| Nota di contenuto |
Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- List of abbrseviations -- Foreword -- Preface -- Authors -- 1 Introduction -- 1.1 General -- 1.2 Restrictions under consideration for the structural restoration -- 1.3 Authenticity and life safety -- 1.4 The structure of this book -- 2 Building materials and construction techniques of monuments -- 2.1 General -- 2.2 Materials -- 2.2.1 Stones -- 2.2.2 Bricks -- 2.2.3 Mortars -- 2.2.3.1 General -- 2.2.3.2 Mud mortars -- 2.2.3.3 Lime mortars -- 2.2.3.4 Pozzolanic mortars -- 2.2.3.5 Aggregates -- 2.2.3.6 Additives -- 2.2.3.7 Case studies -- 2.2.4 Timber -- 2.2.5 Iron, cast-iron and steel -- 2.3 Construction techniques -- 2.3.1 Walls and piers of mortared stone and brick -- 2.3.2 Timber-framed walls -- 2.3.3 Timber and steel floors -- 2.3.4 Timber and steel roofs -- 2.3.5 Arches and barrel vaults -- 2.3.6 Groined and domical vaults -- 2.3.7 Domes and related forms -- 2.3.8 Columns -- 2.3.9 Foundations -- 2.3.9.1 General -- 2.3.9.2 Case studies -- 3 Masonry mechanics -- 3.1 General -- 3.2 Mechanical properties of masonry considered as a homogeneous material -- 3.2.1 Introduction -- 3.2.2 Compressive strength and deformation -- 3.2.2.1 Failure theory based on elastic analysis -- 3.2.2.2 Failure theory based on the strength of brick and mortar under multiaxial strength -- 3.2.2.3 Semiempirical formulas for the compressive strength of masonry -- 3.2.2.4 Compressive strength of three-leaf masonry walls -- 3.2.2.5 Compressive deformations -- 3.2.3 Tensile strength -- 3.2.4 Shear strength and deformation -- 3.2.4.1 Shear strength -- 3.2.4.2 Deformations -- 3.3 Axial compressive load combined with cyclic shear loading -- 3.3.1 Introduction -- 3.3.2 Mechanical properties -- 3.3.2.1 Strength -- 3.3.2.2 Displacements -- 3.4 Mechanical properties of masonry under biaxial loading.
3.4.1 Introduction -- 3.4.2 Experimental results -- 3.4.3 Analytical results -- 4 Structural behaviour of masonry in monumental buildings -- 4.1 General -- 4.2 Conceptual approach to the structural behaviour of masonry elements -- 4.3 Masonry structural elements -- 4.3.1 Masonry walls -- 4.3.1.1 Axial compressive loading -- 4.3.1.2 Axial compressive load combined with horizontal out-of-plane seismic action -- 4.3.1.3 Axial compressive load combined with in-plane horizontal seismic action -- 4.3.1.4 Masonry walls subjected to foundation settlements -- 4.3.2 Arches and barrel vaults -- 4.3.3 Groin vaults -- 4.3.4 Domes -- 4.4 Masonry structural systems - vulnerability -- 4.4.1 General -- 4.4.2 Free masonry walls -- 4.4.3 Timber-roofed basilicas -- 4.4.4 Domed circular buildings -- 4.4.5 Vaulted and domed basilicas -- 4.4.6 Cross-domed central nucleum -- 4.4.7 Secular buildings -- 4.4.7.1 The two main residential masonry structural systems -- 4.4.7.2 The transfer of seismic action in the free-standing wall systems -- 4.4.7.3 The transfer of seismic action in the case of diaphragmatic action of the floors -- 4.4.8 Bell towers and minarets -- 5 Techniques and materials in use for structural restoration -- 5.1 Techniques -- 5.1.1 Introduction -- 5.1.2 Classification of techniques -- 5.1.3 Local types of 'repair' and 'strengthening' -- 5.1.3.1 Masonry walls and piers -- 5.1.3.2 Strengthening of walls by applying skins of reinforced concrete (R/C) -- 5.1.3.3 Strengthening of free-standing columns -- 5.1.3.4 Strengthening of arches and barrel vaults -- 5.1.3.5 Strengthening of domes -- 5.1.3.6 Repair and strengthening of timber decks -- 5.1.4 General type of strengthening in structures above the ground -- 5.1.4.1 Introduction -- 5.1.4.2 Mass grouting of masonry walls -- 5.1.4.3 Removal of masses -- 5.1.4.4 Improvement of the distribution of mass and stiffness.
5.1.4.5 Improvement of structural response of basilicas with nonthrusting timber or steel roofs -- 5.1.4.6 Improvement of the structural response of multistorey residential buildings -- 5.1.4.7 Improvement of structural response in arched, vaulted and domed structures -- 5.1.5 Strengthening of foundations -- 5.1.5.1 Introduction -- 5.1.5.2 Consolidation of soil by means of injections -- 5.1.5.3 Underpinning with additional foundation -- 5.1.5.4 Underpinning with micropiles -- 5.1.6 Seismic isolation and energy dissipation systems -- 5.2 Materials -- 5.2.1 Introduction -- 5.2.2 Nonmetallic materials -- 5.2.2.1 Stones and bricks -- 5.2.2.2 Mortars and grouts -- 5.2.2.3 Concrete -- 5.2.2.4 Timber -- 5.2.3 Metallic materials -- 5.2.3.1 Introductory remarks -- 5.2.3.2 Conventional steels -- 5.2.3.3 Stainless steel -- 5.2.3.4 Titanium -- 5.2.3.5 Case studies from Greece -- 5.2.4 Fibre-Reinforced Plastics (FRPs) -- 5.2.4.1 Introduction -- 5.3 Conclusion -- 6 In-situ investigations and laboratory tests -- 6.1 Introduction -- 6.2 Investigation of existing files -- 6.3 In-situ investigation -- 6.3.1 Visual inspection -- 6.3.2 Geometrical and constructional survey -- 6.3.3 Survey of damages and deformations -- 6.3.4 In-situ DTs/NDTs -- 6.3.4.1 In-situ DTs -- 6.3.4.2 In-situ NDTs -- 6.3.5 Laboratory tests of original masonry materials -- 6.3.5.1 Introduction -- 6.3.5.2 Physical, chemical and mineralogical tests -- 6.3.5.3 Mechanical tests -- 6.3.6 Laboratory tests of mortars and grouts in use for masonry restoration -- 6.3.7 Laboratory tests on models -- 6.3.8 Soil tests -- 7 Structural analysis and design -- 7.1 Task of analysis and design -- 7.2 Historical notes -- 7.3 Modelling -- 7.3.1 General -- 7.3.2 Geometry -- 7.3.3 Internal morphology of structural elements -- 7.3.4 Mechanical properties of masonry.
7.3.5 Modification of the structural systems in the past -- 7.3.6 Cracks and damage of the past -- 7.3.7 Actions -- 7.3.7.1 Dead and live loads -- 7.3.7.2 Imposed deformations -- 7.3.7.3 Seismic action -- 7.3.8 The behaviour factor (q-factor) -- 7.3.9 M-θ diagrams -- 7.4 Linear elastic analysis and design -- 7.5 Limit-state analysis -- 7.6 Nonlinear analysis -- 7.6.1 General -- 7.6.2 Nonlinear analysis of an equivalent frame model -- 7.6.3 Isotropic-orthotropic homogeneous, nonlinear material macromodels, for 2D structures -- 7.6.4 Heterogeneous nonlinear microelement models for 2D structures -- 7.7 Design -- 7.7.1 Distinction between conventional and seismic loading -- 7.7.1.1 Conventional loading -- 7.7.1.2 Seismic loading -- 7.7.2 Displacement-based design for seismic loading -- 7.7.2.1 Inelastic dynamic analysis and design -- 7.7.2.2 Inelastic static analysis and design -- 7.7.2.3 Force-based design -- 7.7.3 Design considerations -- 7.8 Conclusions -- 8 Assessment -- 8.1 Introduction -- 8.2 The successive steps of structural restoration -- 8.3 Diagnosis -- 8.4 Quantitative safety evaluation -- 8.5 Assessment - structural restoration scheme -- 9 Case studies -- 9.1 The Rotunda of Thessaloniki -- 9.1.1 Introduction -- 9.1.2 Description -- 9.1.3 Pathology -- 9.1.4 Emergency measures -- 9.1.5 Structural restoration -- 9.1.5.1 General -- 9.1.5.2 Documentation -- 9.1.5.3 In-situ investigations -- 9.1.5.4 Laboratory tests -- 9.1.5.5 Evaluation of the mechanical characteristics of the structure -- 9.1.5.6 Analysis and design of the Roman part of the structure -- 9.1.5.7 Assessment for the Roman part of the monument -- 9.1.5.8 Analysis, design and assessment of the Christian part of the structure -- 9.1.5.9 Proposals for repair and strengthening -- 9.1.5.10 Reanalysis and redesign -- 9.1.6 Execution.
9.2 Structural restoration of the Acheiropoietos basilica in Thessaloniki -- 9.2.1 Introduction -- 9.2.2 Historical background and structural form -- 9.2.3 Pathology -- 9.2.4 Static and dynamic behaviour of the monument -- 9.2.5 Proposal of intervention scheme -- 9.2.6 The type of chosen diaphragms -- 9.2.7 Structural analysis and design -- 9.2.7.1 Basic assumptions -- 9.2.7.2 Evaluation of results -- 9.2.8 Intervention materials -- 9.2.9 Conclusions -- 9.3 The structural restoration of the National Library of Greece in Athens -- 9.3.1 Introduction -- 9.3.2 Description -- 9.3.3 Building pathology -- 9.3.4 Site investigations and laboratory tests -- 9.3.5 Analytical models -- 9.3.5.1 Dynamic finite element analysis -- 9.3.5.2 Nonlinear static analysis -- 9.3.6 Proposed intervention scheme -- 9.3.7 Conclusions -- 9.4 Strengthening of the minaret of Rotunda in Thessaloniki -- 9.4.1 Introduction -- 9.4.2 In-situ and laboratory research -- 9.4.2.1 Geometry of the structure -- 9.4.2.2 Pathology - emergency interventions -- 9.4.2.3 Mechanical characteristics of bricks, mortar and masonry -- 9.4.2.4 Fundamental period of the minaret -- 9.4.2.5 Geotechnical and seismological study of the territory -- 9.4.3 Bearing capacity at virgin state -- 9.4.3.1 Analytical model and verification -- 9.4.3.2 Bearing capacity at virgin state -- 9.4.4 Alternative strengthening proposals -- 9.4.4.1 Internal concrete jacket -- 9.4.4.2 External steel strips nailed to the masonry -- 9.5 Hagios Andreas church in Peristera, Greece -- 9.5.1 Introduction -- 9.5.2 Description -- 9.5.3 Structural condition -- 9.5.4 Detailed investigations -- 9.5.4.1 Architectural and constructional survey -- 9.5.4.2 Survey of the damage -- 9.5.4.3 Test on materials -- 9.5.4.4 Static analyses -- 9.5.5 Repair and strengthening -- 9.5.6 Specifications.
9.6 Restoration of the Mar Girgis church and the Roman tower underneath in Cairo.
|