top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Analytics for insurance : the real business of big data / / Tony Boobier
Analytics for insurance : the real business of big data / / Tony Boobier
Autore Boobier Tony
Pubbl/distr/stampa Chichester, England : , : Wiley, , 2016
Descrizione fisica 1 online resource (299 p.)
Disciplina 368.00285
Collana Wiley Finance Series
Soggetto topico Insurance - Computer network resources
Assegurances
Recursos electrònics en xarxa
Soggetto genere / forma Llibres electrònics
ISBN 1-119-14109-5
1-119-14108-7
1-119-31624-3
Classificazione BUS004000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Analytics for Insurance: The Real Business of Big Data; Contents; Preface; Acknowledgements; About the Author; Chapter 1: Introduction - The New 'Real Business'; 1.1 On the Point of Transformation; 1.1.1 Big Data Defined by Its Characteristics; 1.1.2 The Hierarchy of Analytics, and How Value is Obtained from Data; 1.1.3 Next Generation Analytics; 1.1.4 Between the Data and the Analytics; 1.2 Big Data and Analytics for all Insurers; 1.2.1 Three Key Imperatives; 1.2.2 The Role of Intermediaries; 1.2.3 Geographical Perspectives; 1.2.4 Analytics and the Internet of Things
1.2.5 Scale Benefit - or Size Disadvantage?1.3 How do Analytics Actually Work?; 1.3.1 Business Intelligence; 1.3.2 Predictive Analytics; 1.3.3 Prescriptive Analytics; 1.3.4 Cognitive Computing; Notes; Chapter 2: Analytics and the Office of Finance; 2.1 The Challenges of Finance; 2.2 Performance Management and Integrated Decision-Making; 2.3 Finance and Insurance; 2.4 Reporting and Regulatory Disclosure; 2.5 GAAP and IFRS; 2.6 Mergers, Acquisitions and Divestments; 2.7 Transparency, Misrepresentation, the Securities Act and 'SOX'; 2.8 Social Media and Financial Analytics
2.9 Sales Management and Distribution Channels2.9.1 Agents and Producers; 2.9.2 Distribution Management; Notes; Chapter 3: Managing Financial Risk Across the Insur ance Enterprise; 3.1 Solvency II; 3.2 Solvency II, Cloud Computing and Shared Services; 3.3 'Sweating the Assets'; 3.4 Solvency II and IFRS; 3.5 The Changing Role of the CRO; 3.6 CRO as Customer Advocate; 3.7 Analytics and the Challenge of Unpredictability; 3.8 The Importance of Reinsurance; 3.9 Risk Adjusted Decision-Making; Notes; Chapter 4: Underwriting; 4.1 Underwriting and Big Data; 4.2 Underwriting for Specialist Lines
4.3 Telematics and User-Based Insurance as an Underwriting Tool4.4 Underwriting for Fraud Avoidance; 4.5 Analytics and Building Information Management (BIM); Notes; Chapter 5: Claims and the 'Moment of Truth'; 5.1 'Indemnity' and the Contractual Entitlement; 5.2 Claims Fraud; 5.2.1 Opportunistic Fraud; 5.2.1.1 Analytics in Opportunistic Fraud; 5.2.2 Organized Fraud; 5.2.2.1 Organized Fraud Detection through Network Analytics; 5.2.2.2 Voice Analytics in the Claims Fraud Process; 5.2.2.3 Fraud Analytics at Inception; 5.3 Property Repairs and Supply Chain Management; 5.4 Auto Repairs
5.5 Transforming the Handling of Complex Domestic Claims5.5.1 The Digital Investigator; 5.5.2 Potential Changes in the Claims Process; 5.5.3 Reinvention of the Supplier Ecosystem; 5.6 Levels of Inspection; 5.6.1 Reserving; 5.6.2 Business Interruption; 5.6.3 Subrogation; 5.7 Motor Assessing and Loss Adjusting; 5.7.1 Motor Assessing; 5.7.2 Loss Adjusting; 5.7.3 Property Claims Networks; 5.7.4 Adjustment of Cybersecurity Claims; 5.7.5 The Demographic Time Bomb in Adjusting; Notes; Chapter 6: Analytics and Marketing; 6.1 Customer Acquisition and Retention; 6.2 Social Media Analytics
6.3 Demography and How Population Matters
Record Nr. UNINA-9910134864403321
Boobier Tony  
Chichester, England : , : Wiley, , 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Analytics for insurance : the real business of big data / / Tony Boobier
Analytics for insurance : the real business of big data / / Tony Boobier
Autore Boobier Tony
Pubbl/distr/stampa Chichester, England : , : Wiley, , 2016
Descrizione fisica 1 online resource (299 p.)
Disciplina 368.00285
Collana Wiley Finance Series
Soggetto topico Insurance - Computer network resources
Assegurances
Recursos electrònics en xarxa
Soggetto genere / forma Llibres electrònics
ISBN 1-119-14109-5
1-119-14108-7
1-119-31624-3
Classificazione BUS004000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Analytics for Insurance: The Real Business of Big Data; Contents; Preface; Acknowledgements; About the Author; Chapter 1: Introduction - The New 'Real Business'; 1.1 On the Point of Transformation; 1.1.1 Big Data Defined by Its Characteristics; 1.1.2 The Hierarchy of Analytics, and How Value is Obtained from Data; 1.1.3 Next Generation Analytics; 1.1.4 Between the Data and the Analytics; 1.2 Big Data and Analytics for all Insurers; 1.2.1 Three Key Imperatives; 1.2.2 The Role of Intermediaries; 1.2.3 Geographical Perspectives; 1.2.4 Analytics and the Internet of Things
1.2.5 Scale Benefit - or Size Disadvantage?1.3 How do Analytics Actually Work?; 1.3.1 Business Intelligence; 1.3.2 Predictive Analytics; 1.3.3 Prescriptive Analytics; 1.3.4 Cognitive Computing; Notes; Chapter 2: Analytics and the Office of Finance; 2.1 The Challenges of Finance; 2.2 Performance Management and Integrated Decision-Making; 2.3 Finance and Insurance; 2.4 Reporting and Regulatory Disclosure; 2.5 GAAP and IFRS; 2.6 Mergers, Acquisitions and Divestments; 2.7 Transparency, Misrepresentation, the Securities Act and 'SOX'; 2.8 Social Media and Financial Analytics
2.9 Sales Management and Distribution Channels2.9.1 Agents and Producers; 2.9.2 Distribution Management; Notes; Chapter 3: Managing Financial Risk Across the Insur ance Enterprise; 3.1 Solvency II; 3.2 Solvency II, Cloud Computing and Shared Services; 3.3 'Sweating the Assets'; 3.4 Solvency II and IFRS; 3.5 The Changing Role of the CRO; 3.6 CRO as Customer Advocate; 3.7 Analytics and the Challenge of Unpredictability; 3.8 The Importance of Reinsurance; 3.9 Risk Adjusted Decision-Making; Notes; Chapter 4: Underwriting; 4.1 Underwriting and Big Data; 4.2 Underwriting for Specialist Lines
4.3 Telematics and User-Based Insurance as an Underwriting Tool4.4 Underwriting for Fraud Avoidance; 4.5 Analytics and Building Information Management (BIM); Notes; Chapter 5: Claims and the 'Moment of Truth'; 5.1 'Indemnity' and the Contractual Entitlement; 5.2 Claims Fraud; 5.2.1 Opportunistic Fraud; 5.2.1.1 Analytics in Opportunistic Fraud; 5.2.2 Organized Fraud; 5.2.2.1 Organized Fraud Detection through Network Analytics; 5.2.2.2 Voice Analytics in the Claims Fraud Process; 5.2.2.3 Fraud Analytics at Inception; 5.3 Property Repairs and Supply Chain Management; 5.4 Auto Repairs
5.5 Transforming the Handling of Complex Domestic Claims5.5.1 The Digital Investigator; 5.5.2 Potential Changes in the Claims Process; 5.5.3 Reinvention of the Supplier Ecosystem; 5.6 Levels of Inspection; 5.6.1 Reserving; 5.6.2 Business Interruption; 5.6.3 Subrogation; 5.7 Motor Assessing and Loss Adjusting; 5.7.1 Motor Assessing; 5.7.2 Loss Adjusting; 5.7.3 Property Claims Networks; 5.7.4 Adjustment of Cybersecurity Claims; 5.7.5 The Demographic Time Bomb in Adjusting; Notes; Chapter 6: Analytics and Marketing; 6.1 Customer Acquisition and Retention; 6.2 Social Media Analytics
6.3 Demography and How Population Matters
Record Nr. UNINA-9910809425103321
Boobier Tony  
Chichester, England : , : Wiley, , 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Decentralized insurance : technical foundation of business models / / Runhuan Feng
Decentralized insurance : technical foundation of business models / / Runhuan Feng
Autore Feng Runhuan
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (279 pages)
Disciplina 368.01
Collana Springer Actuarial
Soggetto topico Insurance - Statistical methods
Insurance - Mathematical models
Probabilities
Statistics
Mathematics in Business, Economics and Finance
Applied Probability
Applied Statistics
Assegurances
Estadística matemàtica
Models matemàtics
Soggetto genere / forma Llibres electrònics
Soggetto non controllato Finance
Business & Economics
ISBN 9783031295591
3031295595
9783031295584
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. Introduction -- 2. Risk Assessment and Measures -- 3. Economics of Risk and Insurance -- 4. Traditional Insurance -- 5. Decentralized Insurance -- 6. Aggregate Risk Pooling -- 7. P2P Risk Exchange -- 8. Unified Framework -- 9. DeFi Insurance -- Reference. – Index.
Record Nr. UNINA-9910726286603321
Feng Runhuan  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Pandemics : insurance and social protection / / editors, María del Carmen Boado-Penas, Julia Eisenberg, Şule Şahin
Pandemics : insurance and social protection / / editors, María del Carmen Boado-Penas, Julia Eisenberg, Şule Şahin
Autore Boado-Penas María del Carmen
Pubbl/distr/stampa Cham, : Springer International Publishing AG, 2021
Descrizione fisica 1 online resource (xx, 298 pages) : illustrations (some color)
Altri autori (Persone) Boado-PenasMaría del Carmen
EisenbergJulia
Şahin‬‬‬Şule
Collana Springer Actuarial
Soggetto topico Epidemics
Insurance - Mathematical models
Insurance - Statistical methods
Social security
Assegurances
Models matemàtics
Estadística matemática
Seguretat social
Epidèmies
Soggetto genere / forma Llibres electrònics
Soggetto non controllato Epidemics
Risk
Insurance
Social protection
Actuarial modelling
Open Access
ISBN 3-030-78334-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Acknowledgements -- Contents -- Contributors -- 1 COVID-19: A Trigger for Innovations in Insurance? -- 1.1 Introduction -- 1.2 Discussions from the Perspective of Insurance and Social Protection -- 1.2.1 Commercial Insurance -- 1.2.2 The Role of the Governments and Social Protection -- 1.3 Listening to the Wind of Change -- References -- 2 Epidemic Compartmental Models and Their Insurance Applications -- 2.1 Introduction -- 2.2 Compartmental Models in Epidemiology -- 2.2.1 SIR Model -- 2.2.2 Other Compartmental Models -- 2.3 Epidemic Insurance
2.3.1 Annuities and Insurance Benefits -- 2.3.2 Reserves -- 2.3.3 Further Extensions -- 2.3.4 Case Studies: COVID-19 -- 2.4 Resource Management -- 2.4.1 Pillar I: Regional and Aggregate Resources Demand Forecast -- 2.4.2 Pillar II: Centralised Stockpiling and Distribution -- 2.4.3 Pillar III: Centralised Resources Allocation -- 2.5 Conclusion -- References -- 3 Some Investigations with a Simple Actuarial Model for Infections Such as COVID-19 -- 3.1 Introduction -- 3.2 Multiple State Actuarial Models -- 3.3 A Simple Daily Model for Infection -- 3.4 Comparisons with the SIR Model
3.5 Enhancements for COVID-19 and Initial Assumptions -- 3.6 Estimating Parameters Model 1 -- 3.7 Estimating Parameters Model 2 -- 3.8 Comments on Results of Models 1 and 2 -- 3.9 Further Extensions: Models 3 and 4 -- 3.10 Comments on Results of Models 3 and 4 -- 3.11 Projection Models -- 3.12 Problems and Unknowns -- 3.13 Other Countries -- 3.14 Conclusions -- References -- 4 Stochastic Mortality Models and Pandemic Shocks -- 4.1 Stochastic Mortality Models and the COVID-19 Shock -- 4.2 The Impact of COVID-19 on Mortality Rates
4.3 Stochastic Mortality Models and Pandemics: Single-Population Models -- 4.3.1 Discrete-Time Single Population Models -- 4.3.2 Continuous-Time Single-Population Models -- 4.4 Stochastic Mortality Models and Pandemics: Multi-population -- 4.4.1 Discrete-Time Models -- 4.4.2 Continuous-Time Models -- 4.5 A Continuous-Time Multi-population Model with Jumps -- 4.6 Conclusions -- References -- 5 A Mortality Model for Pandemics and Other Contagion Events -- 5.1 Introduction -- 5.2 Highlights of Methodology and Findings -- 5.2.1 Summary of Methodology -- 5.2.2 Summary of Findings
5.3 Semiparametric Regression in MCMC -- 5.3.1 MCMC Parameter Shrinkage -- 5.3.2 Spline Regressions -- 5.3.3 Why Shrinkage? -- 5.3.4 Cross Validation in MCMC -- 5.4 Model Details -- 5.4.1 Formulas -- 5.4.2 Fitting Process -- 5.5 Results -- 5.5.1 Extensions: Generalisation, Projections and R Coding -- 5.6 Conclusions -- References -- 6 Risk-Sharing and Contingent Premia in the Presence of Systematic Risk: The Case Study of the UK COVID-19 Economic Losses -- 6.1 Introduction -- 6.2 Risk Levels and Systematic Risk in Insurance -- 6.3 Mathematical Setup -- 6.3.1 Probability Space
6.3.2 Insurance Preliminaries
Altri titoli varianti Pandemics
Record Nr. UNISA-996466419903316
Boado-Penas María del Carmen  
Cham, : Springer International Publishing AG, 2021
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Pandemics : insurance and social protection / / editors, María del Carmen Boado-Penas, Julia Eisenberg, Şule Şahin
Pandemics : insurance and social protection / / editors, María del Carmen Boado-Penas, Julia Eisenberg, Şule Şahin
Autore Boado-Penas María del Carmen
Pubbl/distr/stampa Cham, : Springer International Publishing AG, 2021
Descrizione fisica 1 online resource (xx, 298 pages) : illustrations (some color)
Altri autori (Persone) Boado-PenasMaría del Carmen
EisenbergJulia
Şahin‬‬‬Şule
Collana Springer Actuarial
Soggetto topico Epidemics
Insurance - Mathematical models
Insurance - Statistical methods
Social security
Assegurances
Models matemàtics
Estadística matemàtica
Seguretat social
Epidèmies
Soggetto genere / forma Llibres electrònics
Soggetto non controllato Epidemics
Risk
Insurance
Social protection
Actuarial modelling
Open Access
ISBN 3-030-78334-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Acknowledgements -- Contents -- Contributors -- 1 COVID-19: A Trigger for Innovations in Insurance? -- 1.1 Introduction -- 1.2 Discussions from the Perspective of Insurance and Social Protection -- 1.2.1 Commercial Insurance -- 1.2.2 The Role of the Governments and Social Protection -- 1.3 Listening to the Wind of Change -- References -- 2 Epidemic Compartmental Models and Their Insurance Applications -- 2.1 Introduction -- 2.2 Compartmental Models in Epidemiology -- 2.2.1 SIR Model -- 2.2.2 Other Compartmental Models -- 2.3 Epidemic Insurance
2.3.1 Annuities and Insurance Benefits -- 2.3.2 Reserves -- 2.3.3 Further Extensions -- 2.3.4 Case Studies: COVID-19 -- 2.4 Resource Management -- 2.4.1 Pillar I: Regional and Aggregate Resources Demand Forecast -- 2.4.2 Pillar II: Centralised Stockpiling and Distribution -- 2.4.3 Pillar III: Centralised Resources Allocation -- 2.5 Conclusion -- References -- 3 Some Investigations with a Simple Actuarial Model for Infections Such as COVID-19 -- 3.1 Introduction -- 3.2 Multiple State Actuarial Models -- 3.3 A Simple Daily Model for Infection -- 3.4 Comparisons with the SIR Model
3.5 Enhancements for COVID-19 and Initial Assumptions -- 3.6 Estimating Parameters Model 1 -- 3.7 Estimating Parameters Model 2 -- 3.8 Comments on Results of Models 1 and 2 -- 3.9 Further Extensions: Models 3 and 4 -- 3.10 Comments on Results of Models 3 and 4 -- 3.11 Projection Models -- 3.12 Problems and Unknowns -- 3.13 Other Countries -- 3.14 Conclusions -- References -- 4 Stochastic Mortality Models and Pandemic Shocks -- 4.1 Stochastic Mortality Models and the COVID-19 Shock -- 4.2 The Impact of COVID-19 on Mortality Rates
4.3 Stochastic Mortality Models and Pandemics: Single-Population Models -- 4.3.1 Discrete-Time Single Population Models -- 4.3.2 Continuous-Time Single-Population Models -- 4.4 Stochastic Mortality Models and Pandemics: Multi-population -- 4.4.1 Discrete-Time Models -- 4.4.2 Continuous-Time Models -- 4.5 A Continuous-Time Multi-population Model with Jumps -- 4.6 Conclusions -- References -- 5 A Mortality Model for Pandemics and Other Contagion Events -- 5.1 Introduction -- 5.2 Highlights of Methodology and Findings -- 5.2.1 Summary of Methodology -- 5.2.2 Summary of Findings
5.3 Semiparametric Regression in MCMC -- 5.3.1 MCMC Parameter Shrinkage -- 5.3.2 Spline Regressions -- 5.3.3 Why Shrinkage? -- 5.3.4 Cross Validation in MCMC -- 5.4 Model Details -- 5.4.1 Formulas -- 5.4.2 Fitting Process -- 5.5 Results -- 5.5.1 Extensions: Generalisation, Projections and R Coding -- 5.6 Conclusions -- References -- 6 Risk-Sharing and Contingent Premia in the Presence of Systematic Risk: The Case Study of the UK COVID-19 Economic Losses -- 6.1 Introduction -- 6.2 Risk Levels and Systematic Risk in Insurance -- 6.3 Mathematical Setup -- 6.3.1 Probability Space
6.3.2 Insurance Preliminaries
Altri titoli varianti Pandemics
Record Nr. UNINA-9910504284203321
Boado-Penas María del Carmen  
Cham, : Springer International Publishing AG, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Statistical Foundations of Actuarial Learning and its Applications / / by Mario V. Wüthrich, Michael Merz
Statistical Foundations of Actuarial Learning and its Applications / / by Mario V. Wüthrich, Michael Merz
Autore Wüthrich Mario V
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham, : Springer Nature, 2023
Descrizione fisica 1 online resource (XII, 605 p. 1 illus.)
Disciplina 368.01
Collana Springer Actuarial
Soggetto topico Actuarial science
Statistics
Machine learning
Artificial intelligence—Data processing
Social sciences—Mathematics
Actuarial Mathematics
Statistics in Business, Management, Economics, Finance, Insurance
Machine Learning
Data Science
Mathematics in Business, Economics and Finance
Assegurances
Estadística
Soggetto genere / forma Llibres electrònics
Soggetto non controllato Deep Learning
Actuarial Modeling
Pricing and Claims Reserving
Artificial Neural Networks
Regression Modeling
ISBN 3-031-12409-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910632470503321
Wüthrich Mario V  
Cham, : Springer Nature, 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Stochastic claims reserving methods in insurance / / Mario V. Wuthrich and Michael Merz
Stochastic claims reserving methods in insurance / / Mario V. Wuthrich and Michael Merz
Autore Wuthrich Mario V
Edizione [1st ed.]
Pubbl/distr/stampa Chichester, England ; ; Hoboken, NJ, : John Wiley & Sons, c2008
Descrizione fisica 1 online resource (440 p.)
Disciplina 368/.0140151922
Altri autori (Persone) MerzMichael
Collana Wiley finance series
Soggetto topico Insurance claims - Mathematical models
Assegurances
Models matemàtics
Soggetto genere / forma Llibres electrònics
ISBN 1-119-20626-X
1-282-35012-9
9786612350122
0-470-77272-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Stochastic Claims Reserving Methods in Insurance; Contents; Preface; Acknowledgement; 1 Introduction and Notation; 1.1 Claims process; 1.1.1 Accounting principles and accident years; 1.1.2 Inflation; 1.2 Structural framework to the claims-reserving problem; 1.2.1 Fundamental properties of the claims reserving process; 1.2.2 Known and unknown claims; 1.3 Outstanding loss liabilities, classical notation; 1.4 General remarks; 2 Basic Methods; 2.1 Chain-ladder method (distribution-free); 2.2 Bornhuetter-Ferguson method; 2.3 Number of IBNyR claims, Poisson model
2.4 Poisson derivation of the CL algorithm3 Chain-Ladder Models; 3.1 Mean square error of prediction; 3.2 Chain-ladder method; 3.2.1 Mack model (distribution-free CL model); 3.2.2 Conditional process variance; 3.2.3 Estimation error for single accident years; 3.2.4 Conditional MSEP, aggregated accident years; 3.3 Bounds in the unconditional approach; 3.3.1 Results and interpretation; 3.3.2 Aggregation of accident years; 3.3.3 Proof of Theorems 3.17, 3.18 and 3.20; 3.4 Analysis of error terms in the CL method; 3.4.1 Classical CL model; 3.4.2 Enhanced CL model; 3.4.3 Interpretation
3.4.4 CL estimator in the enhanced model3.4.5 Conditional process and parameter prediction errors; 3.4.6 CL factors and parameter estimation error; 3.4.7 Parameter estimation; 4 Bayesian Models; 4.1 Benktander-Hovinen method and Cape-Cod model; 4.1.1 Benktander-Hovinen method; 4.1.2 Cape-Cod model; 4.2 Credible claims reserving methods; 4.2.1 Minimizing quadratic loss functions; 4.2.2 Distributional examples to credible claims reserving; 4.2.3 Log-normal/Log-normal model; 4.3 Exact Bayesian models; 4.3.1 Overdispersed Poisson model with gamma prior distribution
4.3.2 Exponential dispersion family with its associated conjugates4.4 Markov chain Monte Carlo methods; 4.5 Bühlmann-Straub credibility model; 4.6 Multidimensional credibility models; 4.6.1 Hachemeister regression model; 4.6.2 Other credibility models; 4.7 Kalman filter; 5 Distributional Models; 5.1 Log-normal model for cumulative claims; 5.1.1 Known variances 2j; 5.1.2 Unknown variances; 5.2 Incremental claims; 5.2.1 (Overdispersed) Poisson model; 5.2.2 Negative-Binomial model; 5.2.3 Log-normal model for incremental claims; 5.2.4 Gamma model; 5.2.5 Tweedie's compound Poisson model
5.2.6 Wright's model6 Generalized Linear Models; 6.1 Maximum likelihood estimators; 6.2 Generalized linear models framework; 6.3 Exponential dispersion family; 6.4 Parameter estimation in the EDF; 6.4.1 MLE for the EDF; 6.4.2 Fisher's scoring method; 6.4.3 Mean square error of prediction; 6.5 Other GLM models; 6.6 Bornhuetter-Ferguson method, revisited; 6.6.1 MSEP in the BF method, single accident year; 6.6.2 MSEP in the BF method, aggregated accident years; 7 Bootstrap Methods; 7.1 Introduction; 7.1.1 Efron's non-parametric bootstrap; 7.1.2 Parametric bootstrap
7.2 Log-normal model for cumulative sizes
Record Nr. UNINA-9910816349003321
Wuthrich Mario V  
Chichester, England ; ; Hoboken, NJ, : John Wiley & Sons, c2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Stochastic claims reserving methods in insurance [[electronic resource] /] / Mario V. Wüthrich and Michael Merz
Stochastic claims reserving methods in insurance [[electronic resource] /] / Mario V. Wüthrich and Michael Merz
Autore Wüthrich Mario V
Pubbl/distr/stampa Chichester, England ; ; Hoboken, NJ, : John Wiley & Sons, c2008
Descrizione fisica 1 online resource (440 p.)
Disciplina 368/.0140151922
Altri autori (Persone) MerzMichael
Collana Wiley finance series
Soggetto topico Insurance claims - Mathematical models
Assegurances
Models matemàtics
Soggetto genere / forma Llibres electrònics
ISBN 1-119-20626-X
1-282-35012-9
9786612350122
0-470-77272-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Stochastic Claims Reserving Methods in Insurance; Contents; Preface; Acknowledgement; 1 Introduction and Notation; 1.1 Claims process; 1.1.1 Accounting principles and accident years; 1.1.2 Inflation; 1.2 Structural framework to the claims-reserving problem; 1.2.1 Fundamental properties of the claims reserving process; 1.2.2 Known and unknown claims; 1.3 Outstanding loss liabilities, classical notation; 1.4 General remarks; 2 Basic Methods; 2.1 Chain-ladder method (distribution-free); 2.2 Bornhuetter-Ferguson method; 2.3 Number of IBNyR claims, Poisson model
2.4 Poisson derivation of the CL algorithm3 Chain-Ladder Models; 3.1 Mean square error of prediction; 3.2 Chain-ladder method; 3.2.1 Mack model (distribution-free CL model); 3.2.2 Conditional process variance; 3.2.3 Estimation error for single accident years; 3.2.4 Conditional MSEP, aggregated accident years; 3.3 Bounds in the unconditional approach; 3.3.1 Results and interpretation; 3.3.2 Aggregation of accident years; 3.3.3 Proof of Theorems 3.17, 3.18 and 3.20; 3.4 Analysis of error terms in the CL method; 3.4.1 Classical CL model; 3.4.2 Enhanced CL model; 3.4.3 Interpretation
3.4.4 CL estimator in the enhanced model3.4.5 Conditional process and parameter prediction errors; 3.4.6 CL factors and parameter estimation error; 3.4.7 Parameter estimation; 4 Bayesian Models; 4.1 Benktander-Hovinen method and Cape-Cod model; 4.1.1 Benktander-Hovinen method; 4.1.2 Cape-Cod model; 4.2 Credible claims reserving methods; 4.2.1 Minimizing quadratic loss functions; 4.2.2 Distributional examples to credible claims reserving; 4.2.3 Log-normal/Log-normal model; 4.3 Exact Bayesian models; 4.3.1 Overdispersed Poisson model with gamma prior distribution
4.3.2 Exponential dispersion family with its associated conjugates4.4 Markov chain Monte Carlo methods; 4.5 Bühlmann-Straub credibility model; 4.6 Multidimensional credibility models; 4.6.1 Hachemeister regression model; 4.6.2 Other credibility models; 4.7 Kalman filter; 5 Distributional Models; 5.1 Log-normal model for cumulative claims; 5.1.1 Known variances 2j; 5.1.2 Unknown variances; 5.2 Incremental claims; 5.2.1 (Overdispersed) Poisson model; 5.2.2 Negative-Binomial model; 5.2.3 Log-normal model for incremental claims; 5.2.4 Gamma model; 5.2.5 Tweedie's compound Poisson model
