ADAS and automated driving : a practical approach to verification and validation / / by Plato Pathrose
| ADAS and automated driving : a practical approach to verification and validation / / by Plato Pathrose |
| Autore | Pathrose Plato |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Warrendale, Pennsylvania : , : SAE International, , [2022] |
| Descrizione fisica | 1 online resource (1 PDF (xxi, 255 pages)) : illustrations ; ; cm |
| Disciplina | 629.2 |
| Soggetto topico |
Automated vehicles
Driver assistance systems TRANSPORTATION / Automotive / General TECHNOLOGY & ENGINEERING / Automation TECHNOLOGY & ENGINEERING / Automotive Road and motor vehicles: general interest Automatic control engineering Automotive technology and trades |
| ISBN |
9781523149544
152314954X 9781468604146 1468604147 9781468604139 1468604139 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Foreword -- Introduction -- About this book -- Assumptions -- Acknowledgments -- Chapter 1: Introduction to advanced driver assistance systems and automated driving -- Chapter 2: Design approaches for automated driving systems -- Chapter 3: Different test approaches -- Chapter 4: Scenario-based testing -- Chapter 5: Simulation environment for ADAS and automated driving systems -- Chapter 6: Ground truth generation and testing neural network-based detection -- Chapter 7: Testing and qualification of perception software -- Chapter 8: Calibration of ADAS and automated driving features -- Chapter 9: Introduction to functional safety and cybersecurity testing -- Chapter 10: Verification and validation strategy Chapter 11: Acceptance criteria and maturity evaluation -- Chapter 12: Data flow and management in automated driving -- Chapter 13: Challenges and gaps in testing automated driving features -- Index -- About the author. |
| Altri titoli varianti | ADAS and Automated Driving |
| Record Nr. | UNINA-9911007247603321 |
Pathrose Plato
|
||
| Warrendale, Pennsylvania : , : SAE International, , [2022] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Design of linear multivariable feedback control systems : the Wiener-Hopf approach using transforms and spectral factorization / / Joseph J. Bongiorno Jr., Kiheon Park
| Design of linear multivariable feedback control systems : the Wiener-Hopf approach using transforms and spectral factorization / / Joseph J. Bongiorno Jr., Kiheon Park |
| Autore | Bongiorno Jr Joseph J |
| Edizione | [1st edition 2020.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 |
| Descrizione fisica | 1 online resource (xi, 453 pages) : illustrations |
| Disciplina | 629.83 |
| Soggetto topico |
Automatic control
System theory Automatic control engineering |
| ISBN | 3-030-44356-6 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Chapter 1. Introduction -- Chapter 2. Stabilizing Controllers, Tracking, and Disturbance Rejection -- Chapter 3. H2 Design of Multivariable Control Systems -- Chapter 4. H2 Design of Multivariable Control Systems with Decoupling -- Chapter 5. Numerical Calculation of Wiener-Hopf Controllers. |
| Record Nr. | UNINA-9910483837203321 |
Bongiorno Jr Joseph J
|
||
| Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Fundamentals of connected and automated vehicles / / by Jeffrey Wishart and Yan Chen, Steven Como, Narayanan Kidambi, Duo Lu and Yezhou Yang
| Fundamentals of connected and automated vehicles / / by Jeffrey Wishart and Yan Chen, Steven Como, Narayanan Kidambi, Duo Lu and Yezhou Yang |
| Autore | Wishart Jeffrey |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Warrendale, Pennsylvania : , : SAE International, , [2022] |
| Descrizione fisica | 1 online resource (1 PDF (xiii, 257 pages)) : illustrations |
| Disciplina | 629.046 |
| Soggetto topico |
Automated vehicles
Automated vehicles - Technological innovations Deep learning (Machine learning) Multisensor data fusion TECHNOLOGY & ENGINEERING / Automation TRANSPORTATION / Automotive / General TECHNOLOGY & ENGINEERING / Automotive COMPUTERS / Artificial Intelligence / General Automatic control engineering Road and motor vehicles: general interest Automotive technology and trades Artificial intelligence |
| ISBN |
9781523149483
1523149485 9780768099829 076809982X 9780768099843 0768099846 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Chapter 1. Introduction and history of connected and automated vehicles -- Chapter 2. Localization -- Chapter 3. Connectivity -- Chapter 4. Sensor and actuator hardware -- Chapter 5. Computer vision -- Chapter 6. Sensor fusion -- Chapter 7. Path planning and motion control -- Chapter 8. Verification and validation -- Chapter 9. Outlook. |
| Record Nr. | UNINA-9911007131603321 |
Wishart Jeffrey
|
||
| Warrendale, Pennsylvania : , : SAE International, , [2022] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Fundamentals of engineering high-performance actuator systems / / by Kenneth W. Hummel
| Fundamentals of engineering high-performance actuator systems / / by Kenneth W. Hummel |
| Autore | Hummel Kenneth W. |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Warrendale, Penn. : , : Society of Automotive Engineers, , [2017] |
| Descrizione fisica | 1 online resource (ix, 214 pages) : illustrations |
| Disciplina | 629.8 |
| Collana | Society of Automotive Engineers. Electronic publications |
| Soggetto topico |
Actuators
Automatic control TECHNOLOGY & ENGINEERING / Automation Automatic control engineering |
| ISBN |
0-7680-8866-6
0-7680-8363-X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Chapter 1. Introduction -- Chapter 2. Project management -- Chapter 3. Requirements analysis -- Chapter 4. Design to requirements -- Chapter 5. Power sources --Chapter 6. Prototyping -- Chapter 7. Verification and validation -- Chapter 8. Production -- Bibliography -- Appendix A: Hydraulic symbols -- Training supplement - problems by chapter -- About the author -- Index. |
| Record Nr. | UNINA-9910886187803321 |
Hummel Kenneth W.
|
||
| Warrendale, Penn. : , : Society of Automotive Engineers, , [2017] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Kommunikation und Bildverarbeitung in der Automation : Ausgewählte Beiträge der Jahreskolloquien KommA und BVAu 2020
| Kommunikation und Bildverarbeitung in der Automation : Ausgewählte Beiträge der Jahreskolloquien KommA und BVAu 2020 |
| Autore | Jasperneite Jürgen |
| Pubbl/distr/stampa | Berlin, Heidelberg, : Springer Nature, 2022 |
| Descrizione fisica | 1 online resource (333 pages) |
| Altri autori (Persone) | LohwegVolker |
| Collana | Technologien Für Die Intelligente Automation |
| Soggetto topico |
Communications engineering / telecommunications
Imaging systems & technology Automatic control engineering Robotics |
| Soggetto non controllato |
Industrielle Kommunikationstechnik
Industrielle Bildverarbeitung Network reliability and redundancy methods Networked Control Systems Wireless real-time communication |
| ISBN | 3-662-64283-2 |
| Classificazione | TEC004000TEC008000TEC037000TEC041000 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Preface -- Organisation -- Communication in Automation - KommA 2020 -- Conference Chairs -- Program Committee -- Organising Committee -- Organisation -- Image Processing in Automation - BVAu 2020 -- Conference Chair -- Program Committee -- Inhaltsverzeichnis -- Contributors -- Part I Communication in Automation -- A Remote Attack Tool Against Siemens S7-300 Controllers: A Practical Report -- 1 Introduction -- 2 Related Work -- 3 Experimental Set-up -- 3.1 The Physical Process to Be Controlled -- 3.2 Hardware Equipment -- 3.3 Attacker Model and Attack Surface -- 4 Attack Details, Implementation and Results -- 4.1 Reconnaissance Attack -- 4.2 Scanning the PLC In-depth -- 4.3 Authentication Bypass Attack -- 4.4 Replay Attacks -- 4.4.1 Set/Update the password of PLCs -- 4.4.2 Clear PLC's Memory Blocks -- 4.4.3 Start/Stop the PLC -- 4.5 Control Hijacking Attack -- 5 Possible Mitigation Solutions -- 6 Conclusion and Future Work -- References -- Konzept und Implementierung einer kommunikationsgetriebenen Verwaltungsschale auf effizienten Geräten in Industrie 4.0 Kommunikationssystemen -- 1 Einleitung -- 2 Industrieller Use Case -- 3 Stand der Technik -- 3.1 Time-sensitive Networking -- 3.2 OPC UA -- 4 Related Work -- 4.1 Administration Shell -- 4.2 OPC UA und TSN -- 5 Konzept und Implementierung -- 5.1 Konzept Communication Administration Shell -- 5.2 Implementierung der CAS und Datenservices für Produktionsgeräte -- 5.3 Integration in industriellen Use Case -- 6 Validierung -- 7 Fazit -- Literatur -- Device Management in Industrial IoT -- 1 Introduction -- 2 Aufgaben von und Anforderungen an IoT Gerätemanagement -- 2.1 Gruppe 1: Bereitstellung und Registrierung -- 2.2 Gruppe 2: Konfiguration und Steuerung -- 2.3 Gruppe 3: Aktualisierung und Wartung -- 2.4 Gruppe 4: Monitoring und Diagnose -- 2.5 Gruppe 5: Hilfsfunktionen.
2.6 Gruppe 6: Interoperabilität -- 3 Ansätze von IoT Geräte Management -- 4 Evaluation -- 4.1 Bewertungskriterien -- 4.2 Ergebnisse -- 5 Zusammenfassung und Ausblick -- Literatur -- Cross-Company Data Exchange with Asset Administration Shells and Distributed Ledger Technology -- 1 Introduction -- 2 Background -- 2.1 Asset Administration Shell: Fundamentals -- 2.2 Distributed Ledger Technology -- 3 Model Architecture -- 3.1 Current State -- 3.2 Proposed Idea -- 4 Implementation -- 5 Evaluation -- 6 Discussion -- 7 Conclusions -- References -- Plug and Work with OPC UA at the Field Level: Integration of Low-Level Devices -- 1 Introduction -- 2 Review Focus -- 2.1 QoS Requirements of Distributed Applications -- 2.2 System Requirements of Automation Ecosystems -- 3 Specification Review -- 3.1 Field Level Communications Initiative -- 3.2 IEC/IEEE 60802 Profile for Industrial Automation -- 3.3 Reflection -- 4 Impact on Low-Level System Engineering -- 4.1 Device-Oriented Engineering -- 4.2 Function-Oriented Engineering -- 4.3 Identified Effects -- 5 Summary -- References -- Concept for Rule-Based Information Aggregation in Modular Production Plants -- 1 Introduction -- 2 State of the Art -- 3 Concept for Rule-Based Information Aggregation -- 3.1 Structure of the Concept -- 3.2 Classification Method -- 3.3 Rule Engine -- 4 Concept Implementation for a Specific Use Case -- 4.1 Use Case: Fidget Spinner Production -- 4.2 Applying Classification -- 4.3 Applying the Rule Engine -- 5 Conclusion and Future Work -- References -- Towards Real-Time Human-Machine Interfaces for Robot Cells Using Open Standard Web Technologies -- 1 Motivation -- 2 Implementation -- 3 Results -- 4 Summary -- References -- Interoperabilität von Cyber Physical Systems -- 1 New Requirements for Interoperability -- 2 What Is Interoperability? -- 3 General Interoperability Concept. 4 State of the Art of the Interoperability Levels -- 4.1 Technical and Syntactical Interoperability Levels -- 4.2 Semantical Interoperability Level -- 4.3 Organizational Interoperability Level -- 5 Relation Between Technologies and Interoperability Levels -- 5.1 Interoperability Aspects of Asset Administration Shells -- 5.2 Mapping of Selected Technologies into Interoperability Levels -- 6 Summary -- References -- Automatische Bewertung und Uberwachung von Safety Security Eigenschaften: Strukturierung und Ausblick -- 1 Einleitung -- 2 Problemstellung -- 3 Stand der Technik -- 3.1 Safety -- 3.2 Security -- 3.3 Anwendungsfälle während einer Sicherheitsbetrachtung -- 3.4 Forschungsfragen -- 4 Konzeptvorstellung -- 5 Zusammenfassung -- Literatur -- The Implementation of Proactive Asset Administration Shells: Evaluation of Possibilities and Realization in an Order Driven Production -- 1 Introduction -- 2 Types of AASs and the Bidding Procedure -- 2.1 The Types of AASs -- 2.2 The VDI/VDE 2193-Interaction Protocol -- 3 Implementation of Proactive AASs -- 3.1 Requirements for Proactive AASs -- 3.2 Type 1: Proactive Part as AAS-Server Functionality -- 3.3 Type 2: AAS-Application Outside the AAS-Server -- 3.4 Future Possibility: JSON-Function Description -- 3.5 Selection of the Appropriate Type and Their Coexistence -- 4 Infrastructure in an Order Driven Production System -- 4.1 The Initialization of a Production Process -- 4.2 The Execution of a Production Process: The Proactive AASs -- 4.3 The Completion of a Production Process -- 5 The Bidding-App: Detailed Specification -- 5.1 Requirements -- 5.2 Required Submodels -- 5.3 Procedure -- 5.4 Evaluation of the App -- 6 Conclusion -- References -- Configuration Solution for SDN-Based Networks Interacting with Industrial Applications -- 1 Introduction -- 2 Industrial Use Case -- 3 Basics. 3.1 Software-Defined Networking -- 3.2 OPC UA -- 3.3 Combined Usage -- 4 Related Work -- 5 Architecture -- 6 Implementation -- 6.1 Topology and Network Configuration -- 6.2 Configuration Example -- 7 Discussion -- 8 Conclusion -- References -- Skalierbarkeit von PROFINET over TSN fr ressourcenbeschrnkte Gerte -- 1 Einleitung -- 2 Stand der Technik -- 2.1 Entwicklung der Anforderungen an die Industriellen Kommunikation -- 2.2 Entwicklung der Industriellen Kommunikation hin zu Ethernet TSN-basierten Systemen -- 2.3 Single Pair Ethernet -- 2.4 Möglichkeiten und Maßnahmen zur Optimierung von Softwarecode -- 3 Untersuchung des Ressourcenbedarf PROFINET-Profile und PROFINET-Stack -- 3.1 PROFINET-Stack mit den Profilen RT und IRT -- 3.2 PROFINET over TSN -- 4 Protokolle für ressourcenbeschränkte Feldgeräte -- 4.1 Vorschlag für ein PROFINET Nano-Profil (Sensorprofil) -- 4.2 OPC UA Nano-Profil -- 5 Zusammenfassung und Ausblick -- Literatur -- Vergleich von Ethernet TSN-Nutzungskonzepten -- 1 Einleitung -- 2 Stand der Technik -- 2.1 Entwicklung der Anforderungskriterien an die industrielle Kommunikation -- 2.2 Ethernet TSN -- 2.3 Anforderungs- und Bewertungskriterien -- 3 Ethernet TSN-Nutzungskonzepte -- 3.1 Preemption-basiertes Nutzungskonzept -- 3.2 TAS-basiertes Nutzungskonzept -- 4 Veranschaulichung der Anforderungen und Kriterien durch Messungen an einer Beispieltopologie und Vergleich -- 4.1 Beschreibung der Testumgebung -- 4.2 Messergebnisse Scheduled Traffic in einem Netzwerk mit gemischten Datenraten -- 4.3 Vergleich der Nutzungskonzepte anhand der Kriterien -- 5 Zusammenfassung und Ausblick -- Literatur -- Feasibility and Performance Case Study of a Private Mobile Cell in the Smart Factory Context -- 1 Introduction -- 2 5G Non Public Networks (NPN) in Industry -- 3 System Application in the Smart Factory -- 3.1 Setup and Configuration. 3.2 Initial Measurements -- 3.3 Measurements Under Industrial Conditions -- 4 Layer 2 Tunnel Integration -- 4.1 Setup -- 4.2 Measurements -- 5 Outlook on Future 5G Mechanisms -- 6 Conclusion and Future Work -- References -- Vergleichende Untersuchung von PROFINET-Redundanzkonzepten für hochverfügbare Automatisierungssysteme -- 1 Grundlagen der Verfügbarkeit -- 1.1 Kenngrößen der Verfügbarkeit -- 1.2 Verfügbarkeitsberechnung -- 1.3 Verfügbarkeitsklassen -- 2 Topologiekonzepte für hochverfügbare Netzwerke und Systeme -- 2.1 Topologie 1: Nicht-redundantes PROFINET-Netzwerk -- 2.2 Topologie 2: Kombination von Medien- und S2 Systemredundanz -- 2.3 Topologie 3: Kombination von Medien- und R1 Systemredundanz -- 2.4 Topologie 4: Linientopologie mit Systemredundanz R2 -- 2.5 Prognostizierte Ausfallzeiten der Topologien -- 3 Fazit -- Literatur -- Sichere Kommunikation fur kollaborative Systeme -- 1 Einleitung -- 2 Betrachtete Use Cases und Architektur -- 2.1 Use Cases -- 2.2 Architektur -- 3 Zugehörige Arbeiten -- 4 STRIDE Analyse -- 4.1 Analyse -- 4.2 Sicherheitsanforderungen -- 4.3 Klassifikation von Verbindungen -- 5 Sicherheitskonzept -- 5.1 Geräte-Authentifizierung -- 5.2 Bedienerauthentifizierung -- 5.3 Widerruf von Zertifikaten -- 6 Zusammenfassung -- Literatur -- Systematic Test Environment for Narrowband IoT Technologies -- 1 Introduction -- 2 State of the Art -- 3 Systematic Test Environment for NB-IoT -- 3.1 Challenges and Requirements for Systematic Test Environment -- 3.2 Structure of Systematic Test Environment for NB-IoT -- 4 NB-IoT Performance Evaluation Results -- 4.1 System Tests -- 4.2 Protocol Tests -- 5 Conclusion and Outlook -- References -- CANopen Flying Master Over TSN -- 1 Introduction -- 2 State of the Art -- 2.1 CANopen Flying Master -- 2.2 PROFINET IO Redundancy -- 2.3 IEEE 802.1CB -- 2.4 Industrial 5G. 3 Concept of Flying Master Over TSN. |
| Record Nr. | UNINA-9910588786903321 |
Jasperneite Jürgen
|
||
| Berlin, Heidelberg, : Springer Nature, 2022 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Makers at School, Educational Robotics and Innovative Learning Environments : Research and Experiences from FabLearn Italy 2019, in the Italian Schools and Beyond
| Makers at School, Educational Robotics and Innovative Learning Environments : Research and Experiences from FabLearn Italy 2019, in the Italian Schools and Beyond |
| Autore | Scaradozzi David |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Bern, : Springer Nature, 2021 |
| Descrizione fisica | 1 online resource (364 pages) |
| Altri autori (Persone) |
GuastiLorenzo
Di StasioMargherita MiottiBeatrice MonteriùAndrea BliksteinPaulo |
| Collana | Lecture Notes in Networks and Systems |
| Soggetto topico |
Automatic control engineering
Higher & further education, tertiary education Educational psychology Robòtica Tecnologia educativa |
| Soggetto genere / forma | Llibres electrònics |
| Soggetto non controllato |
FabLearn Italy
robotics in education STEM Education Smart Learning Educational Robotics innovative educational tools Innovative Learning Approach informal education open access |
| ISBN | 3-030-77040-0 |
| Classificazione | EDU009000EDU015000TEC004000 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Preface -- Introduction -- Contents -- Introduction to the Main Topics -- Perspectives for School: Maker Approach, Educational Technologies and Laboratory Approach, New Learning Spaces -- 1 Introduction -- 2 Maker Dimension -- 3 Trends and Perspectives -- 3.1 Experiences and Points of View -- 4 Conclusions -- References -- Making: Laboratory and Active Learning Perspectives -- 1 Introduction -- 2 Making as a Bridge Between Pedagogical Tradition and Technological Innovation -- 3 Technology, People, Society -- 3.1 Experiences and Point of View -- 4 Conclusions -- References -- Robotics in Education: A Smart and Innovative Approach to the Challenges of the 21st Century -- 1 Introduction -- 2 Robotics in Education -- 3 Trends and Perspectives -- 3.1 Good Practices -- 3.2 Assessment -- 3.3 Technological Development -- 4 Conclusions -- References -- Innovative Spaces at School. How Innovative Spaces and the Learning Environment Condition the Transformation of Teaching -- 1 Introduction -- 2 The Topic: A Dialogue Between Architecture and Pedagogy -- 3 Trends and Perspectives -- 3.1 Experiences and Points of View -- 4 Conclusions -- References -- Keynotes -- Makers in Education: Teaching is a Hacking Stuff -- 1 Problems and Goals -- 1.1 Troubleshooting -- 1.2 Changing the Paradigm -- 2 A Maker in Education -- 2.1 A Quantum Leap -- 2.2 What is an Edumaker (Maker in Education)? -- 3 Experience of a Maker in Education -- 3.1 Co-m@kingLAB -- 4 Conclusions -- References -- If We Could Start from Scratch, What Would Schools Look like in the Twenty-First Century? Rethinking Schools as a Locus for Social Change -- 1 Introduction: How Do Educational Systems Get Built? -- 2 What is Our Vision for the Future? -- 3 Sobral, Brazil: Examples of Possible Change -- 4 Three Mistakes in Progressive Education.
5 The Future of Education Looks like the Present of Makerspaces -- 6 Conclusion: The Ethos of Our Time -- References -- From Classroom to Learning Environment -- References -- Pedagogical Considerations for Technology-Enhanced Learning -- 1 Introduction -- 2 Technology-Enhanced Learning -- 3 Pedagogical Considerations -- References -- School Makerspace Manifesto -- 1 Why a Makerspace Manifesto for Primary and Lower Secondary Schools -- 2 The Potential Relationship Between Schools and Makers -- 2.1 What is a Maker? -- 3 Three Principles on Which Makers and Active Schools Can Agree Before Building a Makerspace -- 3.1 Recognizing the world's Complexity -- 3.2 Showcasing Knowledge -- 3.3 Interacting with the Environment and Objects -- 4 Starting Point and Sustainable Model -- 5 Why a Makerspace? Because It is a Disruptive Way to Make Change -- References -- Elements of Roboethics -- 1 The Birth of Roboethics -- 2 A New Science? -- 3 What Ethics Should Be Applied in Roboethics? -- 4 Emerging and Novel Roboethical Issues -- 5 The Risk of Unintended Machine-Learning Bias -- 6 Ethical Guidelines for All Robots -- 7 Representation of Robots with the General Public and Agnotology Issues -- 8 Conclusions -- References -- Making to Learn. The Pedagogical Implications of Making in a Digital Binary World -- 1 Introduction -- 2 Beyond Making as a Mere Manual Activity -- 3 Unlocking the Digital Box: Making to Learn -- 4 Conclusion -- References -- The Game of Thinking. Interactions Between Children and Robots in Educational Environments -- 1 Laboratory Approach and Educational Robotics -- 2 Towards the Game of Thinking in Primary Schools -- 2.1 Considerations on Experimental Adequacy and Refining the Setting -- 2.2 Drawing Theoretical Conclusions and Identifying Alternative Explanations -- 3 Robotic Labs and Different ER Approaches of Teachers. 3.1 Programming a Robot with Preschool Children at "Bambini Bicocca" Infant School -- 4 Conclusions -- References -- Maker Spaces and Fablabs at School: A Maker Approach to Teaching and Learning -- Furniture Design Education with 3D Printing Technology -- 1 Introduction -- 1.1 Design with 3D Printing Technology -- 2 Furniture Design Studio with 3D Printing Technology -- 3 Conclusion -- References -- Makerspaces for Innovation in Teaching Practices -- 1 Introduction -- 2 Methodology -- 3 Objectives -- 4 Expected Results and Impact -- 5 Monitoring and Evaluation -- References -- Montessori Creativity Space: Making a Space for Creativity -- 1 Introduction -- 2 The Context -- 3 Work Method -- 4 Relationship Between Space, Technologies, Teaching and Learning Practices -- 5 Conclusion -- References -- Fab the Knowledge -- 1 Introduction -- 1.1 Making and Prototyping in Contemporary Design Domains -- 1.2 The Research Through Co-design Co-model -- 2 Methodological Approach -- 3 Results and Discussion -- 4 Conclusions -- References -- Teaching Environmental Education Using an Augmented Reality World Map -- 1 Introduction -- 1.1 Profile of School and Students -- 1.2 Description of the Workshop With Students -- 1.3 Grade Level-Age of Students -- 1.4 Material/Resources -- 1.5 Interdisciplinary and Constructivist Approach -- 1.6 Parental Involvement -- 1.7 Active Citizenship -- 1.8 Data Collection -- 2 Findings -- 2.1 Use of Digital Literacy and Citizenship Resources -- 2.2 Course: Study of the Environment -- 2.3 Successes -- 2.4 Challenges -- 2.5 Comments and Feedback -- References -- Laboratory Teaching with the Makers Approach: Models, Methods and Instruments -- The Maker Movement: From the Development of a Theoretical Reference Framework to the Experience of DENSA Coop. Soc -- 1 Introduction. Children, Makers, Key Competences. 