2018 14th International Conference "Stability and Oscillations of Nonlinear Control Systems" (Pyatnitskiy's Conference) : 30 May-1 June 2018, Moscow, Russia / / Institute of Electrical and Electronics Engineers. Russia Section |
Pubbl/distr/stampa | Piscataway, New Jersey : , : Institute of Electrical and Electronics Engineers, , 2018 |
Descrizione fisica | 1 online resource (86 pages) |
Disciplina | 003.75 |
Soggetto topico |
Nonlinear systems
Automatic control - Mathematical models Nonlinear oscillations |
ISBN | 1-5386-4556-4 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISA-996280721903316 |
Piscataway, New Jersey : , : Institute of Electrical and Electronics Engineers, , 2018 | ||
![]() | ||
Lo trovi qui: Univ. di Salerno | ||
|
2018 14th International Conference "Stability and Oscillations of Nonlinear Control Systems" (Pyatnitskiy's Conference) : 30 May-1 June 2018, Moscow, Russia / / Institute of Electrical and Electronics Engineers. Russia Section |
Pubbl/distr/stampa | Piscataway, New Jersey : , : Institute of Electrical and Electronics Engineers, , 2018 |
Descrizione fisica | 1 online resource (86 pages) |
Disciplina | 003.75 |
Soggetto topico |
Nonlinear systems
Automatic control - Mathematical models Nonlinear oscillations |
ISBN | 1-5386-4556-4 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910280930303321 |
Piscataway, New Jersey : , : Institute of Electrical and Electronics Engineers, , 2018 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Automatic control systems : with MATLAB / / S. Palani |
Autore | Palani S. |
Edizione | [Second edition.] |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2022] |
Descrizione fisica | 1 online resource (xix, 908 pages) : illustrations (some color) |
Disciplina | 629.8 |
Soggetto topico |
Automatic control - Mathematical models
Control theory |
ISBN |
9783030934453
9783030934446 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Acknowledgements -- Contents -- About the Author -- 1 Control Systems Modelling and Their Representation -- 1.1 Introduction -- 1.2 Basic Concepts and Terminologies -- 1.2.1 System -- 1.2.2 Control System -- 1.2.3 Variables -- 1.2.4 Input -- 1.2.5 Output -- 1.2.6 System Parameters -- 1.2.7 Plant or Process -- 1.2.8 Automation -- 1.2.9 Servomechanism -- 1.2.10 Regulator System -- 1.3 Concept of Feedback-Open Loop and Closed Loop Systems -- 1.3.1 Open Loop System -- 1.3.2 Closed Loop or Feedback System -- 1.4 Comparison of Open Loop and Closed Loop Systems -- 1.4.1 Open Loop Systems -- 1.4.2 Closed Loop System -- 1.4.3 Effects of Feedback -- 1.5 Examples of Closed Loop System -- 1.5.1 Automobile Steering Control System -- 1.5.2 Regulator System -- 1.5.3 Liquid Level System -- 1.5.4 Temperature Control System -- 1.5.5 Position Control System (Servomechanism) -- 1.5.6 Computer Controlled System -- 1.6 System Classification -- 1.7 The Concept of Transfer Function -- 1.7.1 Poles and Zeros of the Transfer Function -- 1.7.2 Complex s-Plane and the Locations of Poles and Zeros -- 1.7.3 Sinusoidal, Minimum Phase, Non-minimum Phase and All Pass Transfer Functions -- 1.8 System Representation in Simple Block Diagram -- 1.9 Transfer Function Model of Electrical Network -- 1.10 Transfer Function Model of Mechanical Systems -- 1.11 Transfer Function Model for Mechanical Translational System -- 1.12 Transfer Function Model for Mechanical Rotational System -- 1.13 Transfer Function Model of Electro-Mechanical Systems -- 1.14 Transfer Function Model of D.C. Motor -- 1.14.1 Transfer Function of Field Controlled D.C. Motor (No Load) -- 1.14.2 Transfer Function of Armature Controlled D.C. Motor -- 1.14.3 Transfer Function of D.C. Generator (On No Load) -- 1.14.4 Performance Comparison of Armature and Field Controlled D.C. Motors.
1.15 Two Phase A.C. Servomotor -- 1.16 A Pair of Synchros -- 1.16.1 Synchro Generator -- 1.16.2 Control Transformer -- 1.17 Electrical Analogy -- 1.17.1 Force-Voltage Analogy -- 1.17.2 Force-Current Analogy -- 1.18 Block Diagram Reduction Technique -- 1.18.1 Component Parts of Block Diagram -- 1.18.2 Block Diagram Reduction Rule -- 1.18.3 Block Diagram Reduction for Multiple Inputs -- 1.18.4 Signal Flow Graph -- 1.18.5 Signal Flow Graph Algebra -- 1.18.6 Definitions of SFG Terminologies -- 1.18.7 Application of the Gain Formula Between Output Nodes and Non-input Nodes -- 1.18.8 Applications of the Gain Formula to Block Diagrams -- 1.18.9 Signal Flow Graph for the Electrical Network -- 2 Time Response Analysis -- 2.1 Introduction -- 2.2 First Order Continuous Time System -- 2.2.1 System Modelling -- 2.2.2 Time Response of First Order System -- 2.2.3 Time Domain Specifications -- 2.3 Second Order System Modelling -- 2.4 Time Response of a Second Order System -- 2.4.1 Impulse Response -- 2.4.2 Step Response of a Second Order System -- 2.4.3 Time Domain Specifications of a Second Order System -- 2.5 Steady State Error -- 2.5.1 Type of the System -- 2.5.2 Steady State Error Using Static Error Constants -- 2.5.3 Steady State Error for Non-unity Feedback Systems -- 2.5.4 Steady State Error for Disturbances -- 2.5.5 The Generalized Error Constants -- 2.5.6 Steady State Error When Closed Loop T.F. is Given -- 2.6 Performance Enhancement By Using Controllers -- 2.6.1 Rate Controller or Tachometer Feedback Controller -- 2.6.2 Proportional Plus Integral Plus Derivative (Three Term Controllers) Controllers -- 2.6.3 Integral or Reset Controller -- 2.6.4 Proportional Plus Integral (PI) Controller -- 2.6.5 Proportional + Derivative (PD) Controller -- 2.6.6 Proportional + Integral + Derivative (PID) Controller -- 3 Frequency Response Analysis -- 3.1 Introduction. 3.2 Obtaining Steady State Output to Sinusoidal Input -- 3.3 Plotting Frequency Response -- 3.4 Polar Plot (Nyquist Plot) -- 3.4.1 General Shape of Polar Plot and Type and Order of the System -- 3.4.2 Polar Plot of Non-minimum Phase Transfer Function -- 3.4.3 Polar Plot with Transportation Lag (Time Delay) -- 3.4.4 Polar Plot of Prototype Second Order System -- 3.5 Correlation Between Transient Response and Frequency Response -- 3.6 Bandwidth of a Second Order System -- 3.6.1 Cut off Frequency and Cut Off Rate -- 3.7 Bode Plots -- 3.7.1 Bode Asymptotic Magnitude Plot -- 3.7.2 Bode Asymptotic Phase Angle Plots -- 3.8 Step by Step Procedure to Draw Bode Magnitude Plot -- 3.8.1 Transfer Function from Bode Plot -- 3.9 Log Magnitude Versus Phase Plot (Nichols Plot) -- 3.10 Frequency Domain Specifications -- 3.10.1 Phase Margin and Gain Margin via Nyquist (Polar) Diagram -- 3.10.2 Phase Margin and Gain Margin via Bode Plots -- 3.10.3 Phase Margin and Gain Margin Using MATLAB -- 3.10.4 Phase Margin and Gain Margin via Log-Magnitude-Phase Plot -- 3.11 Determining Closed Loop Frequency Response from Open … -- 3.11.1 Constant M Circles -- 3.11.2 Constant N Circles -- 3.11.3 The Nichols Chart -- 3.11.4 Nichols Chart from Constant M and Constant N Circles -- 4 Stability Analysis of Linear Control System -- 4.1 Introduction -- 4.2 The Concept of Stability -- 4.2.1 Asymptotic (Internal) Stability -- 4.2.2 Marginal (Neutral) Stability -- 4.2.3 Bounded Input Bounded Output (BIBO) (External) Stability -- 4.2.4 Relative Stability -- 4.2.5 BIBO Stability via Impulse Response Function -- 4.2.6 BIBO Stability and the Characteristic Roots -- 4.2.7 Relationship Between BIBO and Asymptotic Stability -- 4.3 Routh-Hurwitz Criterion -- 4.3.1 Routh-Hurwitz Criterion to Determine Absolute Stability -- 4.3.2 Routh-Hurwitz Criterion: Special Cases. 4.3.3 Parameters Estimation via Routh-Hurwitz Stability Criterion -- 4.3.4 Relative Stability Using Routh-Hurwitz Stability Criterion -- 4.3.5 Routh's Test for System with Transportation Lag -- 4.4 Nyquist Stability Criterion -- 4.4.1 Concepts Used in Nyquist Stability Criterion -- 4.4.2 The Principle of the Argument-Cauchy's Theorem -- 4.4.3 The Nyquist Stability Criterion -- 5 Root Locus Method for Analysis -- 5.1 Introduction -- 5.1.1 Advantages of Root Locus Method -- 5.2 The Concept of Root Locus -- 5.3 Properties of the Root Loci (Rules of the Root Loci) -- 5.4 Procedure to Construct Root Locus -- 6 Design of Compensators -- 6.1 Introduction -- 6.2 Performance Criteria for Compensators -- 6.3 Time and Frequency Domain Approaches -- 6.4 Compensator Design in the Frequency Domain -- 6.4.1 Design of Lead Compensator -- 6.4.2 Design Procedure for Lead Compensator in the Frequency Domain -- 6.4.3 Lag Compensator -- 6.4.4 Lag-Lead Compensator -- 6.5 Compensator Design in the Time Domain -- 6.5.1 Design of Lead Compensator Using Root Locus -- 6.5.2 Design of Lag Compensator Using Root Locus -- 6.5.3 Design of Lag-Lead Compensator Using Root Locus -- 7 State Space Modelling and Analysis -- 7.1 Introduction -- 7.2 The State of a System and State Equation of Continuous Time System -- 7.3 Vector Matrix Differential Equation of Continuous Time System -- 7.3.1 State Equations for Mechanical Systems -- 7.3.2 State Equations for Electrical Circuits -- 7.4 State Equations from Transfer Function -- 7.4.1 General Case of Representation-Phase Variable or Controllable Canonical Form -- 7.4.2 General Case of Representation-Observable Canonical Form -- 7.5 Transfer Function of Continuous Time System from State Equations -- 7.6 Solution of State Equations -- 7.6.1 Laplace Transform Solution of State Equations -- 7.6.2 Time Domain Solution to State Equations. 7.6.3 Determination of eAt-The Cayley-Hamilton Theorem -- 7.7 Controllability of Linear Continuous Time System -- 7.7.1 State Controllability Condition -- 7.7.2 Output Controllability Condition -- 7.7.3 Controllability and Observability Tests in the Frequency Domain -- 7.8 Observability of Linear Continuous Time System -- 7.8.1 Observability Condition -- 7.9 State Equation of Discrete Time System -- 7.9.1 Discrete Time State Equation in Controllable Canonical Form -- 7.9.2 Observable Canonical Form Model -- 7.9.3 Diagonal Form (Parallel Form) Model -- 7.9.4 Solution of State Equation -- 7.10 Controllability and Observability of Discrete Time System -- 7.10.1 Controllability Condition for Discrete Time System -- 7.10.2 Observability Condition for Discrete Time System -- 7.11 Sampled Data System -- 7.11.1 Introduction -- 7.11.2 Advantages of Sampled Data Control Systems -- 7.11.3 Disadvantages -- 7.11.4 A Sampled Data Closed Loop Control System -- 7.11.5 Sampling Process -- 7.11.6 Sampled Data System Variables -- 7.11.7 Hold Devices -- 7.11.8 Signal Reconstruction Using Zero Order Hold Device -- 7.11.9 Transfer Function of a ZOH -- 7.11.10 The Sampling Theorem -- 7.12 MATAB Program -- 7.12.1 Conversion of State Space Model to Transfer Function Model and Vice Versa -- 7.12.2 Conversion of Transfer Function to State Model -- 7.12.3 To Write a Program to Obtain the STM -- 7.12.4 To Determine Controllability and Observability of the System -- Index. |
Record Nr. | UNINA-9910559396203321 |
Palani S.
![]() |
||
Cham, Switzerland : , : Springer, , [2022] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Distributed cooperative model predictive control of networked systems / / Yuanyuan Zou, Shaoyuan Li |
Autore | Zou Yuanyuan |
Pubbl/distr/stampa | Singapore : , : Springer, , [2022] |
Descrizione fisica | 1 online resource (159 pages) |
Disciplina | 629.8 |
Soggetto topico |
Automatic control - Mathematical models
Automation Systems engineering Control automàtic Models matemàtics Enginyeria de sistemes Automatització |
Soggetto genere / forma | Llibres electrònics |
ISBN | 981-19-6084-4 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Acknowledgements -- Contents -- Abbreviations -- 1 Introduction -- 1.1 Networked Control System -- 1.2 Model Predictive Control -- 1.3 Distributed Model Predictive Control -- 1.4 Event Triggered Control -- 1.5 Outline of This Book -- References -- 2 DMPC of Networked Systems with Event-Triggered Computation -- 2.1 Introduction -- 2.2 DMPC with a Cooperative Event-Triggered Computation Mechanism -- 2.2.1 Optimization Problem Formulation -- 2.2.2 Cooperative Event-Triggering Condition -- 2.2.3 Cooperative Event-Triggered DMPC Algorithm -- 2.2.4 Feasibility and Stability Analysis of the Overall Closed-Loop System -- 2.2.5 Example -- 2.3 DMPC with a Decentralized Event-Triggered Computation Mechanism -- 2.3.1 Optimization Problem Formulation -- 2.3.2 Decentralized Event-Triggering Condition -- 2.3.3 Event-Triggered Dual-Mode DMPC Algorithm -- 2.3.4 Feasibility and Stability Analysis of the Overall Closed-Loop System -- 2.3.5 Example -- 2.4 Discussion -- References -- 3 DMPC of Networked Systems with Event-Triggered Communication -- 3.1 Introduction -- 3.2 Optimization Problem Formulation -- 3.3 DMPC with Event-Triggered Communication -- 3.3.1 Event-Triggered Condition -- 3.3.2 DMPC Algorithm with Event-Triggered Communication -- 3.4 Feasibility and Stability Analysis -- 3.5 Example -- 3.6 Conclusion -- References -- 4 Dynamic Event-Triggered DMPC of Networked Systems -- 4.1 Introduction -- 4.2 Optimization Problem Formulation -- 4.3 Event-Triggering Condition -- 4.4 Dynamic Event-Triggering Condition -- 4.5 Dynamic Event-Triggered DMPC Algorithm -- 4.6 Performance Analysis -- 4.7 Examples -- 4.8 Conclusion -- References -- 5 Mixed Time/Event-Triggered DMPC of Networked Systems -- 5.1 Introduction -- 5.2 Problem Formulation -- 5.2.1 Event-Triggered DMPC Optimization Problem -- 5.2.2 Time-Triggered DMPC Optimization Problem.
5.3 Mixed Time/Event-Triggered Dual-Mode DMPC -- 5.3.1 Event-Triggering Condition -- 5.3.2 Mixed Time/Event-Triggered Dual-Mode DMPC Algorithm -- 5.4 Feasibility and Stability Analysis -- 5.5 Example -- 5.6 Conclusion -- References -- 6 Self-Triggered DMPC of Networked Systems -- 6.1 Introduction -- 6.2 Problem Formulation -- 6.3 Co-Design of Self-Triggered Mechanism and DMPC Strategy -- 6.3.1 Self-Triggered DMPC Optimization Control Problem -- 6.3.2 Explicit Solution of the Self-Triggered MPC -- 6.3.3 Self-Triggered DMPC Algorithm -- 6.4 Stability Analysis -- 6.5 Example -- 6.6 Conclusion -- References -- 7 Event-Triggered Distributed Model Predictive Control for Interconnected Networked Systems -- 7.1 Introduction -- 7.2 Optimization Problem Formulation -- 7.3 Event-Triggering Conditions for NCSs with Dynamic Coupling -- 7.4 Event-Triggered DMPC Algorithm for Interconnected NCSs -- 7.5 Feasibility and Stability Analysis -- 7.6 Example -- 7.7 Conclusion -- References. |
Record Nr. | UNISA-996495171303316 |
Zou Yuanyuan
![]() |
||
Singapore : , : Springer, , [2022] | ||
![]() | ||
Lo trovi qui: Univ. di Salerno | ||
|
Distributed cooperative model predictive control of networked systems / / Yuanyuan Zou, Shaoyuan Li |
Autore | Zou Yuanyuan |
Pubbl/distr/stampa | Singapore : , : Springer, , [2022] |
Descrizione fisica | 1 online resource (159 pages) |
Disciplina | 629.8 |
Soggetto topico |
Automatic control - Mathematical models
Automation Systems engineering Control automàtic Models matemàtics Enginyeria de sistemes Automatització |
Soggetto genere / forma | Llibres electrònics |
ISBN | 981-19-6084-4 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Acknowledgements -- Contents -- Abbreviations -- 1 Introduction -- 1.1 Networked Control System -- 1.2 Model Predictive Control -- 1.3 Distributed Model Predictive Control -- 1.4 Event Triggered Control -- 1.5 Outline of This Book -- References -- 2 DMPC of Networked Systems with Event-Triggered Computation -- 2.1 Introduction -- 2.2 DMPC with a Cooperative Event-Triggered Computation Mechanism -- 2.2.1 Optimization Problem Formulation -- 2.2.2 Cooperative Event-Triggering Condition -- 2.2.3 Cooperative Event-Triggered DMPC Algorithm -- 2.2.4 Feasibility and Stability Analysis of the Overall Closed-Loop System -- 2.2.5 Example -- 2.3 DMPC with a Decentralized Event-Triggered Computation Mechanism -- 2.3.1 Optimization Problem Formulation -- 2.3.2 Decentralized Event-Triggering Condition -- 2.3.3 Event-Triggered Dual-Mode DMPC Algorithm -- 2.3.4 Feasibility and Stability Analysis of the Overall Closed-Loop System -- 2.3.5 Example -- 2.4 Discussion -- References -- 3 DMPC of Networked Systems with Event-Triggered Communication -- 3.1 Introduction -- 3.2 Optimization Problem Formulation -- 3.3 DMPC with Event-Triggered Communication -- 3.3.1 Event-Triggered Condition -- 3.3.2 DMPC Algorithm with Event-Triggered Communication -- 3.4 Feasibility and Stability Analysis -- 3.5 Example -- 3.6 Conclusion -- References -- 4 Dynamic Event-Triggered DMPC of Networked Systems -- 4.1 Introduction -- 4.2 Optimization Problem Formulation -- 4.3 Event-Triggering Condition -- 4.4 Dynamic Event-Triggering Condition -- 4.5 Dynamic Event-Triggered DMPC Algorithm -- 4.6 Performance Analysis -- 4.7 Examples -- 4.8 Conclusion -- References -- 5 Mixed Time/Event-Triggered DMPC of Networked Systems -- 5.1 Introduction -- 5.2 Problem Formulation -- 5.2.1 Event-Triggered DMPC Optimization Problem -- 5.2.2 Time-Triggered DMPC Optimization Problem.
5.3 Mixed Time/Event-Triggered Dual-Mode DMPC -- 5.3.1 Event-Triggering Condition -- 5.3.2 Mixed Time/Event-Triggered Dual-Mode DMPC Algorithm -- 5.4 Feasibility and Stability Analysis -- 5.5 Example -- 5.6 Conclusion -- References -- 6 Self-Triggered DMPC of Networked Systems -- 6.1 Introduction -- 6.2 Problem Formulation -- 6.3 Co-Design of Self-Triggered Mechanism and DMPC Strategy -- 6.3.1 Self-Triggered DMPC Optimization Control Problem -- 6.3.2 Explicit Solution of the Self-Triggered MPC -- 6.3.3 Self-Triggered DMPC Algorithm -- 6.4 Stability Analysis -- 6.5 Example -- 6.6 Conclusion -- References -- 7 Event-Triggered Distributed Model Predictive Control for Interconnected Networked Systems -- 7.1 Introduction -- 7.2 Optimization Problem Formulation -- 7.3 Event-Triggering Conditions for NCSs with Dynamic Coupling -- 7.4 Event-Triggered DMPC Algorithm for Interconnected NCSs -- 7.5 Feasibility and Stability Analysis -- 7.6 Example -- 7.7 Conclusion -- References. |
Record Nr. | UNINA-9910616387203321 |
Zou Yuanyuan
![]() |
||
Singapore : , : Springer, , [2022] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Dynamic modeling of automatic machines for design and control / / Juan Carlos Jauregui-Correa |
Autore | Jauregui-Correa Juan Carlos |
Edizione | [1st ed. 2023.] |
Pubbl/distr/stampa | Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023 |
Descrizione fisica | 1 online resource (ix, 188 pages) : illustrations (some color) |
Disciplina | 670 |
Collana | Mechanisms and Machine Science |
Soggetto topico |
Automatic control - Mathematical models
Automatic machinery - Mathematical models |
ISBN | 3-031-35942-9 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | 1.Introduction -- 2.Multibody Dynamics -- 3.Actuators -- 4.Sensors -- 5 Dynamic Models of Machine Elements -- 6 Dynamic Response of Mix Systems -- 7. Transfer Function -- 8. Simulation. |
Record Nr. | UNINA-9910734856903321 |
Jauregui-Correa Juan Carlos
![]() |
||
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Formation control of multi-agent systems : a graph rigidity approach / / Marcio de Queiroz, Xiaoyu Cai, Matthew Feemster |
Autore | Queiroz Marcio S. de |
Edizione | [1st edition] |
Pubbl/distr/stampa | Chichester, West Sussex, England : , : Wiley, , [2019] |
Descrizione fisica | 1 online resource (207 pages) |
Disciplina | 006.30285436 |
Collana |
Wiley series in dynamics and control of electromechanical systems
THEi Wiley ebooks |
Soggetto topico |
Robotics - Mathematical models
Automatic control - Mathematical models Rigidity (Geometry) Graph theory Formation control (Machine theory) Multiagent systems |
ISBN |
1-118-88747-6
1-118-88746-8 1-118-88745-X |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Introduction -- Single-integrator model -- Double-integrator model -- Robotic vehicle model -- Experimentation. |
Record Nr. | UNINA-9910555182903321 |
Queiroz Marcio S. de
![]() |
||
Chichester, West Sussex, England : , : Wiley, , [2019] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Fractional-order control systems : fundamentals and numerical implementations / / Dingyü Xue |
Autore | Xue Dingyü |
Pubbl/distr/stampa | Berlin, [Germany] ; ; Boston, [Massachusetts] : , : De Gruyter, , 2017 |
Descrizione fisica | 1 online resource (372 pages) : color illustrations |
Disciplina | 629.8 |
Collana | Fractional Calculus in Applied Sciences and Engineering |
Soggetto topico | Automatic control - Mathematical models |
Soggetto genere / forma | Electronic books. |
ISBN |
3-11-049719-0
3-11-049797-2 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- Foreword -- Preface -- Contents -- 1. Introduction to fractional calculus and fractional-order control -- 2. Mathematical prerequisites -- 3. Definitions and computation algorithms of fractional-order derivatives and integrals -- 4. Solutions of linear fractional-order differential equations -- 5. Approximation of fractional-order operators -- 6. Modelling and analysis of multivariable fractional-order transfer function matrices -- 7. State space modelling and analysis of linear fractional-order systems -- 8. Numerical solutions of nonlinear fractional-order differential equations -- 9. Design of fractional-order PID controllers -- 10. Frequency domain controller design for multivariable fractional-order systems -- A. Inverse Laplace transforms involving fractional and irrational operations -- B. FOTF Toolbox functions and models -- C. Benchmark problems for the assessment of fractional-order differential equation algorithms -- Bibliography -- Index |
Record Nr. | UNINA-9910466779903321 |
Xue Dingyü
![]() |
||
Berlin, [Germany] ; ; Boston, [Massachusetts] : , : De Gruyter, , 2017 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Fractional-order control systems : fundamentals and numerical implementations / / Dingyü Xue |
Autore | Xue Dingyü |
Pubbl/distr/stampa | Berlin, [Germany] ; ; Boston, [Massachusetts] : , : De Gruyter, , 2017 |
Descrizione fisica | 1 online resource (372 pages) : color illustrations |
Disciplina | 629.8 |
Collana | Fractional Calculus in Applied Sciences and Engineering |
Soggetto topico | Automatic control - Mathematical models |
ISBN |
3-11-049719-0
3-11-049797-2 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- Foreword -- Preface -- Contents -- 1. Introduction to fractional calculus and fractional-order control -- 2. Mathematical prerequisites -- 3. Definitions and computation algorithms of fractional-order derivatives and integrals -- 4. Solutions of linear fractional-order differential equations -- 5. Approximation of fractional-order operators -- 6. Modelling and analysis of multivariable fractional-order transfer function matrices -- 7. State space modelling and analysis of linear fractional-order systems -- 8. Numerical solutions of nonlinear fractional-order differential equations -- 9. Design of fractional-order PID controllers -- 10. Frequency domain controller design for multivariable fractional-order systems -- A. Inverse Laplace transforms involving fractional and irrational operations -- B. FOTF Toolbox functions and models -- C. Benchmark problems for the assessment of fractional-order differential equation algorithms -- Bibliography -- Index |
Record Nr. | UNINA-9910795932803321 |
Xue Dingyü
![]() |
||
Berlin, [Germany] ; ; Boston, [Massachusetts] : , : De Gruyter, , 2017 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Fractional-order control systems : fundamentals and numerical implementations / / Dingyü Xue |
Autore | Xue Dingyü |
Pubbl/distr/stampa | Berlin, [Germany] ; ; Boston, [Massachusetts] : , : De Gruyter, , 2017 |
Descrizione fisica | 1 online resource (372 pages) : color illustrations |
Disciplina | 629.8 |
Collana | Fractional Calculus in Applied Sciences and Engineering |
Soggetto topico | Automatic control - Mathematical models |
ISBN |
3-11-049719-0
3-11-049797-2 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- Foreword -- Preface -- Contents -- 1. Introduction to fractional calculus and fractional-order control -- 2. Mathematical prerequisites -- 3. Definitions and computation algorithms of fractional-order derivatives and integrals -- 4. Solutions of linear fractional-order differential equations -- 5. Approximation of fractional-order operators -- 6. Modelling and analysis of multivariable fractional-order transfer function matrices -- 7. State space modelling and analysis of linear fractional-order systems -- 8. Numerical solutions of nonlinear fractional-order differential equations -- 9. Design of fractional-order PID controllers -- 10. Frequency domain controller design for multivariable fractional-order systems -- A. Inverse Laplace transforms involving fractional and irrational operations -- B. FOTF Toolbox functions and models -- C. Benchmark problems for the assessment of fractional-order differential equation algorithms -- Bibliography -- Index |
Record Nr. | UNINA-9910809263603321 |
Xue Dingyü
![]() |
||
Berlin, [Germany] ; ; Boston, [Massachusetts] : , : De Gruyter, , 2017 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|