5.2.6 Wright's model6 Generalized Linear Models; 6.1 Maximum likelihood estimators; 6.2 Generalized linear models framework; 6.3 Exponential dispersion family; 6.4 Parameter estimation in the EDF; 6.4.1 MLE for the EDF; 6.4.2 Fisher's scoring method; 6.4.3 Mean square error of prediction; 6.5 Other GLM models; 6.6 Bornhuetter-Ferguson method, revisited; 6.6.1 MSEP in the BF method, single accident year; 6.6.2 MSEP in the BF method, aggregated accident years; 7 Bootstrap Methods; 7.1 Introduction; 7.1.1 Efron's non-parametric bootstrap; 7.1.2 Parametric bootstrap
7.2 Log-normal model for cumulative sizes
Record Nr. UNINA-9910146099603321
Wüthrich Mario V  
Chichester, England ; ; Hoboken, NJ, : John Wiley & Sons, c2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Transparency in Insurance Contract Law / / edited by Pierpaolo Marano, Kyriaki Noussia
Transparency in Insurance Contract Law / / edited by Pierpaolo Marano, Kyriaki Noussia
Edizione [1st ed. 2019.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Descrizione fisica 1 online resource (714 pages)
Disciplina 346.086
Collana AIDA Europe Research Series on Insurance Law and Regulation
Soggetto topico Private international law
Conflict of laws
International law
Comparative law
Financial services industry
Commercial law
European Economic Community
Trade regulation
Contracts
Common law
Private International Law, International and Foreign Law, Comparative Law
Financial Services
European Economic Law
International Economic Law, Trade Law
Common Contract Law
Commercial Law
Assegurances
Finances privades
Dret mercantil
Soggetto genere / forma Llibres electrònics
ISBN 3-030-31198-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Part 1. Civil Law: European Union -- Transparency in the Insurance Contract Law of Austria,Transparency in the Insurance Contract Law of Croatia -- Transparency in the Insurance Contract Law of Germany -- Transparency in the Insurance Contract Law of Greece -- Transparency in the Insurance Contract Law of Italy -- Transparency in the Insurance Contract Law in the Netherlands -- Transparency in the Insurance Contract Law of Poland -- Transparency in the Insurance Contract Law of Portugal -- Transparency in the Insurance Contract Law of Spain -- Transparency in the Insurance Contract Law of Sweden -- Transparency in the Insurance Contract Law: A Comparative Analysis Between the Principles of European Insurance Contract Law (PEICL) and Selected European Legal Regimes -- Part II Civil Law: Other Jurisdictions -- Transparency in the Insurance Contract Law of Chile -- Transparency in the Insurance Contract Law of China -- Transparency in the Insurance Contract Law of Colombia -- Transparency in the Insurance Contract Law of Georgia -- Transparency in the Insurance Contract Law of Japan -- Transparency in the Insurance Contract Law of Peru -- Transparency in the Insurance Contract Law of Russia -- Transparency in the Insurance Contract Law of Turkey -- Transparency in the Insurance Contract Law of the Western Balkans -- Comparative Analysis of Transparency in the Insurance Contract Law of Colombia, Chile, Peru, and Spain -- Comparative Analysis of Transparency in Insurance Law in the Civil/Continental Law Jurisdictions -- Part III Common Law -- Transparency in the Insurance Contract Law of Australia -- Transparency in the Insurance Contract Law of England -- Transparency in the Insurance Contract Law of Israel -- Transparency of the Insurance Contract Law of Singapore -- Transparency in the Insurance Contract Law of South Africa -- Transparency in the Insurance Contract Law in the United States -- Comparative Analysis of Transparency in the Insurance Contract Law of the Common Law Jurisdictions.
Record Nr. UNINA-9910383821303321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui