Vai al contenuto principale della pagina

Machine learning tools for chemical engineering : methodologies and applications / / Francisco Javier López-Flores, Rogelio Ochoa-Barragán, Alma Yunuen Raya-Tapia, César Ramírez-Márquez, José Maria Ponce-Ortega



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: López-Flores Francisco Javier Visualizza persona
Titolo: Machine learning tools for chemical engineering : methodologies and applications / / Francisco Javier López-Flores, Rogelio Ochoa-Barragán, Alma Yunuen Raya-Tapia, César Ramírez-Márquez, José Maria Ponce-Ortega Visualizza cluster
Pubblicazione: Elsevier Science [Imprint]
San Diego, : Elsevier Science & Technology Books
Saint Louis, : Elsevier [Distributor]
Chantilly : , : Elsevier Science & Technology, , 2025
©2026
Edizione: 1st ed.
Descrizione fisica: 1 online resource (630 pages)
Disciplina: 660.0285631
Soggetto topico: Chemical engineering - Data processing
Machine learning - Industrial applications
Génie chimique - Informatique
Apprentissage automatique - Applications industrielles
Persona (resp. second.): Raya-TapiaAlma Yunuen
Ochoa-BarragánRogelio
Ramírez-MárquezCésar
Sommario/riassunto: Machine Learning Tools for Chemical Engineering: Methodologies and Applications examines how machine learning (ML) techniques are applied in the field, offering precise, fast, and flexible solutions to address specific challenges.ML techniques and methodologies offer significant advantages (such as accuracy, speed of execution, and flexibility).
Titolo autorizzato: Machine learning tools for chemical engineering  Visualizza cluster
ISBN: 0-443-29059-8
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9911044026503321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui