top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
3D point cloud analysis : traditional, deep learning, and explainable machine learning methods / / Shan Liu
3D point cloud analysis : traditional, deep learning, and explainable machine learning methods / / Shan Liu
Autore Liu Songbin
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (156 pages)
Disciplina 006.37
Soggetto topico Visió per ordinador
Aprenentatge automàtic
Machine learning
ISBN 3-030-89180-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910513688503321
Liu Songbin  
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
3D point cloud analysis : traditional, deep learning, and explainable machine learning methods / / Shan Liu
3D point cloud analysis : traditional, deep learning, and explainable machine learning methods / / Shan Liu
Autore Liu Songbin
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (156 pages)
Disciplina 006.37
Soggetto topico Visió per ordinador
Aprenentatge automàtic
Machine learning
Soggetto genere / forma Llibres electrònics
ISBN 3-030-89180-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996466555003316
Liu Songbin  
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Advanced machine learning approaches in cancer prognosis : challenges and applications / / Janmenjoy Nayak [and four others] editors
Advanced machine learning approaches in cancer prognosis : challenges and applications / / Janmenjoy Nayak [and four others] editors
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (461 pages)
Disciplina 006.31
Collana Intelligent systems reference library ; Volume 204.
Soggetto topico Cancer - Prognosis - Technological innovations
Machine learning
Artificial intelligence - Medical applications
Càncer
Pronòstic mèdic
Innovacions tecnològiques
Intel·ligència artificial en medicina
Aprenentatge automàtic
Soggetto genere / forma Llibres electrònics
ISBN 3-030-71975-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910482988603321
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advanced machine learning technologies and applications : proceedings of AMLTA 2021 / / edited by Aboul-Ella Hassanien, Kuo-Chi Chang, Tang Mincong
Advanced machine learning technologies and applications : proceedings of AMLTA 2021 / / edited by Aboul-Ella Hassanien, Kuo-Chi Chang, Tang Mincong
Pubbl/distr/stampa Gateway East, Singapore : , : Springer, , [2021]
Descrizione fisica 1 online resource (1,144 pages) : illustrations
Disciplina 006.31
Collana Advances in Intelligent Systems and Computing
Soggetto topico Machine learning
Aprenentatge automàtic
COVID-19
Intel·ligència artificial en medicina
Soggetto genere / forma Congressos
Llibres electrònics
ISBN 3-030-69717-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910484064003321
Gateway East, Singapore : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advances in Artificial Systems for Logistics Engineering : 2021 International Conference on Artificial Intelligence and Logistics Engineering (ICAILE2021) ; Kyiv, Ukraine, 22-24 January 2021 / / Zhengbing Hu, Qingying Zhang, Sergey Petoukhov, Matthew He, editors
Advances in Artificial Systems for Logistics Engineering : 2021 International Conference on Artificial Intelligence and Logistics Engineering (ICAILE2021) ; Kyiv, Ukraine, 22-24 January 2021 / / Zhengbing Hu, Qingying Zhang, Sergey Petoukhov, Matthew He, editors
Pubbl/distr/stampa Cham : , : Springer International Publishing AG, , 2021
Descrizione fisica 1 online resource (384 pages)
Collana Lecture Notes on Data Engineering and Communications Technologies
Soggetto topico Machine learning
Artificial intelligence
Logistics - Data processing
Logística industrial
Intel·ligència artificial
Aprenentatge automàtic
Soggetto genere / forma Llibres electrònics
Congressos
ISBN 3-030-80475-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Part I. Mathematical Advances in Schemes for Logistics Engineering --Deep Learning for Grasp-and-Lift Movement Forecasting based on Electroencephalography by Brain-computer Interface --Inland Waterborne Commerce Study based on Variance Decomposition and Cross-spectral Analysis --RBF-based Input Doubling Method for Small Medical Data Processing --Vehicles and Cargos Two-sided Matching based on Similarity Calculation --Improving pedestrian detection methods by architecture and hyperparameter modification of deep neural networks --Warehousing Process Mining Research based on Petri Net --Mathematical Methods of Algebraic Biology Forecast and Analysis of Domestic Iron Ore Shipping Pricing Based on BP Neural Network --On Trilateral Evolutionary Game and Simulation Analysis of College-Enterprise-Government Collaborative Digital Talent Cultivation in the Context of Digital Economy --Design and Development of Mobile Learning Platform Based on WeChat Mini Programs --A New Fog Enabled Sensor Cloud Platform for Smart Logistics Park --The Location of Company's Logistics Hub Based on Principal Component Analysis --Part II. Advances in Technological and Educational Approaches --Deep Learning for Melanoma Detection with Testing Time Data Augmentation --Research and Development of Interactive Virtual Disassembly Teaching System Considering Difficulty Gradient --Teaching Reform and Empirical Research of Logistics Professional English Based on Super Star Learning APP Platform --Integrated Operation Mode of Warehousing and Distribution in the O2O Environment --A Comparison of Machine Learning Algorithms for Prediction Higher Education Institution's Entrants Admissions.
Altri titoli varianti ICAILE 2021
Record Nr. UNINA-9910495168103321
Cham : , : Springer International Publishing AG, , 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advances in data science and information engineering : proceedings from ICDATA 2020 and IKE 2020 / / Robert Stahlbock [and five others] (editors)
Advances in data science and information engineering : proceedings from ICDATA 2020 and IKE 2020 / / Robert Stahlbock [and five others] (editors)
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (965 pages)
Disciplina 006.3
Collana Transactions on computational science and computational intelligence
Soggetto topico Data mining
Mineria de dades
Aprenentatge automàtic
Sistemes d'informació
Machine learning
Information storage and retrieval systems
Soggetto genere / forma Congressos
Llibres electrònics
ISBN 3-030-71704-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996466406103316
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Advances in data science and information engineering : proceedings from ICDATA 2020 and IKE 2020 / / Robert Stahlbock [and five others] (editors)
Advances in data science and information engineering : proceedings from ICDATA 2020 and IKE 2020 / / Robert Stahlbock [and five others] (editors)
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (965 pages)
Disciplina 006.3
Collana Transactions on computational science and computational intelligence
Soggetto topico Data mining
Mineria de dades
Aprenentatge automàtic
Sistemes d'informació
Machine learning
Information storage and retrieval systems
Soggetto genere / forma Congressos
Llibres electrònics
ISBN 3-030-71704-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910508474303321
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advances in learning automata and intelligent optimization / / Javidan Kazemi Kordestani [and three others], editors
Advances in learning automata and intelligent optimization / / Javidan Kazemi Kordestani [and three others], editors
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (355 pages)
Disciplina 006.31
Collana Intelligent Systems Reference Library
Soggetto topico Aprenentatge automàtic
Optimització matemàtica
Mathematical optimization
Soggetto genere / forma Llibres electrònics
ISBN 3-030-76291-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- About the Authors -- Abbreviations -- 1 An Introduction to Learning Automata and Optimization -- 1.1 Introduction -- 1.2 Learning Automata -- 1.2.1 Learning Automata Variants -- 1.2.2 Recent Applications of Learning Automata -- 1.3 Optimization -- 1.3.1 Evolutionary Algorithms and Swarm Intelligence -- 1.4 Reinforcement Learning and Optimization Methods -- 1.4.1 Static Optimization -- 1.4.2 Dynamic Optimization -- 1.5 LA and Optimization Timeline -- 1.6 Chapter Map -- 1.7 Conclusion -- References -- 2 Learning Automaton and Its Variants for Optimization: A Bibliometric Analysis -- 2.1 Introduction -- 2.2 Learning Automata Models and Optimization -- 2.3 Material and Method -- 2.3.1 Data Collection and Initial Results -- 2.3.2 Refining the Initial Results -- 2.4 Analyzing the Results -- 2.4.1 Initial Result Statistics -- 2.4.2 Top Journals -- 2.4.3 Top Researchers -- 2.4.4 Top Papers -- 2.4.5 Top Affiliations -- 2.4.6 Top Keywords -- 2.5 Conclusion -- References -- 3 Cellular Automata, Learning Automata, and Cellular Learning Automata for Optimization -- 3.1 Introduction -- 3.2 Preliminaries -- 3.2.1 Cellular Automata -- 3.2.2 Learning Automata -- 3.2.3 Cellular Learning Automata -- 3.3 CA, CLA, and LA Models for Optimization -- 3.3.1 Cellular Learning Automata-Based Evolutionary Computing (CLA-EC) -- 3.3.2 Cooperative Cellular Learning Automata-Based Evolutionary Computing (CLA-EC) -- 3.3.3 Recombinative Cellular Learning Automata-Based Evolutionary Computing (RCLA-EC) -- 3.3.4 CLA-EC with Extremal Optimization (CLA-EC-EO) -- 3.3.5 Cellular Learning Automata-Based Differential Evolution (CLA-DE) -- 3.3.6 Cellular Particle Swarm Optimization (Cellular PSO) -- 3.3.7 Firefly Algorithm Based on Cellular Learning Automata (CLA-FA) -- 3.3.8 Harmony Search Algorithm Based on Learning Automata (LAHS).
3.3.9 Learning Automata Based Butterfly Optimization Algorithm (LABOA) -- 3.3.10 Grey Wolf Optimizer Based on Learning Automata (GWO-LA) -- 3.3.11 Learning Automata Models with Multiple Reinforcements (MLA) -- 3.3.12 Cellular Learning Automata Models with Multiple Reinforcements (MCLA) -- 3.3.13 Multi-reinforcement CLA with the Maximum Expected Rewards (MCLA) -- 3.3.14 Gravitational Search Algorithm Based on Learning Automata (GSA-LA) -- 3.4 Conclusion -- References -- 4 Learning Automata for Behavior Control in Evolutionary Computation -- 4.1 Introduction -- 4.2 Types of Parameter Adjustment in EC Community -- 4.2.1 EC with Constant Parameters -- 4.2.2 EC with Time-Varying Parameters -- 4.3 Differential Evolution -- 4.3.1 Initialization -- 4.3.2 Difference-Vector Based Mutation -- 4.3.3 Repair Operator -- 4.3.4 Crossover -- 4.3.5 Selection -- 4.4 Learning Automata for Adaptive Control of Behavior in Differential Evolution -- 4.4.1 Behavior Control in DE with Variable-Structure Learning Automaton -- 4.4.2 Behavior Control in DE with Fixed-Structure Learning Automaton -- 4.5 Experimental Setup -- 4.5.1 Benchmark Functions -- 4.5.2 Algorithm's Configuration -- 4.5.3 Simulation Settings and Results -- 4.5.4 Experimental Results -- 4.6 Conclusion -- References -- 5 A Memetic Model Based on Fixed Structure Learning Automata for Solving NP-Hard Problems -- 5.1 Introduction -- 5.2 Fixed Structure Learning Automata and Object Migrating Automata -- 5.2.1 Fixed Structure Learning Automata -- 5.2.2 Object Migration Automata -- 5.3 GALA -- 5.3.1 Global Search in GALA -- 5.3.2 Crossover Operator -- 5.3.3 Mutation Operator -- 5.3.4 Local Learning in GALA -- 5.3.5 Applications of GALA -- 5.4 The New Memetic Model Based on Fixed Structure Learning Automata -- 5.4.1 Hybrid Fitness Function -- 5.4.2 Mutation Operators -- 5.4.3 Crossover Operators.
5.5 The OneMax Problem -- 5.5.1 Local Search for OneMax -- 5.5.2 Experimental Results -- 5.6 Conclusion -- References -- 6 The Applications of Object Migration Automaton (OMA)-Memetic Algorithm for Solving NP-Hard Problems -- 6.1 Introduction -- 6.2 The Equipartitioning Problem -- 6.2.1 Local Search for EPP -- 6.2.2 Experimental Results -- 6.3 The Graph Isomorphism Problem -- 6.3.1 The Local Search in the Graph Isomorphism Problem -- 6.3.2 Experimental Results -- 6.4 Assignment of Cells to Switches Problem (ACTSP) in Cellular Mobile Network -- 6.4.1 Background and Related Work -- 6.4.2 The OMA-MA for Assignment of Cells to Switches Problem -- 6.4.3 The Framework of the OMA-MA Algorithm -- 6.4.4 Experimental Result -- 6.5 Conclusion -- References -- 7 An Overview of Multi-population Methods for Dynamic Environments -- 7.1 Introduction -- 7.2 Moving Peaks Benchmark -- 7.2.1 Extended Versions of MPB -- 7.3 Performance Measurement -- 7.4 Types of Multi-population Methods -- 7.4.1 Methods with a Fixed Number of Populations -- 7.4.2 Methods with a Variable Number of Populations -- 7.4.3 Methods Based on Population Clustering -- 7.4.4 Self-adapting the Number of Populations -- 7.5 Numerical Results -- 7.6 Conclusions -- References -- 8 Learning Automata for Online Function Evaluation Management in Evolutionary Multi-population Methods for Dynamic Optimization Problems -- 8.1 Introduction -- 8.2 Preliminaries -- 8.2.1 Waste of FEs Due to Change Detection -- 8.2.2 Waste of FEs Due to the Excessive Number of Sub-populations -- 8.2.3 Waste of FEs Due to Overcrowding of Subpopulations in the Same Area of the Search Space -- 8.2.4 Waste of FEs Due to Exclusion Operator -- 8.2.5 Allocation of FEs to Unproductive Populations -- 8.2.6 Unsuitable Parameter Configuration of the EC Methods -- 8.2.7 Equal Distribution of FEs Among Sub-populations.
8.3 Theory of Learning Automata -- 8.3.1 Fixed Structure Learning Automata -- 8.3.2 Variable Structure Learning Automata -- 8.4 EC Techniques under Study -- 8.4.1 Particle Swarm Optimization -- 8.4.2 Firefly Algorithm -- 8.4.3 Jaya -- 8.5 LA-Based FE Management Model for MP Evolutionary Dynamic Optimization -- 8.5.1 Initialization of Sub-populations -- 8.5.2 Detection and Response to Environmental Changes -- 8.5.3 Choose a Sub-population for Execution -- 8.5.4 Evaluate the Search Progress of Populations and Generate the Reinforcement Signal -- 8.5.5 Exclusion -- 8.6 FE-Management in MP Method with a Fixed Number of Populations -- 8.6.1 VSLA-Based FE Management Strategy -- 8.6.2 FSLA-Based FE Management Strategies -- 8.7 Experimental Study -- 8.7.1 Experimental Setup -- 8.7.2 Experimental Results and Discussion -- 8.8 Conclusion -- References -- 9 Function Management in Multi-population Methods with a Variable Number of Populations: A Variable Action Learning Automaton Approach -- 9.1 Introduction -- 9.2 Main Framework of Clustering Particle Swarm Optimization -- 9.2.1 Creating Multiple Sub-swarms from the Cradle Swarm -- 9.2.2 Local Search by PSO -- 9.2.3 Status of Sub-swarms -- 9.2.4 Detection and Response to Environmental Changes -- 9.3 Variable Action-Set Learning Automata -- 9.4 FEM in MP Methods with a Variable Number of Populations -- 9.5 Experimental Study -- 9.5.1 Dynamic Test Function -- 9.5.2 Performance Measure -- 9.5.3 Experimental Settings -- 9.5.4 Experimental Results -- 9.6 Conclusions -- References.
Record Nr. UNINA-9910488695403321
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
AI and machine learning paradigms for health monitoring system : intelligent data analytics / / Hasmat Malik, Nuzhat Fatema, Jafar A. Alzubi, editors
AI and machine learning paradigms for health monitoring system : intelligent data analytics / / Hasmat Malik, Nuzhat Fatema, Jafar A. Alzubi, editors
Pubbl/distr/stampa Singapore : , : Springer, , [2021]
Descrizione fisica 1 online resource (522 pages)
Disciplina 006.3
Collana Studies in Big Data
Soggetto topico Computational intelligence
Artificial intelligence
Machine learning
Intel·ligència artificial
Aprenentatge automàtic
Intel·ligència computacional
Soggetto genere / forma Llibres electrònics
ISBN 981-334-412-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910484882003321
Singapore : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
AI in Learning: Designing the Future / / edited by Hannele Niemi, Roy D. Pea, Yu Lu
AI in Learning: Designing the Future / / edited by Hannele Niemi, Roy D. Pea, Yu Lu
Autore Niemi Hannele
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham, : Springer Nature, 2023
Descrizione fisica 1 online resource (XXV, 344 p. 49 illus., 42 illus. in color.)
Disciplina 150
Soggetto topico Psychology
Social sciences—Data processing
Education
Cognitive science
Teaching
Artificial intelligence
Behavioral Sciences and Psychology
Computer Application in Social and Behavioral Sciences
Cognitive Science
Pedagogy
Artificial Intelligence
Intel·ligència artificial
Ensenyament
Aprenentatge
Educació
Ètica
Aprenentatge automàtic
Soggetto genere / forma Llibres electrònics
Soggetto non controllato artificial intelligence
life-long learning
tutoring
virtual learning
learning analytics
well-being
simulations
games
intelligent digital tools
deep learning
robotics
human-machine interaction
ISBN 3-031-09687-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1.Introduction to AI in Learning – Designing the Future -- Part I: AI expanding learning and wellbeing throughout life -- 2.Artificial Intelligence Innovations for Multimodal Learning, Interfaces, and Analytics -- 3.Curiosity and Interactive Learning in Artificial Systems -- 4.Assessing and Tracking Students’ Wellbeing through an Automated Scoring System: Schoolday Wellbeing Model -- 5.Learning from Intelligent Social Agents as Social and Intellectual Mirrors -- 6.An AI-Powered Teacher Assistant for Student Problem Behavior Diagnosis -- 7.Analysis and Improvement of Classroom Teaching Based on Artificial Intelligence -- Part II. AI in Games and Simulations -- 8.Perspectives and Metaphors of Learning: A Commentary on James Lester’s Narrative-centered AI-based Environments -- 9.Learning Career Knowledge: Can AI Simulation and Machine Learning Improve Career Plans and Educational Expectations? -- 10.Learning clinical reasoning through gaming in nursing education – Future scenarios of game metrics and AI -- 11.AI-Supported Simulation-Based Learning: Learners’ Emotional Experiences and Self-Regulation in Challenging Situations -- Part III. AI Technologies for education and Intelligent Tutoring Systems -- 12.Training Hard Skills in Virtual Reality: Developing a Theoretical Framework for AI-based Immersive Learning.-13.Multiple users’ experiences of an AI-aided educational platform for teaching and learning. 14.Deep Learning in Automatic Math Word Problem Solvers. 15.Recent Advances in Intelligent Textbooks for Better Learning -- Part IV. AI and Ethical Challenges in New Learning Environments -- 16.Ethical Guidelines for Artificial Intelligence-based Learning: A Transnational Study between in China and Finland -- 17.Artificial Intelligence Ethics from the Perspective of Educational Technology Companies and Schools -- 18.Artificial Intelligence in Education as a Rawlsian Massively Multiplayer Game: A thought experiment on AI Ethics -- 19.Four surveillance technologies creating challenges for education -- 20.Reflections on the contributions and future scenarios in AI-based learning.
Record Nr. UNINA-9910632469503321
Niemi Hannele  
Cham, : Springer Nature, 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui