Compact clinical guide to mechanical ventilation : foundations of practice for critical care nurses / / Sandra Goldsworthy, RN, MSc, PhD(c), CNCC(C), CMSN(C), Leslie Graham, RN, MN, CNCC(C), CHSE |
Autore | Goldsworthy Sandra <1961-> |
Pubbl/distr/stampa | New York, NY : , : Springer Publishing Company, , [2014] |
Descrizione fisica | 1 online resource (178 p.) |
Disciplina | 615.8/362 |
Altri autori (Persone) | GrahamLeslie <1956-> |
Collana | Compact clinical guide |
Soggetto topico |
Respiratory therapy
Artificial respiration |
Soggetto genere / forma | Electronic books. |
ISBN | 0-8261-9807-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Oxygen therapy -- Mechanical ventilation overview -- Modes of ventilation -- Mechanical ventilation : management at the bedside -- Weaning from the mechanical ventilator -- Long-term mechanical ventilation : implications -- Mechanical ventilation : pharmacology -- International perspectives on mechanical ventilation and future directions. |
Record Nr. | UNINA-9910453798503321 |
Goldsworthy Sandra <1961-> | ||
New York, NY : , : Springer Publishing Company, , [2014] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Compact clinical guide to mechanical ventilation : foundations of practice for critical care nurses / / Sandra Goldsworthy, RN, MSc, PhD(c), CNCC(C), CMSN(C), Leslie Graham, RN, MN, CNCC(C), CHSE |
Autore | Goldsworthy Sandra <1961-> |
Pubbl/distr/stampa | New York, NY : , : Springer Publishing Company, , [2014] |
Descrizione fisica | 1 online resource (178 p.) |
Disciplina | 615.8/362 |
Altri autori (Persone) | GrahamLeslie <1956-> |
Collana | Compact clinical guide |
Soggetto topico |
Respiratory therapy
Artificial respiration |
ISBN | 0-8261-9807-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Oxygen therapy -- Mechanical ventilation overview -- Modes of ventilation -- Mechanical ventilation : management at the bedside -- Weaning from the mechanical ventilator -- Long-term mechanical ventilation : implications -- Mechanical ventilation : pharmacology -- International perspectives on mechanical ventilation and future directions. |
Record Nr. | UNINA-9910790822203321 |
Goldsworthy Sandra <1961-> | ||
New York, NY : , : Springer Publishing Company, , [2014] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Compact clinical guide to mechanical ventilation : foundations of practice for critical care nurses / / Sandra Goldsworthy, RN, MSc, PhD(c), CNCC(C), CMSN(C), Leslie Graham, RN, MN, CNCC(C), CHSE |
Autore | Goldsworthy Sandra <1961-> |
Pubbl/distr/stampa | New York, NY : , : Springer Publishing Company, , [2014] |
Descrizione fisica | 1 online resource (178 p.) |
Disciplina | 615.8/362 |
Altri autori (Persone) | GrahamLeslie <1956-> |
Collana | Compact clinical guide |
Soggetto topico |
Respiratory therapy
Artificial respiration |
ISBN | 0-8261-9807-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Oxygen therapy -- Mechanical ventilation overview -- Modes of ventilation -- Mechanical ventilation : management at the bedside -- Weaning from the mechanical ventilator -- Long-term mechanical ventilation : implications -- Mechanical ventilation : pharmacology -- International perspectives on mechanical ventilation and future directions. |
Record Nr. | UNINA-9910811958103321 |
Goldsworthy Sandra <1961-> | ||
New York, NY : , : Springer Publishing Company, , [2014] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
CPAP adherence : factors and perspectives / / Colin M. Shapiro, Meenakshi Gupta, and Dora Zalai, editors |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer International Publishing, , [2022] |
Descrizione fisica | 1 online resource (388 pages) |
Disciplina | 615.5 |
Soggetto topico |
Patient compliance
Artificial respiration |
ISBN | 3-030-93146-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Foreword -- Reference -- Preface -- References -- Contents -- Contributors -- Part I: Approaches to Promoting PAP Adherence -- 1: When to Treat with CPAP and How to Define Success -- 1.1 Historical Perspective and Description of Methods of Positive Airway Pressure Delivery -- 1.1.1 Evolution of Positive Airway Pressure -- 1.1.2 Description of Various PAP Modes -- 1.1.2.1 Continuous and Auto-Adjusting Positive Airway Pressure (CPAP and APAP) -- 1.1.2.2 Bi-Level PAP (BPAP) and Auto-Adjusting BPAP -- 1.1.2.3 Adaptive Servo Ventilation (ASV) -- 1.2 When to Treat with CPAP -- 1.2.1 Obstructive Sleep Apnea (OSA) -- 1.2.1.1 Treatment of Symptomatic OSA -- Excessive Daytime Sleepiness -- Sleep Quality -- Snoring/Apneas -- Cognitive Issues -- Mood -- Overall Quality of Life (QoL) -- 1.2.1.2 Prevent or Treat Comorbid Medical Problems -- Cardiovascular Disease (CVD) -- Coronary Artery Disease -- Atrial Fibrillation (AF) and Other Arrhythmias -- Stroke -- Hypertension -- Congestive Heart Failure (CHF) -- Type 2 Diabetes Mellitus -- Other Medical Conditions -- Chronic Kidney Disease (CKD) -- Non-alcoholic Fatty Liver Disease -- Gastroesophageal Reflux Disease (GERD) -- Chronic Headaches -- Pulmonary Hypertension -- 1.2.1.3 OSA Severity and Decision to Use CPAP -- 1.2.2 Central Sleep Apnea -- 1.2.2.1 Closed Airway Central Sleep Apnea -- 1.2.2.2 Treatment-Emergent Central Sleep Apnea -- 1.3 Defining Treatment Success -- 1.3.1 Self-Report -- 1.3.2 Questionnaires -- 1.3.2.1 Quality of Life Instruments -- 1.3.2.2 Assessment of Daytime Sleepiness -- 1.3.3 Objective Assessment of CPAP Adherence -- 1.3.3.1 Interpretation of PAP Compliance Reports -- 1.3.3.2 What Is Treatment Success? -- 1.4 Summary -- References -- 2: Interventions to Improve CPAP Adherence -- 2.1 Material and Methods -- 2.1.1 Study Selection.
2.1.2 Data Extraction -- 2.1.3 Data Synthesis -- 2.2 Results -- 2.2.1 Risk of Bias in the Included Studies -- 2.2.2 Study Size and Study Characteristics -- 2.2.3 Study Design -- 2.2.4 Country of Study Origin and Setting -- 2.2.5 Diagnoses -- 2.2.6 Intervention Strategies -- 2.3 Patient-Directed Interventions -- 2.3.1 Education -- 2.3.2 Interventions Directed toward Patient Behavior and Affective State -- 2.3.3 Surgical Modification of Patients' Upper Airway and Myofunctional Therapy -- 2.4 Technology-Targeted Interventions -- 2.4.1 Auto-Titrating or Pressure Relief Machines -- 2.4.2 Types of Masks -- 2.4.3 Humidifier -- 2.5 Duration of Follow-Up Period -- 2.6 Adherence Measures and Outcomes -- 2.7 Intervention Benefits Toward Health and Functional Outcomes -- 2.8 Discussion -- 2.9 Future Direction -- References -- 3: Patient Adherence to CPAP: A Practical Interdisciplinary Model -- 3.1 Introduction -- 3.2 Style of Interaction -- 3.3 A Second Level of Perspective -- 3.4 Conclusion -- References -- 4: Soft Styles of Motivating Patients to Adopt CPAP -- 4.1 Demographic Variables -- 4.2 OSA Disease Issues -- 4.3 Nonmechanical or "Soft" Comorbidities -- 4.3.1 Major Mental Illnesses -- 4.3.2 Insomnia and Other Subjective Sleep Issues -- 4.3.3 Psychological Variables -- 4.3.4 Spousal and Partner Support -- 4.3.5 Adherence Measurements -- 4.4 Is CPAP Right for This Patient or Is This the Right Time? -- 4.5 Delivery of Service-Diagnosis -- 4.6 Interventions -- 4.6.1 Addition of a Hypnotic to Improve Adherence -- 4.6.2 Educational, Supportive, and Behavioral Interventions for CPAP Adherence -- 4.6.3 CPAP Adherence in Children and Adolescents -- 4.7 Approaches Using Remote Health Information Technologies (RHIT) (Telehealth, Telemonitoring, eHealth) -- 4.8 Conclusion -- References. 5: The Role of Education and Support in CPAP Adherence -- 5.1 Why Is CPAP Adherence Important? -- 5.2 Baseline Factors Affecting Adherence -- 5.3 The Role of Education During CPAP Set-up -- 5.4 Specific Behavioural Interventions -- 5.5 The CPAP Interface and Adherence -- 5.6 The Pattern of CPAP Usage Is Established Early -- 5.7 Early Follow-up -- 5.8 The Role of Telemonitoring -- 5.9 Support and Troubleshooting -- 5.10 Summary -- References -- 6: Role of the Behavioral Sleep Specialist Psychologist in Promoting CPAP Adherence -- 6.1 When the Patient Is Ambivalent About CPAP Use: The Importance of Client-Clinician Communication -- 6.1.1 Background -- 6.1.2 What Happened to Mark? -- 6.1.3 Research Evidence -- 6.2 When the Patient Has Insomnia: Treating Comorbid Chronic Insomnia to Help with CPAP Use -- 6.2.1 Background -- 6.2.2 What Happened to Steve? -- 6.2.3 Research Evidence -- 6.3 When the Patient Has Anxiety that Impedes CPAP Use -- 6.3.1 Background -- 6.3.2 What Happened to Catherine? -- 6.3.3 Research Evidence -- 6.4 When the Patient Has Mental Health Problems -- 6.5 Chapter Summary -- References -- 7: Role of the Physician in CPAP Adherence and CPAP Trials -- 7.1 Introduction -- 7.2 Threshold for CPAP Trials -- 7.3 Suboptimal Compliance Versus Lack of Effectiveness of CPAP -- 7.4 Strategies to Manage a Poor Response to CPAP -- 7.4.1 Poor Adherence -- 7.4.1.1 Technical Factors -- 7.4.1.2 Poor Adherence after Technical Factors Have Been Addressed -- 7.4.2 Lack of Effectiveness of CPAP -- 7.4.2.1 Failure to Control OSA -- 7.4.2.2 Mild OSA -- 7.4.2.3 Patients with Non-Classical OSA Symptoms -- 7.4.2.4 Persistent Sleepiness Despite Control of OSA -- Coexistent Sleep Disorders -- Periodic Leg Movements -- Comorbid OSA and Insomnia (COMISA) -- Comorbidities and Medications -- Idiopathic Persistent Sleepiness. 7.5 Conclusion -- References -- 8: PAP Therapy for Sleep Breathing Disorders: Good Policies and Practices -- 8.1 Guiding Patients to Improve Adherence -- 8.2 What Practice Guidelines Suggest -- 8.3 What Is Adherence? -- 8.4 Strategies to Augment PAP Compliance -- 8.4.1 Match Patient to the Optimal Interface -- 8.4.2 Patient Education and Serial Follow-Up -- 8.4.3 Frequent Telephone Follow-Up -- 8.4.4 Matching Patient and Treatment -- 8.4.5 Familiarizing Patients with Their Medical Equipment Provider -- 8.4.6 Scheduling In-Lab PAP Titration -- 8.4.7 Modifying the Definition of PAP Adherence -- 8.4.8 Identify the Group of Patients with High Risk of Non-Compliance -- 8.4.9 Ruling Out Claustrophobia -- 8.4.10 Cognitive Therapy -- 8.4.11 Social Support -- 8.4.12 Convenient Referral Stream to Ear, Nose, and Throat (ENT) Specialists -- 8.4.13 Sedative-Hypnotic Use Early on -- 8.4.14 Using Smartphone-Based Technologies to Improve Compliance -- 8.4.15 The Importance of Patient Feedback -- 8.5 Conclusion -- References -- Part II: Factors Influencing PAP Adherence -- 9: Socioeconomic Differences in CPAP Adherence -- 9.1 Introduction -- 9.2 The Evidence for Differences in CPAP Adherence by SES -- 9.3 Possible Explanatory Factors for Differences by SES -- 9.4 Summary -- References -- 10: The Impact of Partner and Family Support in PAP Therapy -- 10.1 Introduction -- 10.2 Impact of Untreated OSA on Partners and Family Members -- 10.3 Impact of PAP Treatment on Partners' Sleep and Daytime Functioning -- 10.4 Impact of Partner and Family Involvement on PAP Adherence -- 10.4.1 Presence of Spouse or Live-in Partner -- 10.4.2 Family Involvement -- 10.4.3 Partner Involvement -- 10.5 Partner and Family Involvement in PAP Adherence Interventions -- 10.6 Summary -- 10.7 Conclusion -- References. 11: Personality and Mental Health as Determinants of CPAP Use -- 11.1 Introduction -- 11.2 Diagnosis of Personality Disorders -- 11.3 Personality Disorders and Adherence to CPAP and Obstructive Sleep Apnea Therapies -- 11.4 Increasing Adherence to CPAP and Other Treatments -- 11.5 Conclusion -- References -- 12: Costs of Treatment Non-adherence in Obstructive Sleep Apnoea -- 12.1 Prevalence of OSA -- 12.2 Burden of Untreated OSA -- 12.2.1 Clinical Burden of Untreated OSA -- 12.2.2 Societal and Economic Burden of Untreated OSA -- 12.2.3 Patient Factors in Socioeconomic Burden of OSA -- 12.2.4 Geographic Factors in Socioeconomic Burden of OSA -- 12.2.5 Motor Vehicle Accidents (MVA) in Socioeconomic Burden of OSA -- 12.2.6 Workplace Accidents and OSA in Socioeconomic Burden of OSA -- 12.2.7 Work Productivity in Socioeconomic Burden of OSA -- 12.3 Benefits of OSA Treatment -- 12.3.1 Societal and Health Economic Benefits of OSA Treatment -- 12.3.2 Benefits of CPAP in Mild OSA -- 12.4 Costs of OSA Diagnosis and Treatment -- 12.5 Cost-Effectiveness and Socioeconomic Impact of OSA Treatment -- 12.5.1 Cost-Effectiveness and Socioeconomic Impact of CPAP Treatment -- 12.5.2 Cost-Effectiveness of CPAP Treatment in Mild OSA -- 12.5.3 Cost-Effectiveness of OAT and Surgery -- 12.6 CPAP Non-adherence -- 12.6.1 Prevalence of Non-adherence to CPAP -- 12.6.2 Clinical Factors Associated with Non-adherence to CPAP -- 12.6.3 Socioeconomic Factors Associated with Non-adherence to CPAP -- 12.7 Costs of OSA Treatment Non-adherence -- 12.7.1 Clinical Costs of OSA Treatment Non-adherence -- 12.7.2 Socioeconomic Costs of Non-adherence to OSA Treatment -- References -- 13: Obstructive Sleep Apnea Phenotypes and Positive Airway Therapy Adherence -- 13.1 Factors Affecting CPAP Adherence -- 13.2 Phenotypes of Sleep Apnea in Regard to Adherence. 13.3 Phenotyping Approaches. |
Record Nr. | UNINA-9910568256403321 |
Cham, Switzerland : , : Springer International Publishing, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Mechanical circulatory and respiratory support / / editors, Shaun Gregory, John Fraser, Michael Stevens |
Pubbl/distr/stampa | London, England : , : Academic Press, , 2018 |
Descrizione fisica | 1 online resource (854 pages) |
Disciplina | 617.412 |
Soggetto topico |
Blood - Circulation, Artificial
Artificial respiration |
ISBN |
0-12-810492-9
0-12-810491-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Descent into heart and lung failure -- Heart and lung transplantation -- First-generation ventricular assist devices -- Second-generation ventricular assist devices -- Third-generation ventricular assist devices -- Biventricular assist devices -- Total artificial hearts -- Extracorporeal membrane oxygenation -- Pediatric devices -- Hydraulic design -- Motor design and impelier suspension -- Pulsatile vs. continuous flow -- Preclinical evaluation -- Optimizing the patient and timing of the circulatory and extracorporeal respiratory support -- Surgical implantation -- Complications of mechanical circulatory and respiratory support -- Medical management of the supported patient -- Cannula design -- Blood-device interaction -- Physiological control -- Percutaneous and transcutaneous connections -- Wearable systems -- Route to market -- Cost-effectiveness -- The past, present and future. |
Record Nr. | UNINA-9910583087403321 |
London, England : , : Academic Press, , 2018 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Mechanical ventilation amid the COVID-19 pandemic : a guide for physicians and engineers / / Amir A. Hakimi [and three others], editors |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2022] |
Descrizione fisica | 1 online resource (267 pages) |
Disciplina | 614.8 |
Soggetto topico |
Artificial respiration
COVID-19 (Disease) Respirators (Medical equipment) |
ISBN | 3-030-87978-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Contents -- About the Editors -- Chapter 1: Establishment of the Bridge Ventilator Consortium -- Part I: Lung Physiology and Ventilator Basics -- Chapter 2: An Overview of Lung Anatomy and Physiology -- Lung Anatomy -- Trachea and Bronchi -- Pulmonary Neurovasculature -- Lung Mechanics -- Compliance and Elastance -- Airway Resistance and Drive Pressure -- Work of Breathing -- Gas Exchange -- Ventilation -- Perfusion -- Dead Space -- Shunt -- A-a Gradient -- V/Q Mismatch -- Carbon Dioxide -- Bohr Effect -- O2 Delivery to Tissues -- Haldane Effect -- Oxyhemoglobin Dissociation Curve -- Hypoxemia vs. Hypoxia -- Altitude Effects on Gas Exchange -- Normal Physiologic Parameters -- References -- Chapter 3: Respiratory Mechanics and Ventilation -- History of Mechanical Ventilation -- Noninvasive Positive-Pressure Ventilation -- Positive-Pressure Invasive Ventilators -- Basics of Mechanical Ventilation -- Ventilator Settings -- Reference -- Chapter 4: Mechanical Ventilators and Monitors: An Abridged Guide for Engineers -- Who Uses a Ventilator? What Level of Training Is Needed? -- Which Patients Benefit from This Device? -- Monitoring Physiologic Parameters -- Oxygenation and Pulse Oximetry -- Carbon Dioxide and Capnography -- Volume Capnography -- Transcutaneous CO2 Monitoring -- Arterial Blood Gas vs. Venous Blood Gas -- Airway Pressures -- Peak Inspiratory Pressure vs. Plateau Pressure -- Auto-PEEP vs. Extrinsic PEEP -- Respiratory Rate -- Respiratory Set vs. Actual Rate -- Ventilator Sensed Rate -- Humidity (Heat and Moister Exchangers vs. Heated Humidifier vs. Heated-Wire Circuits) -- Tidal Volume -- Patient-Ventilator Synchrony Monitoring -- Patient-Ventilator Synchrony/Dyssynchrony Introduction -- Ineffective Triggering -- Double Triggering and Reverse Triggering -- Flow Dyssynchrony and Auto-Triggering.
Setup and Form Factor of Contemporary Ventilators -- References -- Chapter 5: An Overview of Mechanical Ventilation and Development of the UC San Diego MADVent -- Introduction -- Spontaneous Respiration -- The Purpose and Basic Functions of a Ventilator -- The Evolution of Assisted Ventilation -- Types of Modern Ventilation -- CMV: Continuous Mandatory Ventilation -- A/C: Assist/Control Ventilation -- IMV: Intermittent Mandatory Ventilation -- SIMV: Synchronized Intermittent Mandatory Ventilation -- S/T: Spontaneous/Timed Ventilation -- CSV: Continuous Spontaneous Ventilation -- APRV: Airway Pressure Release Ventilation -- CPAP: Continuous Positive Airway Pressure -- Pressure Support (PS) -- Patient-Triggered -- Ventilator-Initiated -- Time-Terminated -- Volume-Targeted -- Designing Ventilators for Clinical Use -- Regulations and Standards -- IEC 60601-1:2005+AMD1:2012+AMD2:2020 CSV -- IEC 60601-1-11 -- ISO 18652 -- ISO 5356-1 -- 21 CFR Part 820 or ISO 13485 -- ISO 14971 -- IEC 62304:2015 -- AAMI TIR69:2017 and ANSI/IEEE C63.27:2017 -- ISO 7010 -- Example Design: Inexpensive Bag-Based Ventilator -- Conclusions -- References -- Chapter 6: An Introduction to Noninvasive Ventilation -- Introduction -- High-Flow Nasal Cannula -- HFNC in COVID-19 Patients -- CPAP -- CPAP in COVID-19 Patients -- BiPAP -- BiPAP in COVID-19 Patients -- Survival Mode with Noninvasive Ventilation in a Resource-Limited Setting -- References -- Chapter 7: Noninvasive Ventilation and Mechanical Ventilation to Treat COVID-19-Induced Respiratory Failure -- Introduction -- Noninvasive Ventilation (NIV) -- Prone Positioning -- Mechanical Ventilation -- Tracheostomy -- References -- Part II: SARS CoV-2 Transmission and Innovative Protective Barriers -- Chapter 8: COVID-19 Pathophysiology and COVID-19-Induced Respiratory Failure -- Pathophysiology of COVID-19. COVID-19-Induced Respiratory Failure -- References -- Chapter 9: Spread of COVID-19 and Personal Protective Equipment -- Spread of COVID-19 -- Personal Protective Equipment and Its Role in Preventing Spread Among Healthcare Workers and Communities -- References -- Chapter 10: An Overview of Personal Protective Equipment and Disinfection -- Protection of Personnel -- Environmental Protection -- References -- Part III: Bridge Ventilator Design and Components -- Chapter 11: What Is a Bridge Ventilator? Basic Requirements, the Bag Valve Mask, and the Breathing Circuit -- Chapter 12: Hardware Considerations -- Evolution of the Actuating Arm -- Printed Circuit Board (PCB) Design -- Optical Reflectors -- Pulse with Modulation (PWM) Board -- Power Supply -- Pressure Transducers -- User Input Controls -- High-Priority Alarms -- Overpressure -- Underpressure -- Loss of Power -- Low-Priority Alarms -- Tidal Volume Out of Spec -- Motor End of Life -- Outline of Motor Power Requirement Estimate -- Energy/Power into Ambu Bag -- Power Loss In 10 ft. Long Tube -- Power/Energy Loss in Pulmonary Resistance -- Energy/Power for Lung Compliance -- Reference -- Chapter 13: Software Considerations -- Software Overview -- Analog Input Acquisition -- Hardware and Timer Interrupts -- PWM Timer and Encoder Interrupts -- Motor Control Task -- Alarm Class -- Display Class -- Flash Storage -- Watchdog Timer -- Doxygen Documentation -- Chapter 14: Development of Emergency Resuscitators: Considerations for Mechanical and Electrical Components -- Introduction -- Motor Systems -- Stepper Motor -- Basic Principles of Operation -- Stepper Motor Operation -- Encoders -- Servomotor -- Motor System Considerations and Comparison -- Conclusion -- References -- Chapter 15: Incorporating Patient Assist Mode: The ABBU Experience -- ABBU Synchronous Operation Testing. Chapter 16: A Qualitative Overview of Emergency Resuscitators Approved in the COVID-19 Pandemic -- Introduction -- Resuscitators vs. Ventilators -- SecondBreath LLC -- Coventor Adult Manual Resuscitator Compressor -- Umbulizer -- PVA Prevent (RECALLED) -- Spiro Wave -- Virgin Orbit Resuscitator -- Venti-Now -- Fitbit Flow -- Air Boost Austin P51 -- Apollo ABVMN -- LifeMech A-VS -- Conclusions and Parting Design Considerations -- References -- Part IV: Regulatory Factors and Device Testing -- Chapter 17: Innovation and Regulation: The FDA's Response to the COVID-19 Pandemic -- Timeline of Initial SARS-CoV-2 Response -- Implementation of the Emergency Use Authorization -- Ventilator and Ventilator Accessory EUAs -- Ventilators -- Ventilator Tubing Connectors -- Challenges Associated with the FDA's Emergency Use Authorization -- Availability of Information to Clinicians -- Lack of Data on Patient Use -- Future Directions -- The Future of the FDA Umbrella EUA -- The Response to Future Pandemics -- References -- Chapter 18: Regulatory Considerations for Bridge Ventilators -- Medical Devices 101 -- What Is a Medical Device? -- Medical Device Design -- Herding Cats (Creating the Team) -- Mindset -- Team of Many Hats (Exploit Previous Experience) -- Bells and Whistles: How Much Is Too Much for an Emergency Use Authorization (EUA) Device? -- Performance and Analytical Testing to Support Bells and Whistles -- Conclusion -- Tips -- Reference -- Chapter 19: Human Factors Considerations in the User Interface Design of Bridge Ventilator Devices -- Introduction -- The Human Factors Engineering (HFE) Process -- HFE Process Details -- User Research -- Contextual Inquiry -- Use Scenarios -- Risk Analysis -- Usability Objectives or Goals -- Iterative Design -- Usability Evaluation and Testing -- Post-implementation Analysis -- Regulator Expectations -- References. Chapter 20: Preclinical Animal Testing of Emergency Resuscitator Breathing Devices -- Introduction -- Objectives of the Study -- Materials -- Animal Monitoring -- Anesthesia and Drugs -- Study Protocol -- Inducing and Maintaining Anesthesia -- Vascular Cutdown and Blood Pressure Catheter Placement -- Healthy Lung Data Collection -- Tidal Volume Test -- Acute Lung Injury by Saline Lavage (Porcine ARDS Lung Model) -- Injured Lung Data Collection -- ARDS Tidal Volume Test -- Respiratory Rate Test -- ARDS PEEP Test -- Euthanasia -- References -- Part V: Pandemic Innovations -- Chapter 21: Multiplex Ventilation: Requirements and Feasibility of Ventilator Splitters -- Introduction -- Purpose of Ventilatory Splitters -- Mechanisms of Split Ventilation -- Simple Shared Ventilation Strategy -- Individualized Shared Ventilation Strategies -- Pressure-Mode Individualized Ventilation Devices -- Volume-Mode Devices -- Other Ventilator Splitter Designs -- Implementation -- Advantages -- Limitations -- Conclusions -- References -- Chapter 22: CPAP-to-Ventilator: Open-Source Documentation, UC Irvine -- Project Overview -- Components List -- Modifying a CPAP Device to Gain Access to Blower and Connecting ESC -- CPAP-to-Ventilator Wiring Diagram -- Arduino Code -- Limitations and Areas for Improvement -- Disclaimer -- Chapter 23: Alternatives to Conventional Noninvasive Positive-Pressure Ventilation Devices -- Standard Noninvasive Ventilation -- Innovative Noninvasive Ventilation Devices -- Snorkel Masks -- Advantages -- Disadvantages -- Helmets -- Advantages -- Disadvantages -- Discussion -- Conclusion -- References -- Chapter 24: Development of an Inexpensive Noninvasive Ventilation Hood -- Introduction -- Methods -- Results -- Discussion -- Conclusion -- References -- Chapter 25: Collaborations and Accomplishments Among the Bridge Ventilator Consortium Teams. Index. |
Record Nr. | UNINA-9910544872303321 |
Cham, Switzerland : , : Springer, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Mechanical ventilation from pathophysiology to clinical evidence / / Giacomo Bellani, editor |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer Nature Switzerland AG, , [2022] |
Descrizione fisica | 1 online resource (422 pages) |
Disciplina | 614.8 |
Soggetto topico |
Critical care medicine
Artificial respiration Respirators (Medical equipment) |
ISBN |
9783030934019
9783030934002 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Foreword -- Preface -- Contents -- Part I: Techniques -- 1: Basic Physiology of Respiratory System: Gas Exchange and Respiratory Mechanics -- 1.1 Gas Exchange -- 1.2 Respiratory Mechanics -- References -- 2: A Short History of Mechanical Ventilation -- 2.1 Respiration, Circulation, and Their Interaction -- 2.2 Oxygen, Combustion, Metabolism, Homeostasis -- 2.3 The Dawn of Mechanical Ventilation -- 2.4 Lessons Learned -- References -- 3: Airway Management in the Critically Ill -- 3.1 Introduction -- 3.2 Indications for Tracheal Intubation in ICU -- 3.3 Planning and Preparation for Tracheal Intubation -- 3.3.1 Clinical History and General Examination -- 3.3.2 Airway Assessment -- 3.3.3 Airway Cart and Checklists -- 3.3.4 Team Preparation -- 3.4 The Tracheal Intubation Procedure -- 3.4.1 Patient Positioning -- 3.4.2 Preoxygenation and Apnoeic Oxygenation -- 3.4.3 Induction of Anaesthesia -- 3.4.3.1 Propofol -- 3.4.3.2 Etomidate -- 3.4.3.3 Ketamine -- 3.4.4 Controversies in Rapid Sequence Intubation -- 3.4.4.1 Use of Neuromuscular Blockade or Spontaneous Ventilation -- 3.4.4.2 Use of Cricoid Pressure -- 3.4.4.3 Mask Ventilation During RSI -- 3.4.5 Haemodynamic Support During Tracheal Intubation -- 3.4.6 Device Selection for Tracheal Intubation -- 3.4.6.1 Use of a Videolaryngoscope -- 3.4.6.2 Use of a Bougie -- 3.4.6.3 Use of a Stylet -- 3.4.7 Confirmation of Tracheal Tube Position -- 3.5 Rescue Oxygenation -- 3.6 Care and Maintenance of the Tracheal Tube -- 3.7 Human Factors in Airway Management -- 3.8 Future Research -- 3.9 Conclusion -- References -- 4: Controlled Mechanical Ventilation: Modes and Monitoring -- 4.1 Pressure-Controlled Ventilation -- 4.2 Volume-Controlled Ventilation -- 4.3 Pressure-Regulated Volume-Guaranteed Ventilation -- 4.4 Physiological Features of Fully Controlled Modes.
4.4.1 Lung Protection -- 4.4.2 Alveolar Ventilation -- 4.5 Modes Particularities During Inspiratory Effort -- 4.6 Monitoring During Controlled Ventilation -- 4.6.1 Static Measurements of Inspiratory Resistance and Respiratory Compliance -- 4.6.2 Low-Flow Pressure-Volume (P−V) Curves -- 4.6.3 Stress Index -- 4.7 Conclusion -- References -- 5: Assisted Ventilation: Pressure Support and Bilevel Ventilation Modes -- 5.1 Introduction -- 5.2 Pressure Support Ventilation -- 5.2.1 Epidemiology, Potential Advantages and Disadvantages -- 5.2.2 Principles of Operation and Physiological Consequences of PSV -- 5.2.2.1 Trigger Sensitivity, Inspiratory Rise Time, Pressure Support Level, and Cycling-Off Criteria -- 5.2.2.2 Determinants of Ventilation and Impact on Breathing Pattern -- 5.2.3 Potentially Injurious Patient-Ventilator Interactions During Pressure Support Ventilation -- 5.2.3.1 Over-Assistance with Ineffective Efforts and Apnea Events -- 5.2.3.2 Under-Assistance Leading to Flow Starvation and Double Triggering -- 5.2.4 How to Set the Level of Support to Prevent Over and Under-Assistance -- 5.3 Bilevel Ventilation Modes -- 5.3.1 Bilevel Vs. Other Pressure-Controlled Modes -- 5.3.2 Physiologic Effects of Differences in Inspiratory Synchronization -- 5.3.3 Setting Bilevel Ventilation During Assisted Mechanical Ventilation -- 5.3.4 Clinical Evidence of Bilevel Vs. Conventional Modes During Assisted Mechanical Ventilation -- 5.4 Conclusion -- References -- 6: Monitoring the Patient During Assisted Ventilation -- 6.1 Inspiratory Effort -- 6.1.1 Esophageal Pressure Derived Measurements -- 6.1.2 Tidal Volume and Respiratory Rate -- 6.1.3 p0.1 -- 6.1.4 Occlusion Pressure -- 6.1.5 Pressure Muscle Index -- 6.1.6 Diaphragm Electrical Activity -- 6.2 Total Pressure Distending the Respiratory System -- 6.3 Asynchronies. 6.4 Distribution of Ventilation and Pendelluft -- 6.5 Evaluation of Respiratory Muscles Activity by Ultrasound -- 6.6 Conclusion -- References -- 7: Neurally Adjusted Ventilatory Assist -- 7.1 Working Principles -- 7.1.1 EAdi Signal -- 7.1.2 NAVA Mode -- 7.1.2.1 Trigger Under NAVA -- 7.1.2.2 The Level of Assist -- 7.2 How to Set Ventilatory Assistance During NAVA -- 7.2.1 Airway Pressure Targets -- 7.2.2 Tidal Volume Response to NAVAlevel Titration -- 7.2.3 EAdi Response to NAVAlevel Titration -- 7.2.4 Neuro-Ventilatory Efficiency (NVE) -- 7.2.5 EAdi Derived Indices with NAVA -- 7.3 How to Set PEEP Under NAVA -- 7.4 How to Wean NAVA -- 7.5 Clinical Effects of NAVA -- 7.5.1 Effect on VT -- 7.5.2 Effects on Asynchrony -- 7.5.3 NAVA During Non-Invasive Ventilation or Tracheostomy -- 7.6 Limitation of NAVA -- 7.7 Conclusion -- References -- 8: Proportional Assist Ventilation -- 8.1 Introduction -- 8.2 Operation Principles -- 8.3 Advantages of PAV+ -- 8.3.1 Protection from Over- or Under-Assistance -- 8.3.2 Breathing Pattern and Patient-Ventilator Interaction -- 8.3.3 Clinical Outcomes -- 8.4 Limitations in PAV/PAV+ Use -- 8.5 Titration of Assistance in PAV+ -- 8.6 Conclusion -- References -- 9: Non-Invasive Ventilation: Indications and Caveats -- 9.1 Introduction -- 9.2 NIV Interfaces -- 9.3 Mode of Ventilation -- 9.4 Physiological Effects of NIV -- 9.5 Indications for NIV -- 9.5.1 Hydrostatic Pulmonary Edema -- 9.5.2 Hypercapnic Respiratory Failure: Acute Exacerbation of COPD -- 9.5.3 De-Novo Acute Hypoxemic Respiratory Failure -- 9.5.3.1 Facemask NIV -- 9.5.3.2 Helmet NIV -- 9.5.4 Immunocompromised Patients -- 9.5.5 Pre-Oxygenation -- 9.5.6 After Invasive Mechanical Ventilation -- 9.5.6.1 Early Liberation -- 9.5.6.2 Pre-Emptive Strategy -- 9.5.6.3 Post-Extubation Acute Respiratory Failure Rescue. 9.5.7 Insufficient Data -- 9.6 The Importance of Monitoring of Patient with NIV -- 9.6.1 Monitoring the Patient with NIV -- 9.6.1.1 Predicting NIV Failure in the Setting of De-Novo AHRF -- 9.6.1.2 Predicting NIV Failure in the Setting of Hypercapnic ARF -- 9.7 Conclusions -- References -- 10: High Flow Nasal Oxygen: From Physiology to Clinical Practice -- 10.1 Introduction -- 10.2 Dead Space, Air Entrainment, and Washout -- 10.2.1 The Way Forward -- 10.3 Generation of PEEP (or Not) -- 10.3.1 The Way Forward -- 10.4 Work of Breathing (WOB) -- 10.4.1 Work of Breathing in Normal Adults and in Hypoxemic Respiratory Failure -- 10.4.2 Work of Breathing in Patients with Decompensated Chronic Obstructive Pulmonary Disease (COPD) -- 10.4.3 The Way Forward -- 10.5 Some Words of Caution -- 10.6 Conclusion -- References -- 11: Nursing of Mechanically Ventilated and ECMO Patient -- 11.1 Mechanical Ventilation -- 11.2 Prone Position -- 11.3 ECMO -- 11.4 Conclusions -- References -- 12: Closed-Loop Ventilation Modes -- 12.1 Introduction -- 12.2 Mandatory Minute Ventilation -- 12.3 Smartcare/PS -- 12.3.1 Principle of Operation -- 12.3.2 Monitoring -- 12.3.3 Evidence -- 12.4 Adaptive Support Ventilation -- 12.4.1 Principle of Operation -- 12.4.2 Settings and Monitoring -- 12.4.3 Weaning -- 12.4.4 Evidence -- 12.5 INTELLiVENT-ASV -- 12.5.1 Principle of Operation -- 12.5.2 Settings and Monitoring -- 12.5.3 Weaning -- 12.5.4 Evidence -- 12.6 Conclusion -- References -- 13: Airway Pressure Release Ventilation -- 13.1 Introduction -- 13.2 Physiology -- 13.3 Indications -- 13.4 Settings -- 13.4.1 PHigh -- 13.4.2 THigh -- 13.4.3 PLow -- 13.4.4 TLow -- 13.5 Spontaneous Breathing -- 13.6 Weaning -- 13.7 Conclusion -- References -- Part II: Clinical Scenarios. 14: Acute Hypoxaemic Respiratory Failure and Acute Respiratory Distress Syndrome -- 14.1 AHRF and ARDS: A Definition Problem -- 14.2 Epidemiology: Knowns and Unknowns -- 14.3 Pathophysiology: Insights and Gaps -- 14.4 Support of Gas Exchange -- 14.5 Invasive Mechanical Ventilation: From 'Protective' to 'Personalized' -- 14.6 Adjuncts to Ventilation -- 14.7 Specific Therapies for ARDS and AHRF -- 14.8 Outcomes -- 14.9 AHRF: Changing the Paradigm -- 14.10 Conclusions -- References -- 15: Ventilator-Induced Lung Injury and Lung Protective Ventilation -- 15.1 Mechanosensitivity of the Respiratory System -- 15.2 Pathophysiology of Ventilator-Induced Lung Injury -- 15.3 Bedside Assessment of VILI -- 15.4 Designing Lung Protective Strategies -- 15.5 Clinical Evidence on Protective Ventilation -- 15.6 Conclusion -- References -- 16: Mechanical Ventilation in the Healthy Lung: OR and ICU -- 16.1 Introduction -- 16.2 Tidal Volume -- 16.3 Tidal Volume in the Operating Room -- 16.3.1 Benefit of a Lower VT -- 16.3.2 Challenges of a Lower VT -- 16.3.3 Temporal Changes in the Size of VT -- 16.3.4 Current Recommendations -- 16.4 Tidal Volume the Intensive Care Unit -- 16.4.1 Benefit of a Lower VT -- 16.4.2 Challenges of a Lower VT -- 16.4.3 Temporal Changes in the Size of VT -- 16.4.4 Current Recommendations -- 16.5 Positive End-Expiratory Pressure -- 16.6 PEEP in the Operating Room -- 16.6.1 Benefit of Higher PEEP -- 16.6.2 Challenges of Higher PEEP -- 16.6.3 Temporal Changes in PEEP -- 16.6.4 Current Recommendations -- 16.7 PEEP in the Intensive Care Unit -- 16.7.1 Benefit of Higher PEEP -- 16.7.2 Challenges of Higher PEEP -- 16.7.3 Temporal Changes in PEEP -- 16.7.4 Current Recommendations -- 16.8 Conclusions -- References -- 17: PEEP Setting in ARDS -- 17.1 Introduction -- 17.2 Pathophysiology: Beneficial Effects of PEEP. 17.3 Pathophysiology: Harmful Effects of PEEP. |
Record Nr. | UNINA-9910552722803321 |
Cham, Switzerland : , : Springer Nature Switzerland AG, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Mechanical ventilation in emergency medicine / / Susan R. Wilcox, Ani Aydin, Evie G. Marcolini |
Autore | Wilcox Susan R (Susan Renee) |
Edizione | [Second edition.] |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2022] |
Descrizione fisica | 1 online resource (109 pages) |
Disciplina | 614.8 |
Soggetto topico |
Artificial respiration
Emergency medicine |
ISBN | 3-030-87609-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910522982203321 |
Wilcox Susan R (Susan Renee) | ||
Cham, Switzerland : , : Springer, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Mechanical ventilation in neonates and children : a pathophysiology-based management approach / / Ashok P. Sarnaik, Shekhar T. Venkataraman, Bradley A. Kuch, editors |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer Nature Switzerland AG, , [2022] |
Descrizione fisica | 1 online resource (265 pages) |
Disciplina | 618.9201 |
Soggetto topico |
Neonatal intensive care
Artificial respiration Pediatric intensive care |
ISBN | 3-030-83738-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910522959403321 |
Cham, Switzerland : , : Springer Nature Switzerland AG, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Non-invasive ventilation / / editors, Bradley A. Yoder, Haresh Kirpalani ; consulting editor, Lucky Jain |
Pubbl/distr/stampa | Philadelphia, Pennsylvania : , : Elsevier, , [2016] |
Descrizione fisica | 1 online resource (263 pages) : illustrations (some color), color portrait |
Collana |
Clinics in perinatology
The clinics : internal medicine |
Soggetto topico | Artificial respiration |
ISBN | 0-323-47769-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910154629903321 |
Philadelphia, Pennsylvania : , : Elsevier, , [2016] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|