Analysis I : integral representations and asymptotic methods / ed. R. V. Gamkrelidze |
Autore | Gamkrelidze, R. V. |
Pubbl/distr/stampa | Berlin : Springer-Verlag, 1989 |
Descrizione fisica | 228 p. ; 24 cm. |
Disciplina | 515.72 |
Collana | Encyclopaedia of mathematical sciences, 0938-0396 ; 13 |
Soggetto topico |
Asymptotic expansions
Integral representations Integral transforms Operational calculus |
ISBN | 0387170081 |
Classificazione |
AMS 00A20
AMS 30-XX AMS 33-XX AMS 34E AMS 35Q AMS 40-XX AMS 42-XX AMS 45-XX QA432.A6213 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISALENTO-991000679559707536 |
Gamkrelidze, R. V. | ||
Berlin : Springer-Verlag, 1989 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. del Salento | ||
|
Analysis II : convex analysis and approximation theory / ed. R. V. Gamkrelidze |
Autore | Gamkrelidze, R. V. |
Edizione | [Engl. ed] |
Pubbl/distr/stampa | Berlin : Springer-Verlag, c1990 |
Descrizione fisica | 255 p. : ill. ; 24 cm. |
Disciplina | 515.8 |
Collana | Encyclopaedia of mathematical sciences, 0938-0396 ; 14 |
Soggetto topico |
Asymptotic expansions
Integral representations Integral transforms Operational calculus |
ISBN | 3540181792 |
Classificazione |
AMS 00A20
AMS 26A AMS 26B AMS 26C AMS 30E AMS 41-XX AMS 42-XX AMS 52-XX QA432.A6213 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISALENTO-991000679629707536 |
Gamkrelidze, R. V. | ||
Berlin : Springer-Verlag, c1990 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. del Salento | ||
|
Analysis IV : linear and boundary integral equations / eds. V. G. Maz'ya, S. M. Nikol'skii |
Autore | Nikol'skii, Sergei Mikhailovich |
Edizione | [Engl. ed] |
Pubbl/distr/stampa | Berlin : Springer-Verlag, 1991 |
Descrizione fisica | 233 p. ; 24 cm. |
Disciplina | 515.45 |
Altri autori (Persone) | Maz'ya, Vladimir G. |
Collana | Encyclopaedia of mathematical sciences, 0938-0396 ; 27 |
Soggetto topico |
Asymptotic expansions
Integral representations Integral transforms Operational calculus |
ISBN | 3540519971 |
Classificazione |
AMS 00A20
AMS 31B AMS 45-02 AMS 45B05 AMS 45E AMS 45F AMS 45P05 AMS 47A AMS 47B AMS 47G05 (1985) AMS 58G15 QA432.A6213 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISALENTO-991000679859707536 |
Nikol'skii, Sergei Mikhailovich | ||
Berlin : Springer-Verlag, 1991 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. del Salento | ||
|
Analyzable functions and applications : International Workshop on Analyzable Functions and Applications, June 17-21, 2002, International Centre for Mathematical Sciences, Edinburgh, Scotland / / O. Costin, M.D. Kruskal, A. Macintyre, editors |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [2005] |
Descrizione fisica | 1 online resource (384 p.) |
Disciplina | 515 |
Collana | Contemporary mathematics |
Soggetto topico |
Asymptotic expansions
Functions |
Soggetto genere / forma | Electronic books. |
ISBN |
0-8218-7963-4
0-8218-5707-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""Contents""; ""Preface""; ""A singularly perturbed Riccati equation""; ""On global aspects of exact WKB analysis of operators admitting infinitely many phases""; ""Asymptotic differential algebra""; ""Introduction""; ""1. Hardy Fields""; ""2. The Field of Logarithmic-Exponential Series""; ""3. H-Fields and Asymptotic Couples""; ""4. Algebraic Differential Equations over H-Fields""; ""References""; ""Formally well-posed Cauchy problems for linear partial differential equations with constant coefficients""; ""Non-oscillating integral curves and O-minimal structures""; ""1. Introduction""
""2. Definitions and examples""""2.1 Hardy fields and o-minimal structures""; ""2.2 Boshernitzan's example""; ""2.3 Quasianalytic Denjoy-Carleman classes""; ""3. Euler's equation""; ""3.1 Euler's equation in the real plane""; ""3.2 Euler's equation in the complex plane""; ""3.3 Formal conjugation""; ""Asymptotics and singularities for a class of difference equations""; ""Topological construction of transseries and introduction to generalized Borel summability""; ""1. Introduction""; ""1.1. Abstract multiseries""; ""1.2. Topology on multiseries""; ""1.3. Contractive operators"" ""1.4. Inductive construction of logarithm-free transseries""""1.5. The space T of general transseries""; ""2. Equations in T: examples""; ""2.1. Multidimensional systems: transseries solutions at irregular singularities of rank one""; ""3. Borel summation techniques""; ""3.1. Borel summation of transseries: a first order example""; ""3.2. Generalized Borel summation for rank one ODEs""; ""3.3. Difference equations and PDEs""; ""3.4. More general irregular singularities and multisummability""; ""References""; ""Addendum to the hyperasymptotics for multidimensional Laplace integrals"" ""Higher-order terms for the de Moivre-Laplace theorem""""Twisted resurgence monomials and canonical-spherical synthesis of local objects""; ""1. Introduction: Object Analysis and Object Synthesis""; ""1.1 The notion of Local Analytic Object""; ""1.2 Object Analysis: the Bridge Equation""; ""1.3 Object Synthesis: semi-formal candidates""; ""1.4 Object Synthesis: from semi-formal to effective""; ""2. Reminders about moulds, resurgent functions, alien derivations""; ""2.1 Moulds/comoulds""; ""2.2 Resurgent functions""; ""2.3 Alien derivations or automorphisms. Their weights"" ""2.4 Resurgence monomials""""3. Object Analysis: six basic examples""; ""3.1 Example 1: shift-like diffeomorphism""; ""3.2 Example 2: Euler-like differential equation""; ""3.3 Example 3: monocritical linear differential system""; ""3.4 Example 4: monocritical non-linear differential system""; ""3.5 Example 5: polycritical linear differential system""; ""3.6 Example 6: polycritical non-linear differential system""; ""4. The reverse problem: Object Synthesis""; ""4.1 Standard or hyperlogarithmic resurgence monomials and monics""; ""4.2 Semi-formal synthesis in Example 1"" ""4.3 Semi-formal synthesis in Example 2"" |
Record Nr. | UNINA-9910480091403321 |
Providence, Rhode Island : , : American Mathematical Society, , [2005] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Analyzable functions and applications : International Workshop on Analyzable Functions and Applications, June 17-21, 2002, International Centre for Mathematical Sciences, Edinburgh, Scotland / / O. Costin, Kruskal, A. Macintyre, editors |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [2005] |
Descrizione fisica | 1 online resource (384 p.) |
Disciplina | 515 |
Collana | Contemporary mathematics |
Soggetto topico |
Asymptotic expansions
Functions |
ISBN |
0-8218-7963-4
0-8218-5707-X |
Classificazione | 31.49 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Contents -- Preface -- A singularly perturbed Riccati equation -- On global aspects of exact WKB analysis of operators admitting infinitely many phases -- Asymptotic differential algebra -- Introduction -- 1. Hardy Fields -- 2. The Field of Logarithmic-Exponential Series -- 3. H-Fields and Asymptotic Couples -- 4. Algebraic Differential Equations over H-Fields -- References -- Formally well-posed Cauchy problems for linear partial differential equations with constant coefficients -- Non-oscillating integral curves and O-minimal structures -- 1. Introduction -- 2. Definitions and examples -- 2.1 Hardy fields and o-minimal structures -- 2.2 Boshernitzan's example -- 2.3 Quasianalytic Denjoy-Carleman classes -- 3. Euler's equation -- 3.1 Euler's equation in the real plane -- 3.2 Euler's equation in the complex plane -- 3.3 Formal conjugation -- Asymptotics and singularities for a class of difference equations -- Topological construction of transseries and introduction to generalized Borel summability -- 1. Introduction -- 1.1. Abstract multiseries -- 1.2. Topology on multiseries -- 1.3. Contractive operators -- 1.4. Inductive construction of logarithm-free transseries -- 1.5. The space T of general transseries -- 2. Equations in T: examples -- 2.1. Multidimensional systems: transseries solutions at irregular singularities of rank one -- 3. Borel summation techniques -- 3.1. Borel summation of transseries: a first order example -- 3.2. Generalized Borel summation for rank one ODEs -- 3.3. Difference equations and PDEs -- 3.4. More general irregular singularities and multisummability -- References -- Addendum to the hyperasymptotics for multidimensional Laplace integrals -- Higher-order terms for the de Moivre-Laplace theorem -- Twisted resurgence monomials and canonical-spherical synthesis of local objects -- 1. Introduction: Object Analysis and Object Synthesis -- 1.1 The notion of Local Analytic Object -- 1.2 Object Analysis: the Bridge Equation -- 1.3 Object Synthesis: semi-formal candidates -- 1.4 Object Synthesis: from semi-formal to effective -- 2. Reminders about moulds, resurgent functions, alien derivations -- 2.1 Moulds/comoulds -- 2.2 Resurgent functions -- 2.3 Alien derivations or automorphisms. Their weights -- 2.4 Resurgence monomials -- 3. Object Analysis: six basic examples -- 3.1 Example 1: shift-like diffeomorphism -- 3.2 Example 2: Euler-like differential equation -- 3.3 Example 3: monocritical linear differential system -- 3.4 Example 4: monocritical non-linear differential system -- 3.5 Example 5: polycritical linear differential system -- 3.6 Example 6: polycritical non-linear differential system -- 4. The reverse problem: Object Synthesis -- 4.1 Standard or hyperlogarithmic resurgence monomials and monics -- 4.2 Semi-formal synthesis in Example 1 -- 4.3 Semi-formal synthesis in Example 2. |
Record Nr. | UNINA-9910788659703321 |
Providence, Rhode Island : , : American Mathematical Society, , [2005] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Analyzable functions and applications : International Workshop on Analyzable Functions and Applications, June 17-21, 2002, International Centre for Mathematical Sciences, Edinburgh, Scotland / / O. Costin, Kruskal, A. Macintyre, editors |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [2005] |
Descrizione fisica | 1 online resource (384 p.) |
Disciplina | 515 |
Collana | Contemporary mathematics |
Soggetto topico |
Asymptotic expansions
Functions |
ISBN |
0-8218-7963-4
0-8218-5707-X |
Classificazione | 31.49 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Contents -- Preface -- A singularly perturbed Riccati equation -- On global aspects of exact WKB analysis of operators admitting infinitely many phases -- Asymptotic differential algebra -- Introduction -- 1. Hardy Fields -- 2. The Field of Logarithmic-Exponential Series -- 3. H-Fields and Asymptotic Couples -- 4. Algebraic Differential Equations over H-Fields -- References -- Formally well-posed Cauchy problems for linear partial differential equations with constant coefficients -- Non-oscillating integral curves and O-minimal structures -- 1. Introduction -- 2. Definitions and examples -- 2.1 Hardy fields and o-minimal structures -- 2.2 Boshernitzan's example -- 2.3 Quasianalytic Denjoy-Carleman classes -- 3. Euler's equation -- 3.1 Euler's equation in the real plane -- 3.2 Euler's equation in the complex plane -- 3.3 Formal conjugation -- Asymptotics and singularities for a class of difference equations -- Topological construction of transseries and introduction to generalized Borel summability -- 1. Introduction -- 1.1. Abstract multiseries -- 1.2. Topology on multiseries -- 1.3. Contractive operators -- 1.4. Inductive construction of logarithm-free transseries -- 1.5. The space T of general transseries -- 2. Equations in T: examples -- 2.1. Multidimensional systems: transseries solutions at irregular singularities of rank one -- 3. Borel summation techniques -- 3.1. Borel summation of transseries: a first order example -- 3.2. Generalized Borel summation for rank one ODEs -- 3.3. Difference equations and PDEs -- 3.4. More general irregular singularities and multisummability -- References -- Addendum to the hyperasymptotics for multidimensional Laplace integrals -- Higher-order terms for the de Moivre-Laplace theorem -- Twisted resurgence monomials and canonical-spherical synthesis of local objects -- 1. Introduction: Object Analysis and Object Synthesis -- 1.1 The notion of Local Analytic Object -- 1.2 Object Analysis: the Bridge Equation -- 1.3 Object Synthesis: semi-formal candidates -- 1.4 Object Synthesis: from semi-formal to effective -- 2. Reminders about moulds, resurgent functions, alien derivations -- 2.1 Moulds/comoulds -- 2.2 Resurgent functions -- 2.3 Alien derivations or automorphisms. Their weights -- 2.4 Resurgence monomials -- 3. Object Analysis: six basic examples -- 3.1 Example 1: shift-like diffeomorphism -- 3.2 Example 2: Euler-like differential equation -- 3.3 Example 3: monocritical linear differential system -- 3.4 Example 4: monocritical non-linear differential system -- 3.5 Example 5: polycritical linear differential system -- 3.6 Example 6: polycritical non-linear differential system -- 4. The reverse problem: Object Synthesis -- 4.1 Standard or hyperlogarithmic resurgence monomials and monics -- 4.2 Semi-formal synthesis in Example 1 -- 4.3 Semi-formal synthesis in Example 2. |
Record Nr. | UNINA-9910828832803321 |
Providence, Rhode Island : , : American Mathematical Society, , [2005] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Asympototic behavior of generalized functions [[electronic resource] /] / Steven Pilipović, Bogoljub Stanković, Jasson Vindas |
Autore | Pilipović Stevan |
Pubbl/distr/stampa | Singapore, : World Scientific, c2012 |
Descrizione fisica | 1 online resource (309 p.) |
Disciplina |
515.23
515.782 |
Altri autori (Persone) |
StankovićBogoljub <1924->
VindasJasson |
Collana | Series on analysis, applications and computation |
Soggetto topico | Asymptotic expansions |
Soggetto genere / forma | Electronic books. |
ISBN | 981-4366-85-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Preface; Contents; I. Asymptotic Behavior of Generalized Functions; 0 Preliminaries; 1 S-asymptotics in F'g; 1.1 Definition; 1.2 Characterization of comparison functions and limits; 1.3 Equivalent definitions of the S-asymptotics in F'; 1.4 Basic properties of the S-asymptotics; 1.5 S-asymptotic behavior of some special classes of generalized functions; 1.5.1 Examples with regular distributions; 1.5.2 Examples with distributions in subspaces of D'; 1.5.3 S-asymptotics of ultradistributions and Fourier hyperfunctions - Comparisons with the S-asymptotics of distributions
1.6 S-asymptotics and the asymptotics of a function1.7 Characterization of the support of T F'; 1.8 Characterization of some generalized function spaces; 1.9 Structural theorems for S-asymptotics in F'; 1.10 S-asymptotic expansions in F'g; 1.10.1 General definitions and assertions; 1.10.2 S-asymptotic Taylor expansion; 1.11 S-asymptotics in subspaces of distributions; 1.12 Generalized S-asymptotics; 2 Quasi-asymptotics in F'; 2.1 Definition of quasi-asymptotics at infinity over a cone; 2.2 Basic properties of quasi-asymptotics over a cone 2.3 Quasi-asymptotic behavior at infinity of some generalized functions2.4 Equivalent definitions of quasi-asymptotics at infinity; 2.5 Quasi-asymptotics as an extension of the classical asymptotics; 2.6 Relations between quasi-asymptotics in D'(R) and S'(R); 2.7 Quasi-asymptotics at ±; 2.8 Quasi-asymptotics at the origin; 2.9 Quasi-asymptotic expansions; 2.10 The structure of quasi-asymptotics. Up-to-date results in one dimension; 2.10.1 Remarks on slowly varying functions; 2.10.2 Asymptotically homogeneous functions 2.10.3 Relation between asymptotically homogeneous functions and quasi-asymptotics2.10.4 Associate asymptotically homogeneous functions; 2.10.5 Structural theorems for negative integral degrees. The general case; 2.11 Quasi-asymptotic extension; 2.11.1 Quasi-asymptotics at the origin in D'(R) and S'(R); 2.11.2 Quasi-asymptotic extension problem in D'(0, ); 2.11.3 Quasi-asymptotics at infinity and spaces V'ß (R); 2.12 Quasi-asymptotic boundedness; 2.13 Relation between the S-asymptotics and quasi-asymptotics at; II. Applications of the Asymptotic Behavior of Generalized Functions 3 Asymptotic behavior of solutions to partial differential equations3.1 S-asymptotics of solutions; 3.2 Quasi-asymptotics of solutions; 3.3 S-asymptotics of solutions to equations with ultra-differential or local operators; 4 Asymptotics and integral transforms; 4.1 Abelian type theorems; 4.1.1 Transforms with general kernels; 4.1.2 Special integral transforms; 4.2 Tauberian type theorems; 4.2.1 Convolution type transforms in spaces of distributions; 4.2.2 Convolution type transforms in other spaces of generalized functions; 4.2.3 Integral transforms of Mellin convolution type 4.2.4 Special integral transforms |
Record Nr. | UNINA-9910457493803321 |
Pilipović Stevan | ||
Singapore, : World Scientific, c2012 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Asympototic behavior of generalized functions [[electronic resource] /] / Steven Pilipović, Bogoljub Stanković, Jasson Vindas |
Autore | Pilipović Stevan |
Pubbl/distr/stampa | Singapore, : World Scientific, c2012 |
Descrizione fisica | 1 online resource (309 p.) |
Disciplina |
515.23
515.782 |
Altri autori (Persone) |
StankovićBogoljub <1924->
VindasJasson |
Collana | Series on analysis, applications and computation |
Soggetto topico | Asymptotic expansions |
ISBN | 981-4366-85-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Preface; Contents; I. Asymptotic Behavior of Generalized Functions; 0 Preliminaries; 1 S-asymptotics in F'g; 1.1 Definition; 1.2 Characterization of comparison functions and limits; 1.3 Equivalent definitions of the S-asymptotics in F'; 1.4 Basic properties of the S-asymptotics; 1.5 S-asymptotic behavior of some special classes of generalized functions; 1.5.1 Examples with regular distributions; 1.5.2 Examples with distributions in subspaces of D'; 1.5.3 S-asymptotics of ultradistributions and Fourier hyperfunctions - Comparisons with the S-asymptotics of distributions
1.6 S-asymptotics and the asymptotics of a function1.7 Characterization of the support of T F'; 1.8 Characterization of some generalized function spaces; 1.9 Structural theorems for S-asymptotics in F'; 1.10 S-asymptotic expansions in F'g; 1.10.1 General definitions and assertions; 1.10.2 S-asymptotic Taylor expansion; 1.11 S-asymptotics in subspaces of distributions; 1.12 Generalized S-asymptotics; 2 Quasi-asymptotics in F'; 2.1 Definition of quasi-asymptotics at infinity over a cone; 2.2 Basic properties of quasi-asymptotics over a cone 2.3 Quasi-asymptotic behavior at infinity of some generalized functions2.4 Equivalent definitions of quasi-asymptotics at infinity; 2.5 Quasi-asymptotics as an extension of the classical asymptotics; 2.6 Relations between quasi-asymptotics in D'(R) and S'(R); 2.7 Quasi-asymptotics at ±; 2.8 Quasi-asymptotics at the origin; 2.9 Quasi-asymptotic expansions; 2.10 The structure of quasi-asymptotics. Up-to-date results in one dimension; 2.10.1 Remarks on slowly varying functions; 2.10.2 Asymptotically homogeneous functions 2.10.3 Relation between asymptotically homogeneous functions and quasi-asymptotics2.10.4 Associate asymptotically homogeneous functions; 2.10.5 Structural theorems for negative integral degrees. The general case; 2.11 Quasi-asymptotic extension; 2.11.1 Quasi-asymptotics at the origin in D'(R) and S'(R); 2.11.2 Quasi-asymptotic extension problem in D'(0, ); 2.11.3 Quasi-asymptotics at infinity and spaces V'ß (R); 2.12 Quasi-asymptotic boundedness; 2.13 Relation between the S-asymptotics and quasi-asymptotics at; II. Applications of the Asymptotic Behavior of Generalized Functions 3 Asymptotic behavior of solutions to partial differential equations3.1 S-asymptotics of solutions; 3.2 Quasi-asymptotics of solutions; 3.3 S-asymptotics of solutions to equations with ultra-differential or local operators; 4 Asymptotics and integral transforms; 4.1 Abelian type theorems; 4.1.1 Transforms with general kernels; 4.1.2 Special integral transforms; 4.2 Tauberian type theorems; 4.2.1 Convolution type transforms in spaces of distributions; 4.2.2 Convolution type transforms in other spaces of generalized functions; 4.2.3 Integral transforms of Mellin convolution type 4.2.4 Special integral transforms |
Record Nr. | UNINA-9910779068103321 |
Pilipović Stevan | ||
Singapore, : World Scientific, c2012 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Asympototic behavior of generalized functions / / Steven Pilipović, Bogoljub Stanković, Jasson Vindas |
Autore | Pilipović Stevan |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Singapore, : World Scientific, c2012 |
Descrizione fisica | 1 online resource (309 p.) |
Disciplina |
515.23
515.782 |
Altri autori (Persone) |
StankovićBogoljub <1924->
VindasJasson |
Collana | Series on analysis, applications and computation |
Soggetto topico | Asymptotic expansions |
ISBN | 981-4366-85-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Preface; Contents; I. Asymptotic Behavior of Generalized Functions; 0 Preliminaries; 1 S-asymptotics in F'g; 1.1 Definition; 1.2 Characterization of comparison functions and limits; 1.3 Equivalent definitions of the S-asymptotics in F'; 1.4 Basic properties of the S-asymptotics; 1.5 S-asymptotic behavior of some special classes of generalized functions; 1.5.1 Examples with regular distributions; 1.5.2 Examples with distributions in subspaces of D'; 1.5.3 S-asymptotics of ultradistributions and Fourier hyperfunctions - Comparisons with the S-asymptotics of distributions
1.6 S-asymptotics and the asymptotics of a function1.7 Characterization of the support of T F'; 1.8 Characterization of some generalized function spaces; 1.9 Structural theorems for S-asymptotics in F'; 1.10 S-asymptotic expansions in F'g; 1.10.1 General definitions and assertions; 1.10.2 S-asymptotic Taylor expansion; 1.11 S-asymptotics in subspaces of distributions; 1.12 Generalized S-asymptotics; 2 Quasi-asymptotics in F'; 2.1 Definition of quasi-asymptotics at infinity over a cone; 2.2 Basic properties of quasi-asymptotics over a cone 2.3 Quasi-asymptotic behavior at infinity of some generalized functions2.4 Equivalent definitions of quasi-asymptotics at infinity; 2.5 Quasi-asymptotics as an extension of the classical asymptotics; 2.6 Relations between quasi-asymptotics in D'(R) and S'(R); 2.7 Quasi-asymptotics at ±; 2.8 Quasi-asymptotics at the origin; 2.9 Quasi-asymptotic expansions; 2.10 The structure of quasi-asymptotics. Up-to-date results in one dimension; 2.10.1 Remarks on slowly varying functions; 2.10.2 Asymptotically homogeneous functions 2.10.3 Relation between asymptotically homogeneous functions and quasi-asymptotics2.10.4 Associate asymptotically homogeneous functions; 2.10.5 Structural theorems for negative integral degrees. The general case; 2.11 Quasi-asymptotic extension; 2.11.1 Quasi-asymptotics at the origin in D'(R) and S'(R); 2.11.2 Quasi-asymptotic extension problem in D'(0, ); 2.11.3 Quasi-asymptotics at infinity and spaces V'ß (R); 2.12 Quasi-asymptotic boundedness; 2.13 Relation between the S-asymptotics and quasi-asymptotics at; II. Applications of the Asymptotic Behavior of Generalized Functions 3 Asymptotic behavior of solutions to partial differential equations3.1 S-asymptotics of solutions; 3.2 Quasi-asymptotics of solutions; 3.3 S-asymptotics of solutions to equations with ultra-differential or local operators; 4 Asymptotics and integral transforms; 4.1 Abelian type theorems; 4.1.1 Transforms with general kernels; 4.1.2 Special integral transforms; 4.2 Tauberian type theorems; 4.2.1 Convolution type transforms in spaces of distributions; 4.2.2 Convolution type transforms in other spaces of generalized functions; 4.2.3 Integral transforms of Mellin convolution type 4.2.4 Special integral transforms |
Record Nr. | UNINA-9910811156603321 |
Pilipović Stevan | ||
Singapore, : World Scientific, c2012 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Asymptotic analysis / J. D. Murray |
Autore | Murray, James Dickson |
Pubbl/distr/stampa | New York : Springer-Verlag, c1984 |
Descrizione fisica | vi, 164 p. : ill. ; 25 cm |
Disciplina | 515.24 |
Collana | Applied mathematical sciences, 0066-5452 ; 48 |
Soggetto topico |
Approximation theory
Asymptotic expansions Differential equations - Numerical solutions Integrals Summability theory |
ISBN | 0387909370 |
Classificazione |
AMS 40-01
AMS 40A30 LC QA1.A647 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISALENTO-991000702379707536 |
Murray, James Dickson | ||
New York : Springer-Verlag, c1984 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. del Salento | ||
|