Atomes et rayonnement ; : leçon inaugurale prononcée le jeudi 18 avril 2013 / / Jean Dalibard |
Autore | Dalibard J. |
Pubbl/distr/stampa | Collège de France, 2013 |
Descrizione fisica | 1 online resource (71 pages) : digital file(s) |
Disciplina | 539.7 |
Collana | Leçons inaugurales du Collège de France |
Soggetto topico |
Atoms
Radiation Physics Physical Sciences & Mathematics Atomic Physics |
Soggetto non controllato |
physique atomique
laser rayonnement physique atome temps lumière optique |
ISBN | 2-7226-0278-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | fre |
Record Nr. | UNINA-9910133547803321 |
Dalibard J. | ||
Collège de France, 2013 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Atomistic Computer Simulations [[electronic resource] ] : A Practical Guide |
Autore | Brazdova Veronika |
Pubbl/distr/stampa | Hoboken, : Wiley, 2013 |
Descrizione fisica | 1 online resource (363 p.) |
Disciplina | 539.70113 |
Altri autori (Persone) | BowlerDavid R |
Soggetto topico |
Atoms
Molecular dynamics -- Computer simulation Molecules Atoms - Computer simulation Molecular dynamics - Computer simulation Physics Human Anatomy & Physiology Health & Biological Sciences Physical Sciences & Mathematics Atomic Physics Animal Biochemistry |
ISBN |
3-527-67183-8
3-527-67181-1 1-299-44871-2 3-527-67184-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Atomistic Computer Simulations; Contents; Preface; References; Color Plates; Part One The World at the Atomic Scale; 1 Atoms, Molecules and Crystals; 1.1 Length- and Timescales; 1.2 Electrons in an Atom; 1.3 Local Environment of an Atom; 1.3.1 Electrons; 1.3.2 Local Arrangement of Atoms; 1.4 Most Favorable Arrangement of Atoms; 1.4.1 The Concept of Total Energy; 1.4.2 Beyond the Total Energy; 1.4.3 The Most Stable Configuration; References; 2 Bonding; 2.1 Electronic Ground State; 2.2 Types of Bonds; 2.2.1 Covalent Bonding; 2.2.2 Ionic Bonding; 2.2.3 Metallic Bonding; 2.2.4 Hydrogen Bonding
2.2.5 Dispersion Bonding2.3 Bond Breaking and Creation; 2.4 Distortion of Bonds; References; 3 Chemical Reactions; 3.1 Chemical Equations; 3.2 Reaction Mechanisms; 3.3 Energetics of Chemical Reactions; 3.4 Every (Valence) Electron Counts; 3.5 The Energy Zoo; References; 4 What Exactly is Calculated?; 4.1 What Can Be Calculated?; 4.2 What Actually Happens?; 4.3 Models and Simulation Cells; 4.4 Energies; 4.5 Terms; 4.6 Liquid Iron: An Example; References; Part Two Introducing Equations to Describe the System; 5 Total Energy Minimization; 5.1 The Essential Nature of Minimization 5.2 Minimization Algorithms5.2.1 Steepest Descents; 5.2.2 Conjugate Gradients; 5.2.3 Quasi-Newton Methods; 5.2.4 Alternatives; 5.2.5 Exploring Landscapes; 5.2.6 Scaling and Computational Cost; 5.3 Optimize with Success; 5.3.1 Initial Configuration; 5.3.2 Initial Forces, Choice of Algorithm and Parameters; 5.3.3 Fixing Atoms; 5.3.4 Scaling with System Size; 5.4 Transition States; 5.5 Pseudokeywords; References; 6 Molecular Dynamics and Monte Carlo; 6.1 Equations of Motion; 6.2 Time and Timescales; 6.3 System Preparation and Equilibration 6.4 Conserving Temperature, Pressure, Volume or Other Variables6.5 Free Energies; 6.6 Monte Carlo Approaches; 6.7 Pseudokeywords for an MD Simulation; References; Part Three Describing Interactions Between Atoms; 7 Calculating Energies and Forces; 7.1 Forcefields; 7.1.1 Reliability and Transferability; 7.2 Electrostatics; 7.3 Electronic and Atomic Motion; 7.3.1 The Born-Oppenheimer Approximation; 7.3.2 Approximating the Electronic Many-Body Problem; 7.4 Electronic Excitations; References; 8 Electronic Structure Methods; 8.1 Hartree-Fock; 8.2 Going Beyond Hartree-Fock 8.3 Density Functional Theory8.4 Beyond DFT; 8.5 Basis Sets; 8.6 Semiempirical Methods; 8.7 Comparing Methods; References; 9 Density Functional Theory in Detail; 9.1 Independent Electrons; 9.2 Exchange-Correlation Functionals; 9.3 Representing the Electrons: Basis Sets; 9.3.1 Plane Waves; 9.3.2 Atomic-Like Orbitals; 9.4 Electron-Nuclear Interaction; 9.4.1 Pseudopotentials; 9.4.2 PAW; 9.4.3 Using All Electrons; 9.5 Solving the Electronic Ground State; 9.5.1 Charge Mixing and Electrostatics; 9.5.2 Metals and Occupancy; 9.6 Boundary Conditions and Reciprocal Space; 9.7 Difficult Problems 9.8 Pseudokeywords |
Record Nr. | UNINA-9910139023003321 |
Brazdova Veronika | ||
Hoboken, : Wiley, 2013 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Atomistic Computer Simulations : A Practical Guide |
Autore | Brazdova Veronika |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Hoboken, : Wiley, 2013 |
Descrizione fisica | 1 online resource (363 p.) |
Disciplina | 539.70113 |
Altri autori (Persone) | BowlerDavid R |
Soggetto topico |
Atoms
Molecular dynamics -- Computer simulation Molecules Atoms - Computer simulation Molecular dynamics - Computer simulation Physics Human Anatomy & Physiology Health & Biological Sciences Physical Sciences & Mathematics Atomic Physics Animal Biochemistry |
ISBN |
3-527-67183-8
3-527-67181-1 1-299-44871-2 3-527-67184-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Atomistic Computer Simulations; Contents; Preface; References; Color Plates; Part One The World at the Atomic Scale; 1 Atoms, Molecules and Crystals; 1.1 Length- and Timescales; 1.2 Electrons in an Atom; 1.3 Local Environment of an Atom; 1.3.1 Electrons; 1.3.2 Local Arrangement of Atoms; 1.4 Most Favorable Arrangement of Atoms; 1.4.1 The Concept of Total Energy; 1.4.2 Beyond the Total Energy; 1.4.3 The Most Stable Configuration; References; 2 Bonding; 2.1 Electronic Ground State; 2.2 Types of Bonds; 2.2.1 Covalent Bonding; 2.2.2 Ionic Bonding; 2.2.3 Metallic Bonding; 2.2.4 Hydrogen Bonding
2.2.5 Dispersion Bonding2.3 Bond Breaking and Creation; 2.4 Distortion of Bonds; References; 3 Chemical Reactions; 3.1 Chemical Equations; 3.2 Reaction Mechanisms; 3.3 Energetics of Chemical Reactions; 3.4 Every (Valence) Electron Counts; 3.5 The Energy Zoo; References; 4 What Exactly is Calculated?; 4.1 What Can Be Calculated?; 4.2 What Actually Happens?; 4.3 Models and Simulation Cells; 4.4 Energies; 4.5 Terms; 4.6 Liquid Iron: An Example; References; Part Two Introducing Equations to Describe the System; 5 Total Energy Minimization; 5.1 The Essential Nature of Minimization 5.2 Minimization Algorithms5.2.1 Steepest Descents; 5.2.2 Conjugate Gradients; 5.2.3 Quasi-Newton Methods; 5.2.4 Alternatives; 5.2.5 Exploring Landscapes; 5.2.6 Scaling and Computational Cost; 5.3 Optimize with Success; 5.3.1 Initial Configuration; 5.3.2 Initial Forces, Choice of Algorithm and Parameters; 5.3.3 Fixing Atoms; 5.3.4 Scaling with System Size; 5.4 Transition States; 5.5 Pseudokeywords; References; 6 Molecular Dynamics and Monte Carlo; 6.1 Equations of Motion; 6.2 Time and Timescales; 6.3 System Preparation and Equilibration 6.4 Conserving Temperature, Pressure, Volume or Other Variables6.5 Free Energies; 6.6 Monte Carlo Approaches; 6.7 Pseudokeywords for an MD Simulation; References; Part Three Describing Interactions Between Atoms; 7 Calculating Energies and Forces; 7.1 Forcefields; 7.1.1 Reliability and Transferability; 7.2 Electrostatics; 7.3 Electronic and Atomic Motion; 7.3.1 The Born-Oppenheimer Approximation; 7.3.2 Approximating the Electronic Many-Body Problem; 7.4 Electronic Excitations; References; 8 Electronic Structure Methods; 8.1 Hartree-Fock; 8.2 Going Beyond Hartree-Fock 8.3 Density Functional Theory8.4 Beyond DFT; 8.5 Basis Sets; 8.6 Semiempirical Methods; 8.7 Comparing Methods; References; 9 Density Functional Theory in Detail; 9.1 Independent Electrons; 9.2 Exchange-Correlation Functionals; 9.3 Representing the Electrons: Basis Sets; 9.3.1 Plane Waves; 9.3.2 Atomic-Like Orbitals; 9.4 Electron-Nuclear Interaction; 9.4.1 Pseudopotentials; 9.4.2 PAW; 9.4.3 Using All Electrons; 9.5 Solving the Electronic Ground State; 9.5.1 Charge Mixing and Electrostatics; 9.5.2 Metals and Occupancy; 9.6 Boundary Conditions and Reciprocal Space; 9.7 Difficult Problems 9.8 Pseudokeywords |
Record Nr. | UNINA-9910808585903321 |
Brazdova Veronika | ||
Hoboken, : Wiley, 2013 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Atoms and radiation [[electronic resource] ] : inaugural Lecture delivered on Thursday 18 April 2013 / / Jean Dalibard |
Autore | Dalibard J. |
Pubbl/distr/stampa | Collège de France, 2015 |
Descrizione fisica | 1 online resource : illustrations; charts; digital, HTML file(s) |
Disciplina | 539.7 |
Collana | Leçons inaugurales |
Soggetto topico |
Physics
Atoms Radiation - Atoms Physical Sciences & Mathematics Atomic Physics |
Soggetto non controllato |
laser
light radiation physics atomic physics time atom |
ISBN |
2722604078
9782722604070 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910140121803321 |
Dalibard J. | ||
Collège de France, 2015 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
A College Course on Relativity and Cosmology [[electronic resource]] |
Autore | Cheng Ta-Pei |
Pubbl/distr/stampa | Oxford, : OUP Oxford, 2015 |
Descrizione fisica | 1 online resource (724 p.) |
Disciplina | 530.11 |
Soggetto topico |
Relativity (Physics)
Space and time Gravity Black holes (Astronomy) Cosmology Physics Physical Sciences & Mathematics Physics - General Atomic Physics |
ISBN | 0-19-106084-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover; Preface; Contents; 1 Introduction; 1.1 Relativity as a coordinate symmetry; 1.1.1 Coordinate transformations; 1.1.2 The principle of relativity; 1.2 Einstein and relativity; 1.2.1 The new kinematics; 1.2.2 GR as a field theory of gravitation; Review questions; 2 Special Relativity: The New Kinematics; 2.1 Einstein's two postulates and Lorentz transformation; 2.1.1 Relativity of simultaneity and the new conception of time; 2.1.2 Coordinate-dependent time leads to Lorentz transformation; 2.2 Physics implications of Lorentz transformation; 2.2.1 Time dilation and length contraction
2.2.2 The invariant interval and proper time2.3 Two counterintuitive scenarios as paradoxes; Review questions; 3 Special Relativity: Flat Spacetime; 3.1 Geometric formulation of relativity; 3.2 Tensors in special relativity; 3.2.1 Generalized coordinates: bases and the metric; 3.2.2 Velocity and momentum 4-vectors; 3.2.3 Electromagnetic field 4-tensor; 3.2.4 The energy-momentum-stress 4-tensor for a field system; 3.3 The spacetime diagram; 3.3.1 Invariant regions and causal structure; 3.3.2 Lorentz transformation in the spacetime diagram; Review questions 4 Equivalence of Gravitation and Inertia4.1 Seeking a relativistic theory of gravitation; 4.1.1 Newtonian potential: a summary; 4.1.2 Einstein's motivation for general relativity; 4.2 The equivalence principle: from Galileo to Einstein; 4.2.1 Inertial mass vs. gravitational mass; 4.2.2 Einstein: ''my happiest thought''; 4.3 EP leads to gravitational time dilation and light deflection; 4.3.1 Gravitational redshift and time dilation; 4.3.2 Relativity and the operation of GPS; 4.3.3 The EP calculation of light deflection; 4.3.4 Energetics of light transmission in a gravitational field Review questions5 General Relativity as a Geometric Theory of Gravity; 5.1 Metric description of a curved manifold; 5.1.1 Gaussian coordinates and the metric tensor; 5.1.2 The geodesic equation; 5.1.3 Local Euclidean frames and the flatness theorem; 5.2 From the equivalence principle to a metric theory of gravity; 5.2.1 Curved spacetime as gravitational field; 5.2.2 GR as a field theory of gravitation; 5.3 Geodesic equation as the GR equation of motion; 5.3.1 The Newtonian limit; Review questions; 6 Einstein Equation and its Spherical Solution; 6.1 Curvature: a short introduction 6.2 Tidal gravity and spacetime curvature6.2.1 Tidal forces-a qualitative discussion; 6.2.2 Deviation equations and tidal gravity; 6.3 The GR field equation; 6.3.1 Einstein curvature tensor; 6.3.2 Einstein field equation; 6.3.3 Gravitational waves; 6.4 Geodesics in Schwarzschild spacetime; 6.4.1 The geometry of a spherically symmetric spacetime; 6.4.2 Curved spacetime and deflection of light; 6.4.3 Precession of Mercury's orbit; Review questions; 7 Black Holes; 7.1 Schwarzschild black holes; 7.1.1 Time measurements around a black hole; 7.1.2 Causal structure of the Schwarzschild surface 7.1.3 Binding energy to a black hole can be extremely large |
Record Nr. | UNINA-9910797137803321 |
Cheng Ta-Pei | ||
Oxford, : OUP Oxford, 2015 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
A College Course on Relativity and Cosmology |
Autore | Cheng Ta-Pei |
Pubbl/distr/stampa | Oxford, : OUP Oxford, 2015 |
Descrizione fisica | 1 online resource (724 p.) |
Disciplina | 530.11 |
Soggetto topico |
Relativity (Physics)
Space and time Gravity Black holes (Astronomy) Cosmology Physics Physical Sciences & Mathematics Physics - General Atomic Physics |
ISBN | 0-19-106084-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover; Preface; Contents; 1 Introduction; 1.1 Relativity as a coordinate symmetry; 1.1.1 Coordinate transformations; 1.1.2 The principle of relativity; 1.2 Einstein and relativity; 1.2.1 The new kinematics; 1.2.2 GR as a field theory of gravitation; Review questions; 2 Special Relativity: The New Kinematics; 2.1 Einstein's two postulates and Lorentz transformation; 2.1.1 Relativity of simultaneity and the new conception of time; 2.1.2 Coordinate-dependent time leads to Lorentz transformation; 2.2 Physics implications of Lorentz transformation; 2.2.1 Time dilation and length contraction
2.2.2 The invariant interval and proper time2.3 Two counterintuitive scenarios as paradoxes; Review questions; 3 Special Relativity: Flat Spacetime; 3.1 Geometric formulation of relativity; 3.2 Tensors in special relativity; 3.2.1 Generalized coordinates: bases and the metric; 3.2.2 Velocity and momentum 4-vectors; 3.2.3 Electromagnetic field 4-tensor; 3.2.4 The energy-momentum-stress 4-tensor for a field system; 3.3 The spacetime diagram; 3.3.1 Invariant regions and causal structure; 3.3.2 Lorentz transformation in the spacetime diagram; Review questions 4 Equivalence of Gravitation and Inertia4.1 Seeking a relativistic theory of gravitation; 4.1.1 Newtonian potential: a summary; 4.1.2 Einstein's motivation for general relativity; 4.2 The equivalence principle: from Galileo to Einstein; 4.2.1 Inertial mass vs. gravitational mass; 4.2.2 Einstein: ''my happiest thought''; 4.3 EP leads to gravitational time dilation and light deflection; 4.3.1 Gravitational redshift and time dilation; 4.3.2 Relativity and the operation of GPS; 4.3.3 The EP calculation of light deflection; 4.3.4 Energetics of light transmission in a gravitational field Review questions5 General Relativity as a Geometric Theory of Gravity; 5.1 Metric description of a curved manifold; 5.1.1 Gaussian coordinates and the metric tensor; 5.1.2 The geodesic equation; 5.1.3 Local Euclidean frames and the flatness theorem; 5.2 From the equivalence principle to a metric theory of gravity; 5.2.1 Curved spacetime as gravitational field; 5.2.2 GR as a field theory of gravitation; 5.3 Geodesic equation as the GR equation of motion; 5.3.1 The Newtonian limit; Review questions; 6 Einstein Equation and its Spherical Solution; 6.1 Curvature: a short introduction 6.2 Tidal gravity and spacetime curvature6.2.1 Tidal forces-a qualitative discussion; 6.2.2 Deviation equations and tidal gravity; 6.3 The GR field equation; 6.3.1 Einstein curvature tensor; 6.3.2 Einstein field equation; 6.3.3 Gravitational waves; 6.4 Geodesics in Schwarzschild spacetime; 6.4.1 The geometry of a spherically symmetric spacetime; 6.4.2 Curved spacetime and deflection of light; 6.4.3 Precession of Mercury's orbit; Review questions; 7 Black Holes; 7.1 Schwarzschild black holes; 7.1.1 Time measurements around a black hole; 7.1.2 Causal structure of the Schwarzschild surface 7.1.3 Binding energy to a black hole can be extremely large |
Record Nr. | UNINA-9910827964303321 |
Cheng Ta-Pei | ||
Oxford, : OUP Oxford, 2015 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
A Course in Theoretical Physics [[electronic resource]] |
Autore | Shepherd P. John |
Pubbl/distr/stampa | Hoboken, : Wiley, 2013 |
Descrizione fisica | 1 online resource (483 p.) |
Disciplina |
530
530.1 |
Soggetto topico |
Physics
Physics -- Textbooks Quantum theory Quantum theory -- Textbooks Statistical physics Statistical physics -- Textbooks Physical Sciences & Mathematics Atomic Physics |
Soggetto genere / forma | Electronic books. |
ISBN |
1-299-18855-9
1-118-51690-7 1-118-51692-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
A Course in Theoretical Physics; Contents; Notation; Preface; I NONRELATIVISTIC QUANTUM MECHANICS; 1 Basic Concepts of Quantum Mechanics; 1.1 Probability interpretation of the wave function; 1.2 States of definite energy and states of definite momentum; 1.3 Observables and operators; 1.4 Examples of operators; 1.5 The time-dependent Schrödinger equation; 1.6 Stationary states and the time-independent Schrödinger equation; 1.7 Eigenvalue spectra and the results of measurements; 1.8 Hermitian operators; 1.9 Expectation values of observables
1.10 Commuting observables and simultaneous observability1.11 Noncommuting observables and the uncertainty principle; 1.12 Time dependence of expectation values; 1.13 The probability-current density; 1.14 The general form of wave functions; 1.15 Angular momentum; 1.16 Particle in a three-dimensional spherically symmetric potential; 1.17 The hydrogen-like atom; 2 Representation Theory; 2.1 Dirac representation of quantum mechanical states; 2.2 Completeness and closure; 2.3 Changes of representation; 2.4 Representation of operators; 2.5 Hermitian operators; 2.6 Products of operators 2.7 Formal theory of angular momentum3 Approximation Methods; 3.1 Time-independent perturbation theory for nondegenerate states; 3.2 Time-independent perturbation theory for degenerate states; 3.3 The variational method; 3.4 Time-dependent perturbation theory; 4 Scattering Theory; 4.1 Evolution operators and Møller operators; 4.2 The scattering operator and scattering matrix; 4.3 The Green operator and T operator; 4.4 The stationary scattering states; 4.5 The optical theorem; 4.6 The Born series and Born approximation; 4.7 Spherically symmetric potentials and the method of partial waves 4.8 The partial-wave scattering statesII THERMAL AND STATISTICAL PHYSICS; 5 Fundamentals of Thermodynamics; 5.1 The nature of thermodynamics; 5.2 Walls and constraints; 5.3 Energy; 5.4 Microstates; 5.5 Thermodynamic observables and thermal fluctuations; 5.6 Thermodynamic degrees of freedom; 5.7 Thermal contact and thermal equilibrium; 5.8 The zeroth law of thermodynamics; 5.9 Temperature; 5.10 The International Practical Temperature Scale; 5.11 Equations of state; 5.12 Isotherms; 5.13 Processes; 5.13.1 Nondissipative work; 5.13.2 Dissipative work; 5.13.3 Heat flow 5.14 Internal energy and heat5.14.1 Joule's experiments and internal energy; 5.14.2 Heat; 5.15 Partial derivatives; 5.16 Heat capacity and specific heat; 5.16.1 Constant-volume heat capacity; 5.16.2 Constant-pressure heat capacity; 5.17 Applications of the first law to ideal gases; 5.18 Difference of constant-pressure and constant-volume heat capacities; 5.19 Nondissipative-compression/expansion adiabat of an ideal gas; 6 Quantum States and Temperature; 6.1 Quantum states; 6.2 Effects of interactions; 6.3 Statistical meaning of temperature; 6.4 The Boltzmann distribution 7 Microstate Probabilities and Entropy |
Record Nr. | UNINA-9910463336703321 |
Shepherd P. John | ||
Hoboken, : Wiley, 2013 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
De l'atome au matériau : les phénomènes quantiques collectifs / / Antoine Georges |
Autore | Georges Antoine <1961-> |
Pubbl/distr/stampa | Collège de France, 2010 |
Descrizione fisica | 1 online resource (35 pages) : illustrations |
Collana | Leðcons inaugurales du Colláege de France De l'atome au matâeriau |
Soggetto topico |
Condensed matter - Electric properties
Quantum theory Materials Physics Physical Sciences & Mathematics Atomic Physics |
Soggetto non controllato | Quantum physics |
ISBN |
2-7226-0111-7
2-8218-1474-7 2-7226-0112-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | fre |
Record Nr. | UNINA-9910137463403321 |
Georges Antoine <1961-> | ||
Collège de France, 2010 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Digest of papers : Microprocesses and Nanotechnology 2004 : 2004 International Microprocesses and Nanotechnology Conference : October 26-29, 2004, conference (october 26 technical Seminar, 27-29 Conference) : Osaka, Japan |
Pubbl/distr/stampa | [Place of publication not identified], : Japan Society of Applied Physics, 2004 |
Disciplina | 621.3815/31 |
Soggetto topico |
Microfabrication - Very large scale integration - Design and construction
Integrated circuits Lithography Nanotechnology Microelectronics Physics Physical Sciences & Mathematics Atomic Physics |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISA-996206243603316 |
[Place of publication not identified], : Japan Society of Applied Physics, 2004 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Digest of papers : Microprocesses and Nanotechnology 2004 : 2004 International Microprocesses and Nanotechnology Conference : October 26-29, 2004, conference (october 26 technical Seminar, 27-29 Conference) : Osaka, Japan |
Pubbl/distr/stampa | [Place of publication not identified], : Japan Society of Applied Physics, 2004 |
Disciplina | 621.3815/31 |
Soggetto topico |
Microfabrication - Very large scale integration - Design and construction
Integrated circuits Lithography Nanotechnology Microelectronics Physics Physical Sciences & Mathematics Atomic Physics |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910872557103321 |
[Place of publication not identified], : Japan Society of Applied Physics, 2004 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|