2 Community and Participation: Makerspace and Social Inclusion -- 3 Key Competences and Active Citizenship -- 4 The Experience of DENSA Coop. Soc -- 5 Conclusions -- References -- Chesscards: Making a Paper Chess Game with Primary School Students, a Cooperative Approach -- 1 Introduction -- 2 Making Chesscards -- 3 Outputs -- References -- A New Graphic User Interface Design for 3D Modeling Software for Children -- 1 Context -- 1.1 Digital Natives and ITC -- 1.2 School Education and Learning for Digital Natives -- 1.3 A New Teaching Methodology: Maker Pedagogy -- 2 The Aim of the Research -- 3 Research Method -- 3.1 Child-Centered Design -- 3.2 Analysis -- 4 The Project: "SugarCad Kids" -- 4.1 Wireframe and Logo -- 4.2 Graphic User Interface for Children (3-7-Year-Old) -- 5 Conclusion -- References -- Museum Education Between Digital Technologies and Unplugged Processes. Two Case Studies -- 1 Introduction -- 2 Museum Display for Science Popularization -- 2.1 Video Floor Installation Showing Symmetries in Motion -- 2.2 Extended Museum of Cosmati Floors. Educational Kit -- 3 Museum Education. Prototyping Educational Kits with 3D Printing in the School Fab Lab -- 3.1 Creative Geometry Kits: Detachable 3D-Printed Apollonius's Cone -- 3.2 ART-TOUCH-LAB. Tactile Kits Made with a 3D Printer -- References -- Officina Degli Errori: An Extended Experiment to Bring Constructionist Approaches to Public Schools in Bologna -- 1 Introduction -- 2 Values, Aims and First Round of Co-design -- 3 Officina Degli Errori: Tinkering Goes to School -- 4 Conclusions and Future Prospects -- References -- Service Learning: A Proposal for the Maker Approach -- 1 Service Learning, Coding and Digital Storytelling: A Methodological Proposal -- 2 The Maker Movement Approach and Coding -- 2.1 Phase 1: "Welcome" App Prototype -- 2.2 Phase 2: The "Welcome" App -- 3 Objectives. 3.1 Service Learning Objectives for Students -- 3.2 Curricular Objectives and Key Competences -- 3.3 Expected Results -- 4 Conclusion -- References -- Learning by Making. 3D Printing Guidelines for Teachers -- 1 Introduction -- 2 Fused Deposition Modeling (FDM) 3D Printers -- 3 Stereo Lithography Apparatus (SLA) 3D Printers -- 4 FDM Versus SLA: A Comparison for the Teaching Setting -- 5 Conclusion -- References -- Roboticsness-Gymnasium Mentis -- 1 The Project: LEIS Classroom -- 1.1 Goals -- 1.2 Teaching Methods and Strategies -- 1.3 Cooperative Learning and Cooperative Teaching -- 2 Experiences -- 2.1 Curricular Robotics for First-Year Students (Aged 14-15, Science-Based High School) -- 2.2 STEM -- 2.3 Participation in Exhibitions and Fairs -- 3 Results and Conclusions -- References -- Curricular and Not Curricular Robotics in Formal, Non-formal and Informal Education -- Educational Robotics and Social Relationships in the Classroom -- 1 Introduction -- 2 Materials and Methods -- 2.1 Participants and Procedure -- 2.2 Methodology -- 3 Results -- 4 Conclusion and Future Work -- References -- Analysis of Educational Robotics Activities Using a Machine Learning Approach -- 1 Introduction -- 2 Methods -- 2.1 Procedure and Participants -- 2.2 The Introductory Exercise -- 2.3 Data Preparation -- 3 Results -- 4 Conclusions -- Appendix -- References -- Learning Platforms in the Context of the Digitization of Education: A Strong Methodological Innovation. The Experience of Latvia -- 1 Terminology in the Field of Digital Learning -- 2 Teaching Conditions in Digital Learning Environments -- 3 Methodology -- 4 Learning Platform Evaluation Tool -- 5 Research Results -- 5.1 Teachers Who Use Learning Platforms (N 573) Do So -- 5.2 Teachers Who Do not Use Learning Platforms in the Learning Process (N 79) Give These Reasons. 5.3 The Results from the Statistics on the Uzdevumi.Lv Learning Platform Show That. |
| Record Nr. | UNINA-9910512172403321 |
Scaradozzi David
|
||
| Bern, : Springer Nature, 2021 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Nonlinear system identification : from classical approaches to neural networks, fuzzy models, and Gaussian processes / / Oliver Nelles
| Nonlinear system identification : from classical approaches to neural networks, fuzzy models, and Gaussian processes / / Oliver Nelles |
| Autore | Nelles Oliver <1969-> |
| Edizione | [Second edition.] |
| Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2020] |
| Descrizione fisica | 1 online resource (XXVIII, 1225 p. 670 illus., 179 illus. in color.) |
| Disciplina | 003 |
| Soggetto topico |
System identification
Nonlinear systems Automatic control engineering |
| ISBN | 3-030-47439-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Introduction -- Part One Optimization -- Introduction to Optimization -- Linear Optimization -- Nonlinear Local Optimization -- Nonlinear Global Optimization -- Unsupervised Learning Techniques -- Model Complexity Optimization -- Summary of Part 1 -- Part Two Static Models -- Introduction to Static Models -- Linear, Polynomial, and Look-Up Table Models -- Neural Networks -- Fuzzy and Neuro-Fuzzy Models -- Local Linear Neuro-Fuzzy Models: Fundamentals -- Local Linear Neuro-Fuzzy Models: Advanced Aspects -- Input Selection for Local Model Approaches -- Gaussian Process Models (GPMs) -- Summary of Part Two -- Part Three Dynamic Models -- Linear Dynamic System Identification -- Nonlinear Dynamic System Identification -- Classical Polynomial Approaches.-Dynamic Neural and Fuzzy Models -- Dynamic Local Linear Neuro-Fuzzy Models -- Neural Networks with Internal Dynamics -- Part Five Applications -- Applications of Static Models -- Applications of Dynamic Models -- Design of Experiments -- Input Selection Applications -- Applications of Advanced Methods -- LMN Toolbox -- Vectors and Matrices -- Statistics -- Reference -- Index. |
| Record Nr. | UNINA-9910427687103321 |
Nelles Oliver <1969->
|
||
| Cham, Switzerland : , : Springer, , [2020] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Nonlinear system identification : from classical approaches to neural networks, fuzzy models, and Gaussian processes / / Oliver Nelles
| Nonlinear system identification : from classical approaches to neural networks, fuzzy models, and Gaussian processes / / Oliver Nelles |
| Autore | Nelles Oliver <1969-> |
| Edizione | [Second edition.] |
| Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2020] |
| Descrizione fisica | 1 online resource (XXVIII, 1225 p. 670 illus., 179 illus. in color.) |
| Disciplina | 003 |
| Soggetto topico |
System identification
Nonlinear systems Automatic control engineering |
| ISBN | 3-030-47439-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Introduction -- Part One Optimization -- Introduction to Optimization -- Linear Optimization -- Nonlinear Local Optimization -- Nonlinear Global Optimization -- Unsupervised Learning Techniques -- Model Complexity Optimization -- Summary of Part 1 -- Part Two Static Models -- Introduction to Static Models -- Linear, Polynomial, and Look-Up Table Models -- Neural Networks -- Fuzzy and Neuro-Fuzzy Models -- Local Linear Neuro-Fuzzy Models: Fundamentals -- Local Linear Neuro-Fuzzy Models: Advanced Aspects -- Input Selection for Local Model Approaches -- Gaussian Process Models (GPMs) -- Summary of Part Two -- Part Three Dynamic Models -- Linear Dynamic System Identification -- Nonlinear Dynamic System Identification -- Classical Polynomial Approaches.-Dynamic Neural and Fuzzy Models -- Dynamic Local Linear Neuro-Fuzzy Models -- Neural Networks with Internal Dynamics -- Part Five Applications -- Applications of Static Models -- Applications of Dynamic Models -- Design of Experiments -- Input Selection Applications -- Applications of Advanced Methods -- LMN Toolbox -- Vectors and Matrices -- Statistics -- Reference -- Index. |
| Record Nr. | UNISA-996418438803316 |
Nelles Oliver <1969->
|
||
| Cham, Switzerland : , : Springer, , [2020] | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Proceedings of the 2021 DigitalFUTURES : The 3rd International Conference on Computational Design and Robotic Fabrication (CDRF 2021) / / editors, Philip F. Yuan [et al.]
| Proceedings of the 2021 DigitalFUTURES : The 3rd International Conference on Computational Design and Robotic Fabrication (CDRF 2021) / / editors, Philip F. Yuan [et al.] |
| Autore | Yuan Philip F |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Singapore, : Springer Singapore Pte. Limited, 2021 |
| Descrizione fisica | 1 online resource (401 p.) |
| Altri autori (Persone) |
YuanPhilip F
ChaiHua YanChao LeachNeil |
| Collana | Intelligent Technologies and Robotics Series |
| Soggetto topico |
Automatic control engineering
Computer-aided design (CAD) Artificial intelligence |
| Soggetto non controllato |
History, Theory and Critics of Building Technology
Performance-based Design Fabrication and Construction Data Mining and Visualizing Immersive and Interactive Environment Architectural Intelligence Open Access |
| ISBN | 981-16-5983-4 |
| Classificazione | COM007000TEC004000TEC037000 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Preface -- Organization -- Committees -- Honorary Advisors -- Organization Committees -- Scientific Committees -- Contents -- Computation and Formation -- Serlio and Artificial Intelligence: Problematizing the Image-to-Object Workflow -- 1 Influence of the Disciplinary Treatise -- 2 Analogical and Digital Flux -- 3 Analog-to-Digital Information Processing -- 4 Problematizing the Image-to-Object Workflow -- 5 Operative Model: Portico -- 5.1 Intelligence Beyond Serlio -- References -- A Generative Approach to Social Ecologies in Project [Symbios]City -- 1 Introduction
2 Topological Optimization as a Method of Parametric Semiology -- 2.1 Background -- 2.2 TO Software and Its Potential to Achieve Tower Semiology -- 2.3 Benchmark Post Processing and Materialization -- 3 Ground Design and Flood Simulation -- 3.1 Flood Simulation -- 3.2 Tower Arrangement -- 3.3 Podium Design and Network Theory -- 4 From Programmatic Distribution to Neighborhood Ecologies -- 4.1 Typical Program Classification and Distribution -- 4.2 Dynamic Programs and Micro-structures -- 5 Façade Development and Sunlight Optimization -- 6 Conclusion -- References Using CycleGAN to Achieve the Sketch Recognition Process of Sketch-Based Modeling -- 1 Introduction -- 2 Related Works -- 3 Methodology -- 3.1 Network Architecture -- 3.2 Data Preparation -- 3.3 Training Process -- 4 Results -- 4.1 Recognition of Sketch and Generation of Corresponding Building Image -- 4.2 Sketch Reconstruction -- 4.3 Building Images to Sketches -- 5 Conclusion and Discussion -- References -- Exploration on Machine Learning Layout Generation of Chinese Private Garden in Southern Yangtze -- 1 Introduction -- 2 Background -- 3 Research Method -- 3.1 Network Architecture 3.2 Dataset -- 3.3 Processing and Labelling Based on Analysis -- 4 Training and Analysis -- 4.1 First Training -- 4.2 Second Training -- 4.3 Third Training -- 4.4 Result Analysis -- 5 Discussion -- References -- Command2Vec: Feature Learning of 3D Modeling Behavior Sequence-A Case Study on "Spiral-stair" -- 1 Introduction -- 2 Related Work -- 3 Methodologies -- 3.1 Data Preparing -- 3.2 Embedding -- 3.3 Command2Vec -- 3.4 Clustering -- 4 Experiment -- 5 Results -- 5.1 Experiment Results -- 5.2 Evaluation -- 6 Conclusion and Discussion -- References Exploring in the Latent Space of Design: A Method of Plausible Building Facades Images Generation, Properties Control and Model Explanation Base on StyleGAN2 -- 1 Introduction -- 2 Related Work -- 2.1 Image Generation Research via GAN in Computer Science -- 2.2 Plan Drawing Generation Research -- 2.3 Building Facades and Other Perspective Architectural Images Generation Research -- 3 Methodology -- 3.1 Training Building Facades Generation Model by StyleGAN2 -- 3.2 Exploration and Explanation of Latent Space -- 3.3 High-Level Prosperity Control 3.4 Project Novel Image into Existing Model Instance |
| Record Nr. | UNINA-9910500587003321 |
Yuan Philip F
|
||
| Singapore, : Springer Singapore Pte. Limited, 2021 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Regularized System Identification : Learning Dynamic Models from Data
| Regularized System Identification : Learning Dynamic Models from Data |
| Autore | Pillonetto Gianluigi |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Cham, : Springer International Publishing AG, 2022 |
| Descrizione fisica | 1 online resource (394 p.) |
| Altri autori (Persone) |
ChenTianshi
ChiusoAlessandro De NicolaoGiuseppe LjungLennart |
| Collana | Communications and Control Engineering |
| Soggetto topico |
Machine learning
Automatic control engineering Statistical physics Bayesian inference Probability & statistics Cybernetics & systems theory |
| Soggetto non controllato |
System Identification
Machine Learning Linear Dynamical Systems Nonlinear Dynamical Systems Kernel-based Regularization Bayesian Interpretation of Regularization Gaussian Processes Reproducing Kernel Hilbert Spaces Estimation Theory Support Vector Machines Regularization Networks |
| ISBN | 3-030-95860-4 |
| Classificazione | COM004000MAT029000MAT029010SCI055000SCI064000TEC004000 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Preface -- Acknowledgements -- Contents -- Abbreviations and Notation -- Notation -- Abbreviations -- 1 Bias -- 1.1 The Stein Effect -- 1.1.1 The James-Stein Estimator -- 1.1.2 Extensions of the James-Stein Estimator -- 1.2 Ridge Regression -- 1.3 Further Topics and Advanced Reading -- 1.4 Appendix: Proof of Theorem 1.1 -- References -- 2 Classical System Identification -- 2.1 The State-of-the-Art Identification Setup -- 2.2 mathcalM: Model Structures -- 2.2.1 Linear Time-Invariant Models -- 2.2.2 Nonlinear Models -- 2.3 mathcalI: Identification Methods-Criteria -- 2.3.1 A Maximum Likelihood (ML) View -- 2.4 Asymptotic Properties of the Estimated Models -- 2.4.1 Bias and Variance -- 2.4.2 Properties of the PEM Estimate as Ntoinfty -- 2.4.3 Trade-Off Between Bias and Variance -- 2.5 X: Experiment Design -- 2.6 mathcalV: Model Validation -- 2.6.1 Falsifying Models: Residual Analysis -- 2.6.2 Comparing Different Models -- 2.6.3 Cross-Validation -- References -- 3 Regularization of Linear Regression Models -- 3.1 Linear Regression -- 3.2 The Least Squares Method -- 3.2.1 Fundamentals of the Least Squares Method -- 3.2.2 Mean Squared Error and Model Order Selection -- 3.3 Ill-Conditioning -- 3.3.1 Ill-Conditioned Least Squares Problems -- 3.3.2 Ill-Conditioning in System Identification -- 3.4 Regularized Least Squares with Quadratic Penalties -- 3.4.1 Making an Ill-Conditioned LS Problem Well Conditioned -- 3.4.2 Equivalent Degrees of Freedom -- 3.5 Regularization Tuning for Quadratic Penalties -- 3.5.1 Mean Squared Error and Expected Validation Error -- 3.5.2 Efficient Sample Reuse -- 3.5.3 Expected In-Sample Validation Error -- 3.6 Regularized Least Squares with Other Types of Regularizers -- 3.6.1 ell1-Norm Regularization -- 3.6.2 Nuclear Norm Regularization -- 3.7 Further Topics and Advanced Reading -- 3.8 Appendix.
3.8.1 Fundamentals of Linear Algebra -- 3.8.2 Proof of Lemma 3.1 -- 3.8.3 Derivation of Predicted Residual Error Sum of Squares (PRESS) -- 3.8.4 Proof of Theorem 3.7 -- 3.8.5 A Variant of the Expected In-Sample Validation Error and Its Unbiased Estimator -- References -- 4 Bayesian Interpretation of Regularization -- 4.1 Preliminaries -- 4.2 Incorporating Prior Knowledge via Bayesian Estimation -- 4.2.1 Multivariate Gaussian Variables -- 4.2.2 The Gaussian Case -- 4.2.3 The Linear Gaussian Model -- 4.2.4 Hierarchical Bayes: Hyperparameters -- 4.3 Bayesian Interpretation of the James-Stein Estimator -- 4.4 Full and Empirical Bayes Approaches -- 4.5 Improper Priors and the Bias Space -- 4.6 Maximum Entropy Priors -- 4.7 Model Approximation via Optimal Projection -- 4.8 Equivalent Degrees of Freedom -- 4.9 Bayesian Function Reconstruction -- 4.10 Markov Chain Monte Carlo Estimation -- 4.11 Model Selection Using Bayes Factors -- 4.12 Further Topics and Advanced Reading -- 4.13 Appendix -- 4.13.1 Proof of Theorem 4.1 -- 4.13.2 Proof of Theorem 4.2 -- 4.13.3 Proof of Lemma 4.1 -- 4.13.4 Proof of Theorem 4.3 -- 4.13.5 Proof of Theorem 4.6 -- 4.13.6 Proof of Proposition 4.3 -- 4.13.7 Proof of Theorem 4.8 -- References -- 5 Regularization for Linear System Identification -- 5.1 Preliminaries -- 5.2 MSE and Regularization -- 5.3 Optimal Regularization for FIR Models -- 5.4 Bayesian Formulation and BIBO Stability -- 5.5 Smoothness and Contractivity: Time- and Frequency-Domain Interpretations -- 5.5.1 Maximum Entropy Priors for Smoothness and Stability: From Splines to Dynamical Systems -- 5.6 Regularization and Basis Expansion -- 5.7 Hankel Nuclear Norm Regularization -- 5.8 Historical Overview -- 5.8.1 The Distributed Lag Estimator: Prior Means and Smoothing -- 5.8.2 Frequency-Domain Smoothing and Stability. 