | Automotive series |
Soggetto topico |
Automobiles - Aerodynamics
Fluid dynamics |
ISBN |
1-5231-1006-6
1-119-18574-2 1-119-18573-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Title Page -- Copyright -- Contents -- Series Preface -- Preface -- Chapter 1 Introduction and Basic Principles -- 1.1 Introduction -- 1.2 Aerodynamics as a Subset of Fluid Dynamics -- 1.3 Dimensions and Units -- 1.4 Automobile/Vehicle Aerodynamics -- 1.5 General Features of Fluid Flow -- 1.5.1 Continuum -- 1.5.2 Laminar and Turbulent Flow -- 1.5.3 Attached and Separated Flow -- 1.6 Properties of Fluids -- 1.6.1 Density -- 1.6.2 Pressure -- 1.6.3 Temperature -- 1.6.4 Viscosity -- 1.6.5 Specific Heat -- 1.6.6 Heat Transfer Coefficient, k -- 1.6.7 Modulus of Elasticity, E -- 1.6.8 Vapor Pressure -- 1.7 Advanced Topics: Fluid Properties and the Kinetic Theory of Gases -- 1.8 Summary and Concluding Remarks -- Reference -- Problems -- Chapter 2 The Fluid Dynamic Equations -- 2.1 Introduction -- 2.2 Description of Fluid Motion -- 2.3 Choice of Coordinate System -- 2.4 Pathlines, Streak Lines, and Streamlines -- 2.5 Forces in a Fluid -- 2.6 Integral Form of the Fluid Dynamic Equations -- 2.7 Differential Form of the Fluid Dynamic Equations -- 2.8 The Material Derivative -- 2.9 Alternate Derivation of the Fluid Dynamic Equations -- 2.10 Example for an Analytic Solution: Two-Dimensional, Inviscid Incompressible, Vortex Flow -- 2.10.1 Velocity Induced by a Straight Vortex Segment -- 2.10.2 Angular Velocity, Vorticity, and Circulation -- 2.11 Summary and Concluding Remarks -- References -- Problems -- Chapter 3 One-Dimensional (Frictionless) Flow -- 3.1 Introduction -- 3.2 The Bernoulli Equation -- 3.3 Summary of One-Dimensional Tools -- 3.4 Applications of the One-Dimensional Friction-Free Flow Model -- 3.4.1 Free Jets -- 3.4.2 Examples for Using the Bernoulli Equation -- 3.4.3 Simple Models for Time-Dependent Changes in a Control Volume -- 3.5 Flow Measurements (Based on Bernoulli's Equation) -- 3.5.1 The Pitot Tube -- 3.5.2 The Venturi Tube.
3.5.3 The Orifice -- 3.5.4 Nozzles and Injectors -- 3.6 Summary and Conclusions -- 3.6.1 Concluding Remarks -- Problems -- Chapter 4 Dimensional Analysis, High Reynolds Number Flows, and Definition of Aerodynamics -- 4.1 Introduction -- 4.2 Dimensional Analysis of the Fluid Dynamic Equations -- 4.3 The Process of Simplifying the Governing Equations -- 4.4 Similarity of Flows -- 4.5 High Reynolds Number Flow and Aerodynamics -- 4.6 High Reynolds Number Flows and Turbulence -- 4.7 Summary and Conclusions -- References -- Problems -- Chapter 5 The Laminar Boundary Layer -- 5.1 Introduction -- 5.2 Two-Dimensional Laminar Boundary Layer Model - The Integral Approach -- 5.3 Solutions using the von Kármán Integral Equation -- 5.4 Summary and Practical Conclusions -- 5.5 Effect of Pressure Gradient -- 5.6 Advanced Topics: The Two-Dimensional Laminar Boundary Layer Equations -- 5.6.1 Summary of the Exact Blasius Solution for the Laminar Boundary Layer -- 5.7 Concluding Remarks -- References -- Problems -- Chapter 6 High Reynolds Number Incompressible Flow Over Bodies: Automobile Aerodynamics -- 6.1 Introduction -- 6.2 The Inviscid Irrotational Flow (and Some Math) -- 6.3 Advanced Topics: A More Detailed Evaluation of the Bernoulli Equation -- 6.4 The Potential Flow Model -- 6.4.1 Methods for Solving the Potential Flow Equations -- 6.4.2 The Principle of Superposition -- 6.5 Two-Dimensional Elementary Solutions -- 6.5.1 Polynomial Solutions -- 6.5.2 Two-Dimensional Source (or Sink) -- 6.5.3 Two-Dimensional Doublet -- 6.5.4 Two-Dimensional Vortex -- 6.5.5 Advanced Topics: Solutions Based on Green's Identity -- 6.6 Superposition of a Doublet and a Free-Stream: Flow Over a Cylinder -- 6.7 Fluid Mechanic Drag -- 6.7.1 The Drag of Simple Shapes -- 6.7.2 The Drag of More Complex Shapes -- 6.8 Periodic Vortex Shedding -- 6.9 The Case for Lift. 6.9.1 A Cylinder with Circulation in a Free Stream -- 6.9.2 Two-Dimensional Flat Plate at a Small Angle of Attack (in a Free Stream) -- 6.9.3 Note About the Center of Pressure -- 6.10 Lifting Surfaces: Wings and Airfoils -- 6.10.1 The Two-Dimensional Airfoil -- 6.10.2 An Airfoil´s Lift -- 6.10.3 An Airfoil's Drag -- 6.10.4 An Airfoil Stall -- 6.10.5 The Effect of Reynolds Number -- 6.10.6 Three-Dimensional Wings -- 6.11 Summary of High Reynolds Number Aerodynamics -- 6.12 Concluding Remarks -- References -- Problems -- Chapter 7 Automotive Aerodynamics: Examples -- 7.1 Introduction -- 7.2 Generic Trends (For Most Vehicles) -- 7.2.1 Ground Effect -- 7.2.2 Generic Automobile Shapes and Vortex Flows -- 7.3 Downforce and Vehicle Performance -- 7.4 How to Generate Downforce -- 7.5 Tools used for Aerodynamic Evaluations -- 7.5.1 Example for Aero Data Collection: Wind Tunnels -- 7.5.2 Wind Tunnel Wall/Floor Interference -- 7.5.3 Simulation of Moving Ground -- 7.5.4 Expected Results of CFD, Road, or Wind Tunnel Tests (and Measurement Techniques) -- 7.6 Variable (Adaptive) Aerodynamic Devices -- 7.7 Vehicle Examples -- 7.7.1 Passenger Cars -- 7.7.2 Pickup Trucks -- 7.7.3 Motorcycles -- 7.7.4 Competition Cars (Enclosed Wheel) -- 7.7.5 Open-Wheel Racecars -- 7.8 Concluding Remarks -- References -- Problems -- Chapter 8 Introduction to Computational Fluid Mechanics (CFD) -- 8.1 Introduction -- 8.2 The Finite-Difference Formulation -- 8.3 Discretization and Grid Generation -- 8.4 The Finite-Difference Equation -- 8.5 The Solution: Convergence and Stability -- 8.6 The Finite-Volume Method -- 8.7 Example: Viscous Flow Over a Cylinder -- 8.8 Potential-Flow Solvers: Panel Methods -- 8.9 Summary -- References -- Problems -- Chapter 9 Viscous Incompressible Flow: "Exact Solutions" -- 9.1 Introduction -- 9.2 The Viscous Incompressible Flow Equations (Steady State). 9.3 Laminar Flow between Two Infinite Parallel Plates: The Couette Flow -- 9.3.1 Flow with a Moving Upper Surface -- 9.3.2 Flow between Two Infinite Parallel Plates: The Results -- 9.3.3 Flow between Two Infinite Parallel Plates - The Poiseuille Flow -- 9.3.4 The Hydrodynamic Bearing (Reynolds Lubrication Theory) -- 9.4 Flow in Circular Pipes (The Hagen-Poiseuille Flow) -- 9.5 Fully Developed Laminar Flow between Two Concentric Circular Pipes -- 9.6 Laminar Flow between Two Concentric, Rotating Circular Cylinders -- 9.7 Flow in Pipes: Darcy's Formula -- 9.8 The Reynolds Dye Experiment, Laminar/Turbulent Flow in Pipes -- 9.9 Additional Losses in Pipe Flow -- 9.10 Summary of 1D Pipe Flow -- 9.10.1 Simple Pump Model -- 9.10.2 Flow in Pipes with Noncircular Cross Sections -- 9.10.3 Examples for One-Dimensional Pipe Flow -- 9.10.4 Network of Pipes -- 9.11 Free Vortex in a Pool -- 9.12 Summary and Concluding Remarks -- Reference -- Problems -- Chapter 10 Fluid Machinery -- 10.1 Introduction -- 10.2 Work of a Continuous-Flow Machine -- 10.3 The Axial Compressor (The Mean Radius Model) -- 10.3.1 Velocity Triangles -- 10.3.2 Power and Compression Ratio Calculations -- 10.3.3 Radial Variations -- 10.3.4 Pressure Rise Limitations -- 10.3.5 Performance Envelope of Compressors and Pumps -- 10.3.6 Degree of Reaction -- 10.4 The Centrifugal Compressor (or Pump) -- 10.4.1 Torque, Power, and Pressure Rise -- 10.4.2 Impeller Geometry -- 10.4.3 The Diffuser -- 10.4.4 Concluding Remarks: Axial versus Centrifugal Design -- 10.5 Axial Turbines -- 10.5.1 Torque, Power, and Pressure Drop -- 10.5.2 Axial Turbine Geometry and Velocity Triangles -- 10.5.3 Turbine Degree of Reaction -- 10.5.4 Turbochargers (for Internal Combustion Engines) -- 10.5.5 Remarks on Exposed Tip Rotors (Wind Turbines and Propellers) -- 10.6 Concluding Remarks -- Reference -- Problems. Chapter 11 Elements of Heat Transfer -- 11.1 Introduction -- 11.2 Elementary Mechanisms of Heat Transfer -- 11.2.1 Conductive Heat Transfer -- 11.2.2 Convective Heat Transfer -- 11.2.3 Radiation Heat Transfer -- 11.3 Heat Conduction -- 11.3.1 Steady One-Dimensional Heat Conduction -- 11.3.2 Combined Heat Transfer -- 11.3.3 Heat Conduction in Cylinders -- 11.3.4 Cooling Fins -- 11.4 Heat Transfer by Convection -- 11.4.1 The Flat Plate Model -- 11.4.2 Formulas for Forced External Heat Convection -- 11.4.3 Formulas for Forced Internal Heat Convection -- 11.4.4 Formulas for Free (Natural) Heat Convection -- 11.5 Heat Exchangers -- 11.6 Concluding Remarks -- References -- Problems -- Chapter 12 Automobile Aero-Acoustics -- 12.1 Introduction -- 12.2 Sound as a Pressure Wave -- 12.3 Sound Loudness Scale -- 12.4 The Human Ear Perception -- 12.5 The One-Dimensional Linear Wave Equation -- 12.6 Sound Radiation, Transmission, Reflection, Absorption -- 12.6.1 Sound Wave Expansion (Radiation) -- 12.6.2 Reflections, Transmission, Absorption -- 12.6.3 Standing Wave (Resonance), Interference, and Noise Cancellations -- 12.7 Vortex Sound -- 12.8 Example: Sound from a Shear Layer -- 12.9 Buffeting -- 12.10 Experimental Examples for Sound Generation on a Typical Automobile -- 12.11 Sound and Flow Control -- 12.12 Concluding Remarks -- References -- Problems -- Appendix A: Conversion Factors -- Appendix B -- Index -- EULA. |
Record Nr. | UNINA-9910829119303321 |
Katz Joseph <1947-> | ||
Chichester, UK ; ; Hoboken, NJ : , : John Wiley & Sons, , 2016 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Improved aerodynamics : a glance at clean freight strategies / / SmartWay Transport Partnership, U.S. Environmental Protection Agency |
Pubbl/distr/stampa | [Washington, D.C.] : , : SmartWay Transport Partnership, U.S. Environmental Protection Agency, , [2009] |
Descrizione fisica | 1 online resource (2 pages) : color illustration |
Soggetto topico |
Automobiles - United States - Fuel consumption
Automobiles - United States - Aerodynamics Automobiles - Aerodynamics Automobiles - Fuel consumption |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Altri titoli varianti | Improved aerodynamics |
Record Nr. | UNINA-9910713429303321 |
[Washington, D.C.] : , : SmartWay Transport Partnership, U.S. Environmental Protection Agency, , [2009] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
A method for the reduction of aerodynamic drag of road vehicles [[electronic resource] /] / Bandu N. Pamadi, Larry W. Taylor, and Terrance O. Leary |
Autore | Pamadi Bandu N. <1945-> |
Pubbl/distr/stampa | Hampton, VA : , : National Aeronautics and Space Administration, Langley Research Center, , [1990] |
Descrizione fisica | 23 pages : illustrations ; ; 28 cm |
Altri autori (Persone) |
TaylorLarry W
LearyTerrance O |
Collana | NASA technical memorandum |
Soggetto topico |
Automobiles - Aerodynamics
Motor vehicles - Aerodynamics Drag (Aerodynamics) |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910698835003321 |
Pamadi Bandu N. <1945-> | ||
Hampton, VA : , : National Aeronautics and Space Administration, Langley Research Center, , [1990] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Theory and applications of aerodynamics for ground vehicles / / by T. Yomi Obidi |
Autore | Obidi T. Yomi <1955-> |
Pubbl/distr/stampa | Warrendale, Pennsylvania (400 Commonwealth Dr., Warrendale PA USA) : , : Society of Automotive Engineers, , [2014] |
Descrizione fisica | 1 online resource (xix, 267 pages) : illustrations, digital, PDF |
Disciplina | 629.231 |
Collana | Society of Automotive Engineers. Electronic publications |
Soggetto topico |
Automobiles - Aerodynamics
Trucks - Aerodynamics SCIENCE / Mechanics / Aerodynamics TECHNOLOGY & ENGINEERING / Automotive Physics: Fluid mechanics Aerodynamics Automotive technology and trades |
ISBN |
9780768088250
0-7680-8105-X 0-7680-8825-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Chapter 1 Drag -- Chapter 2 Noise and Vehicle Soiling -- Chapter 3 Experimental Aerodynamics for Ground Vehicles -- Chapter 4 Computational Aerodynamics for Ground Vehicles -- Chapter 5 Vehicle Stability and Performance -- Chapter 6 Vehicle Sectional Design -- Chapter 7 Trucks, Trailers, and Buses -- Chapter 8 Railroad Train Aerodynamics -- Chapter 9 Severe Service and Off-Road Vehicles -- Chapter 10 Race Cars, Sports Cars, and Convertibles -- Chapter 11 Motorcycles -- Chapter 12 Internal Aerodynamics and Cooling System -- Chapter 13 Concept Ground Vehicles -- Nomenclature -- Conversion Table. |
Record Nr. | UNINA-9910795202003321 |
Obidi T. Yomi <1955-> | ||
Warrendale, Pennsylvania (400 Commonwealth Dr., Warrendale PA USA) : , : Society of Automotive Engineers, , [2014] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Theory and applications of aerodynamics for ground vehicles / / by T. Yomi Obidi |
Autore | Obidi T. Yomi <1955-> |
Pubbl/distr/stampa | Warrendale, Pennsylvania (400 Commonwealth Dr., Warrendale PA USA) : , : Society of Automotive Engineers, , [2014] |
Descrizione fisica | 1 online resource (xix, 267 pages) : illustrations, digital, PDF |
Disciplina | 629.231 |
Collana | Society of Automotive Engineers. Electronic publications |
Soggetto topico |
Automobiles - Aerodynamics
Trucks - Aerodynamics SCIENCE / Mechanics / Aerodynamics TECHNOLOGY & ENGINEERING / Automotive Physics: Fluid mechanics Aerodynamics Automotive technology and trades |
ISBN |
9780768088250
0-7680-8105-X 0-7680-8825-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Chapter 1 Drag -- Chapter 2 Noise and Vehicle Soiling -- Chapter 3 Experimental Aerodynamics for Ground Vehicles -- Chapter 4 Computational Aerodynamics for Ground Vehicles -- Chapter 5 Vehicle Stability and Performance -- Chapter 6 Vehicle Sectional Design -- Chapter 7 Trucks, Trailers, and Buses -- Chapter 8 Railroad Train Aerodynamics -- Chapter 9 Severe Service and Off-Road Vehicles -- Chapter 10 Race Cars, Sports Cars, and Convertibles -- Chapter 11 Motorcycles -- Chapter 12 Internal Aerodynamics and Cooling System -- Chapter 13 Concept Ground Vehicles -- Nomenclature -- Conversion Table. |
Record Nr. | UNINA-9910811060903321 |
Obidi T. Yomi <1955-> | ||
Warrendale, Pennsylvania (400 Commonwealth Dr., Warrendale PA USA) : , : Society of Automotive Engineers, , [2014] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|