5.8.3 Exponential Stability and Stochastic Embedding -- 5.9 Further Topics and Advanced Reading -- 5.10 Appendix -- 5.10.1 Optimal Kernel -- 5.10.2 Proof of Lemma 5.1 -- 5.10.3 Proof of Theorem 5.5 -- 5.10.4 Proof of Corollary 5.1 -- 5.10.5 Proof of Lemma 5.2 -- 5.10.6 Proof of Theorem 5.6 -- 5.10.7 Proof of Lemma 5.5 -- 5.10.8 Forward Representations of Stable-Splines Kernels -- References -- 6 Regularization in Reproducing Kernel Hilbert Spaces -- 6.1 Preliminaries -- 6.2 Reproducing Kernel Hilbert Spaces -- 6.2.1 Reproducing Kernel Hilbert Spaces Induced by Operations on Kernels -- 6.3 Spectral Representations of Reproducing Kernel Hilbert Spaces -- 6.3.1 More General Spectral Representation -- 6.4 Kernel-Based Regularized Estimation -- 6.4.1 Regularization in Reproducing Kernel Hilbert Spaces and the Representer Theorem -- 6.4.2 Representer Theorem Using Linear and Bounded Functionals -- 6.5 Regularization Networks and Support Vector Machines -- 6.5.1 Regularization Networks -- 6.5.2 Robust Regression via Huber Loss -- 6.5.3 Support Vector Regression -- 6.5.4 Support Vector Classification -- 6.6 Kernels Examples -- 6.6.1 Linear Kernels, Regularized Linear Regression and System Identification -- 6.6.2 Kernels Given by a Finite Number of Basis Functions -- 6.6.3 Feature Map and Feature Space -- 6.6.4 Polynomial Kernels -- 6.6.5 Translation Invariant and Radial Basis Kernels -- 6.6.6 Spline Kernels -- 6.6.7 The Bias Space and the Spline Estimator -- 6.7 Asymptotic Properties -- 6.7.1 The Regression Function/Optimal Predictor -- 6.7.2 Regularization Networks: Statistical Consistency -- 6.7.3 Connection with Statistical Learning Theory -- 6.8 Further Topics and Advanced Reading -- 6.9 Appendix -- 6.9.1 Fundamentals of Functional Analysis -- 6.9.2 Proof of Theorem 6.1 -- 6.9.3 Proof of Theorem 6.10 -- 6.9.4 Proof of Theorem 6.13. 6.9.5 Proofs of Theorems 6.15 and 6.16 -- 6.9.6 Proof of Theorem 6.21 -- References -- 7 Regularization in Reproducing Kernel Hilbert Spaces for Linear System Identification -- 7.1 Regularized Linear System Identification in Reproducing Kernel Hilbert Spaces -- 7.1.1 Discrete-Time Case -- 7.1.2 Continuous-Time Case -- 7.1.3 More General Use of the Representer Theorem for Linear System Identification -- 7.1.4 Connection with Bayesian Estimation of Gaussian Processes -- 7.1.5 A Numerical Example -- 7.2 Kernel Tuning -- 7.2.1 Marginal Likelihood Maximization -- 7.2.2 Stein's Unbiased Risk Estimator -- 7.2.3 Generalized Cross-Validation -- 7.3 Theory of Stable Reproducing Kernel Hilbert Spaces -- 7.3.1 Kernel Stability: Necessary and Sufficient Conditions -- 7.3.2 Inclusions of Reproducing Kernel Hilbert Spaces in More General Lebesque Spaces -- 7.4 Further Insights into Stable Reproducing Kernel Hilbert Spaces -- 7.4.1 Inclusions Between Notable Kernel Classes -- 7.4.2 Spectral Decomposition of Stable Kernels -- 7.4.3 Mercer Representations of Stable Reproducing Kernel Hilbert Spaces and of Regularized Estimators -- 7.4.4 Necessary and Sufficient Stability Condition Using Kernel Eigenvectors and Eigenvalues -- 7.5 Minimax Properties of the Stable Spline Estimator -- 7.5.1 Data Generator and Minimax Optimality -- 7.5.2 Stable Spline Estimator -- 7.5.3 Bounds on the Estimation Error and Minimax Properties -- 7.6 Further Topics and Advanced Reading -- 7.7 Appendix -- 7.7.1 Derivation of the First-Order Stable Spline Norm -- 7.7.2 Proof of Proposition 7.1 -- 7.7.3 Proof of Theorem 7.5 -- 7.7.4 Proof of Theorem 7.7 -- 7.7.5 Proof of Theorem 7.9 -- References -- 8 Regularization for Nonlinear System Identification -- 8.1 Nonlinear System Identification -- 8.2 Kernel-Based Nonlinear System Identification. 8.2.1 Connection with Bayesian Estimation of Gaussian Random Fields -- 8.2.2 Kernel Tuning -- 8.3 Kernels for Nonlinear System Identification -- 8.3.1 A Numerical Example -- 8.3.2 Limitations of the Gaussian and Polynomial Kernel -- 8.3.3 Nonlinear Stable Spline Kernel -- 8.3.4 Numerical Example Revisited: Use of the Nonlinear Stable Spline Kernel -- 8.4 Explicit Regularization of Volterra Models -- 8.5 Other Examples of Regularization in Nonlinear System Identification -- 8.5.1 Neural Networks and Deep Learning Models -- 8.5.2 Static Nonlinearities and Gaussian Process (GP) -- 8.5.3 Block-Oriented Models -- 8.5.4 Hybrid Models -- 8.5.5 Sparsity and Variable Selection -- References -- 9 Numerical Experiments and Real World Cases -- 9.1 Identification of Discrete-Time Output Error Models -- 9.1.1 Monte Carlo Studies with a Fixed Output Error Model -- 9.1.2 Monte Carlo Studies with Different Output Error Models -- 9.1.3 Real Data: A Robot Arm -- 9.1.4 Real Data: A Hairdryer -- 9.2 Identification of ARMAX Models -- 9.2.1 Monte Carlo Experiment -- 9.2.2 Real Data: Temperature Prediction -- 9.3 Multi-task Learning and Population Approaches -- 9.3.1 Kernel-Based Multi-task Learning -- 9.3.2 Numerical Example: Real Pharmacokinetic Data -- References -- Appendix Index -- Index. |
| Record Nr. | UNINA-9910568256103321 |
Pillonetto Gianluigi
|
||
| Cham, : Springer International Publishing AG, 2022 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||