top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
1996 IEEE International Symposium on Phased Array Systems and Technology, 15-18 October 1996, Boston, Massachusetts : revolutionary developments in phased arrays
1996 IEEE International Symposium on Phased Array Systems and Technology, 15-18 October 1996, Boston, Massachusetts : revolutionary developments in phased arrays
Pubbl/distr/stampa [Place of publication not identified], : Institute of Electrical and Electronics Engineers, 1996
Soggetto topico Phased array antennas
Antenna arrays
Microwave antennas
Microwave integrated circuits
Electrical & Computer Engineering
Electrical Engineering
Engineering & Applied Sciences
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996203713303316
[Place of publication not identified], : Institute of Electrical and Electronics Engineers, 1996
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
1996 IEEE International Symposium on Phased Array Systems and Technology, 15-18 October 1996, Boston, Massachusetts : revolutionary developments in phased arrays
1996 IEEE International Symposium on Phased Array Systems and Technology, 15-18 October 1996, Boston, Massachusetts : revolutionary developments in phased arrays
Pubbl/distr/stampa [Place of publication not identified], : Institute of Electrical and Electronics Engineers, 1996
Soggetto topico Phased array antennas
Antenna arrays
Microwave antennas
Microwave integrated circuits
Electrical & Computer Engineering
Electrical Engineering
Engineering & Applied Sciences
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910872752503321
[Place of publication not identified], : Institute of Electrical and Electronics Engineers, 1996
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Active Array Antennas for High Resolution Microwave Imaging Radar / / Jiaguo Lu [and three others]
Active Array Antennas for High Resolution Microwave Imaging Radar / / Jiaguo Lu [and three others]
Autore Lu Jiaguo <1964->
Edizione [First edition.]
Pubbl/distr/stampa Singapore : , : Springer, , [2023]
Descrizione fisica 1 online resource (455 pages)
Disciplina 621.38483
Soggetto topico Antenna arrays
Microwave imaging
Radar - Antennas
ISBN 981-9914-75-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1 Introduction -- Chapter 2 Analysis and Optimization of Array Antennas -- Chapter 3 Errors and Compensation of Array Antennas -- Chapter 4 Broadband Active Array Antennas -- Chapter 5 Integration of Active Array Modules -- Chapter 6 Shared-Aperture Array Antennas -- Chapter 7 Active Antenna-in-Package -- Chapter 8 Digital Array Antennas -- Chapter 9 Microwave Photonic Array Antenna.
Record Nr. UNINA-9910720089703321
Lu Jiaguo <1964->  
Singapore : , : Springer, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Active electronically scanned arrays : fundamentals and applications / / Arik D. Brown
Active electronically scanned arrays : fundamentals and applications / / Arik D. Brown
Autore Brown Arik D (Arik Darnell)
Pubbl/distr/stampa Hoboken, New Jersey : , : IEEE Press : , : John Wiley & Sons, Inc., , [2022]
Descrizione fisica 1 online resource (275 pages)
Disciplina 621.3824
Collana IEEE Press Ser.
Soggetto topico Antenna arrays
ISBN 1-119-74908-5
1-119-74909-3
1-119-74906-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Preface -- Acknowledgments -- Acronyms -- Chapter 1 AESA Overview -- 1.1 Introduction -- 1.2 AESA History -- 1.3 AESA Applications -- 1.3.1 RADAR -- 1.3.2 Electronic Warfare -- 1.3.2.1 Electronic Attack -- 1.3.2.2 Electronic Support Measures -- 1.3.3 Communications -- 1.3.4 Signals Intelligence -- 1.4 AESA Point of Reference -- 1.5 Block Diagram -- 1.5.1 Antenna Array Elements -- 1.5.2 Transmit Receive Modules -- 1.5.3 Beamformer -- 1.6 AESA Cascaded Performance and Architecture Selection -- References -- Chapter 2 AESA Theory -- 2.1 Introduction -- 2.2 General One‐Dimensional Formulation -- 2.2.1 Pattern Expression without Electronic Scanning -- 2.2.2 Pattern Expression with Electronic Scanning -- 2.3 AESA Fundamental Topics -- 2.3.1 Beamwidth -- 2.3.2 Instantaneous Bandwidth -- 2.3.3 Grating Lobes -- 2.3.4 Error Effects -- 2.3.5 Quantization Effects -- 2.3.6 Random Error Effects (Amplitude and Phase) -- 2.4 One‐Dimensional Pattern Synthesis -- 2.4.1 Varying Amplitude Distribution -- 2.4.2 Varying Frequency -- 2.4.3 Varying Scan Angle -- 2.5 Conformal Arrays This section is based on a technical memo written by the author and Dr. Sumati Rajan with the consultation of Dr. Daniel Boeringer. -- 2.5.1 Array Pattern for a Linear Array -- 2.5.2 Array Pattern for a Conformal Array -- 2.5.3 Example -- 2.5.3.1 Conformal One‐Dimensional Array -- 2.6 2D AESA Pattern Formulation -- 2.6.1 AESA Spatial Coordinate Definitions -- 2.6.2 Antenna Coordinates -- 2.6.3 Radar Coordinates -- 2.6.4 Antenna Cone Angle Coordinates -- 2.6.5 Sine Space Representation -- 2.6.6 AESA Element Grid -- 2.6.6.1 Rectangular Grid -- 2.6.6.2 Triangular Grid -- 2.6.7 Two‐Dimensional Pattern Synthesis -- 2.6.7.1 Ideal Patterns -- 2.7 Circular Grid AESA Patterns -- 2.8 Tilted AESA Patterns -- 2.9 Integrated Gain -- References.
Chapter 3 Array Elements -- 3.1 Introduction -- 3.2 Bandwidth -- 3.3 Polarization -- 3.3.1 Electromagnetic Polarization Fundamentals -- 3.3.2 Types of Polarization -- 3.3.2.1 Linear Polarization -- 3.3.2.2 Circular Polarization -- 3.3.2.3 Elliptical Polarization -- 3.3.3 Polarization States -- 3.3.4 Array Polarization -- 3.3.4.1 Key Requirements -- 3.4 Array Grid -- 3.5 Mismatch and Ohmic Loss -- 3.6 Active Match -- 3.7 Scan Loss -- References -- Chapter 4 Transmit Receive Modules -- 4.1 Overview -- 4.1.1 TRM Baseline Topology -- 4.1.1.1 TR Switches -- 4.1.1.2 Amplifiers -- 4.1.1.3 Pre‐Amplifier and HPA -- 4.1.1.4 LNA -- 4.1.1.5 Phase Shifter -- 4.1.1.6 Attenuator -- 4.1.1.7 Circulator -- 4.1.1.8 Receiver Protector -- 4.1.1.9 Filters -- 4.1.2 TRM Topology Types -- 4.1.2.1 Receive Only -- 4.1.2.2 Channelization -- 4.1.2.3 Simultaneous Beams -- 4.1.2.4 Multi‐Channel TRMs -- 4.2 Transmit Operation -- 4.2.1 Efficiency and Amplifier Classes -- 4.2.2 P1dB -- 4.2.3 Linearity -- 4.2.3.1 Harmonics and Intermodulation Products -- 4.2.3.2 Intercept Point -- 4.2.4 Wideband Operation -- 4.2.4.1 Nonlinear Beams -- 4.2.5 Thermal Implications Due to Output Match -- 4.3 Receive Operation -- 4.4 Reliability2 -- 4.4.1 Probability of Failed Elements -- 4.4.2 MTBF -- References -- Chapter 5 Beamformers -- 5.1 Introduction -- 5.1.1 Tile and Brick Architectures -- 5.1.2 Corporate and Noncorporate Beamforming -- 5.2 Lossless Beamformer -- 5.2.1 Transmit -- 5.2.2 Receive -- 5.3 Beamformer Weighting -- 5.4 Distributed Weighting -- 5.5 Beam Spoiling -- 5.6 Monopulse for Angle Estimation -- 5.6.1 Three Channel Monopulse with an AESA -- 5.6.1.1 Calibration for Monopulse Coupler Errors -- 5.6.2 Two‐Channel Monopulse with an AESA -- 5.6.2.1 Low Sidelobe Delta Beams -- References -- Chapter 6 AESA Cascaded Performance -- 6.1 Introduction.
6.2 Fundamental Expressions for Cascade Calculations -- 6.2.1 Noise Model -- 6.2.1.1 Active Device -- 6.2.1.2 Resistive Device -- 6.2.1.3 Noise Factor Definition -- 6.2.2 Cascaded Noise Factor -- 6.3 AESA Cascaded Performance -- 6.3.1 AESA Output Signal Power -- 6.3.2 AESA Output Noise Power -- 6.3.3 AESA Signal/Noise Gain and Noise Factor -- 6.3.4 AESA nth‐Order Intercept Point -- 6.3.5 AESA Spurious Free Dynamic Range -- References -- Chapter 7 AESA Architectures -- 7.1 Introduction -- 7.2 Baseline Architecture -- 7.3 Subarray Architectures -- 7.4 Subarray Pattern Formulation -- 7.5 Subarray Beamforming -- 7.5.1 Subarray Phase Shifter Beamforming -- 7.5.2 Subarray Time Delay Beamforming -- 7.5.3 Subarray Digital Beamforming -- 7.6 Overlapped Subarrays -- 7.7 Elemental DBF Architecture -- 7.8 Adaptive Beamforming -- References -- Appendix A Array Factor (AF) Derivation -- Appendix B Instantaneous Bandwidth Derivation -- Reference -- Appendix C Triangular Grid Grating Lobes Derivation -- References -- Appendix D General Expression for Intercept Point Derivation -- Appendix E Impact of Failed Elements on AESA Performance -- Appendix F Sidelobe Blanking with an AESA -- Reference -- Appendix G External Noise Considerations1 -- Appendix H Important AESA Equations Reference -- H.1 System Level Equations -- H.1.1 Radar Range Equation -- H.1.2 Signal and Noise Gain -- H.1.3 Array Gain -- H.2 AESA Theory -- H.2.1 1D Pattern -- H.2.1.1 Phase Shifter and Time Delay Steering -- H.2.1.2 General Expression -- H.2.1.3 Conformal Array -- H.2.1.4 Alternate AF Expression -- H.2.2 2D Pattern -- H.2.3 Beamwidth -- H.2.4 Instantaneous Bandwidth (IBW) -- H.2.5 Grating Lobes -- H.2.6 AESA Errors -- H.2.7 Coordinate System Transformations -- H.2.8 Sine Space -- H.2.9 Roll, Pitch, and Yaw Formulas -- H.2.10 Integrated Gain -- H.3 Array Elements -- H.3.1 Fractional Bandwidth.
H.3.2 Polarization -- H.3.3 Active Match -- H.3.4 Scan Loss -- H.4 Transmit Receive Modules -- H.4.1 Amplifier Expressions -- H.4.2 Reliability -- H.5 Beamformer -- H.5.1 General Beamformer Expressions -- H.5.2 Beam Spoiling -- H.5.3 Monopulse AOA -- H.6 AESA Cascaded Performance -- H.6.1 Fundamental Expressions -- H.6.2 AESA Cascaded Expressions -- H.7 Adaptive Beamforming -- Reference -- Index -- EULA.
Record Nr. UNINA-9910555132103321
Brown Arik D (Arik Darnell)  
Hoboken, New Jersey : , : IEEE Press : , : John Wiley & Sons, Inc., , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Active electronically scanned arrays : fundamentals and applications / / Arik D. Brown
Active electronically scanned arrays : fundamentals and applications / / Arik D. Brown
Autore Brown Arik D (Arik Darnell)
Pubbl/distr/stampa Hoboken, New Jersey : , : IEEE Press : , : John Wiley & Sons, Inc., , [2022]
Descrizione fisica 1 online resource (275 pages)
Disciplina 621.3824
Collana IEEE Press
Soggetto topico Antenna arrays
ISBN 1-119-74908-5
1-119-74909-3
1-119-74906-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Preface -- Acknowledgments -- Acronyms -- Chapter 1 AESA Overview -- 1.1 Introduction -- 1.2 AESA History -- 1.3 AESA Applications -- 1.3.1 RADAR -- 1.3.2 Electronic Warfare -- 1.3.2.1 Electronic Attack -- 1.3.2.2 Electronic Support Measures -- 1.3.3 Communications -- 1.3.4 Signals Intelligence -- 1.4 AESA Point of Reference -- 1.5 Block Diagram -- 1.5.1 Antenna Array Elements -- 1.5.2 Transmit Receive Modules -- 1.5.3 Beamformer -- 1.6 AESA Cascaded Performance and Architecture Selection -- References -- Chapter 2 AESA Theory -- 2.1 Introduction -- 2.2 General One‐Dimensional Formulation -- 2.2.1 Pattern Expression without Electronic Scanning -- 2.2.2 Pattern Expression with Electronic Scanning -- 2.3 AESA Fundamental Topics -- 2.3.1 Beamwidth -- 2.3.2 Instantaneous Bandwidth -- 2.3.3 Grating Lobes -- 2.3.4 Error Effects -- 2.3.5 Quantization Effects -- 2.3.6 Random Error Effects (Amplitude and Phase) -- 2.4 One‐Dimensional Pattern Synthesis -- 2.4.1 Varying Amplitude Distribution -- 2.4.2 Varying Frequency -- 2.4.3 Varying Scan Angle -- 2.5 Conformal Arrays This section is based on a technical memo written by the author and Dr. Sumati Rajan with the consultation of Dr. Daniel Boeringer. -- 2.5.1 Array Pattern for a Linear Array -- 2.5.2 Array Pattern for a Conformal Array -- 2.5.3 Example -- 2.5.3.1 Conformal One‐Dimensional Array -- 2.6 2D AESA Pattern Formulation -- 2.6.1 AESA Spatial Coordinate Definitions -- 2.6.2 Antenna Coordinates -- 2.6.3 Radar Coordinates -- 2.6.4 Antenna Cone Angle Coordinates -- 2.6.5 Sine Space Representation -- 2.6.6 AESA Element Grid -- 2.6.6.1 Rectangular Grid -- 2.6.6.2 Triangular Grid -- 2.6.7 Two‐Dimensional Pattern Synthesis -- 2.6.7.1 Ideal Patterns -- 2.7 Circular Grid AESA Patterns -- 2.8 Tilted AESA Patterns -- 2.9 Integrated Gain -- References.
Chapter 3 Array Elements -- 3.1 Introduction -- 3.2 Bandwidth -- 3.3 Polarization -- 3.3.1 Electromagnetic Polarization Fundamentals -- 3.3.2 Types of Polarization -- 3.3.2.1 Linear Polarization -- 3.3.2.2 Circular Polarization -- 3.3.2.3 Elliptical Polarization -- 3.3.3 Polarization States -- 3.3.4 Array Polarization -- 3.3.4.1 Key Requirements -- 3.4 Array Grid -- 3.5 Mismatch and Ohmic Loss -- 3.6 Active Match -- 3.7 Scan Loss -- References -- Chapter 4 Transmit Receive Modules -- 4.1 Overview -- 4.1.1 TRM Baseline Topology -- 4.1.1.1 TR Switches -- 4.1.1.2 Amplifiers -- 4.1.1.3 Pre‐Amplifier and HPA -- 4.1.1.4 LNA -- 4.1.1.5 Phase Shifter -- 4.1.1.6 Attenuator -- 4.1.1.7 Circulator -- 4.1.1.8 Receiver Protector -- 4.1.1.9 Filters -- 4.1.2 TRM Topology Types -- 4.1.2.1 Receive Only -- 4.1.2.2 Channelization -- 4.1.2.3 Simultaneous Beams -- 4.1.2.4 Multi‐Channel TRMs -- 4.2 Transmit Operation -- 4.2.1 Efficiency and Amplifier Classes -- 4.2.2 P1dB -- 4.2.3 Linearity -- 4.2.3.1 Harmonics and Intermodulation Products -- 4.2.3.2 Intercept Point -- 4.2.4 Wideband Operation -- 4.2.4.1 Nonlinear Beams -- 4.2.5 Thermal Implications Due to Output Match -- 4.3 Receive Operation -- 4.4 Reliability2 -- 4.4.1 Probability of Failed Elements -- 4.4.2 MTBF -- References -- Chapter 5 Beamformers -- 5.1 Introduction -- 5.1.1 Tile and Brick Architectures -- 5.1.2 Corporate and Noncorporate Beamforming -- 5.2 Lossless Beamformer -- 5.2.1 Transmit -- 5.2.2 Receive -- 5.3 Beamformer Weighting -- 5.4 Distributed Weighting -- 5.5 Beam Spoiling -- 5.6 Monopulse for Angle Estimation -- 5.6.1 Three Channel Monopulse with an AESA -- 5.6.1.1 Calibration for Monopulse Coupler Errors -- 5.6.2 Two‐Channel Monopulse with an AESA -- 5.6.2.1 Low Sidelobe Delta Beams -- References -- Chapter 6 AESA Cascaded Performance -- 6.1 Introduction.
6.2 Fundamental Expressions for Cascade Calculations -- 6.2.1 Noise Model -- 6.2.1.1 Active Device -- 6.2.1.2 Resistive Device -- 6.2.1.3 Noise Factor Definition -- 6.2.2 Cascaded Noise Factor -- 6.3 AESA Cascaded Performance -- 6.3.1 AESA Output Signal Power -- 6.3.2 AESA Output Noise Power -- 6.3.3 AESA Signal/Noise Gain and Noise Factor -- 6.3.4 AESA nth‐Order Intercept Point -- 6.3.5 AESA Spurious Free Dynamic Range -- References -- Chapter 7 AESA Architectures -- 7.1 Introduction -- 7.2 Baseline Architecture -- 7.3 Subarray Architectures -- 7.4 Subarray Pattern Formulation -- 7.5 Subarray Beamforming -- 7.5.1 Subarray Phase Shifter Beamforming -- 7.5.2 Subarray Time Delay Beamforming -- 7.5.3 Subarray Digital Beamforming -- 7.6 Overlapped Subarrays -- 7.7 Elemental DBF Architecture -- 7.8 Adaptive Beamforming -- References -- Appendix A Array Factor (AF) Derivation -- Appendix B Instantaneous Bandwidth Derivation -- Reference -- Appendix C Triangular Grid Grating Lobes Derivation -- References -- Appendix D General Expression for Intercept Point Derivation -- Appendix E Impact of Failed Elements on AESA Performance -- Appendix F Sidelobe Blanking with an AESA -- Reference -- Appendix G External Noise Considerations1 -- Appendix H Important AESA Equations Reference -- H.1 System Level Equations -- H.1.1 Radar Range Equation -- H.1.2 Signal and Noise Gain -- H.1.3 Array Gain -- H.2 AESA Theory -- H.2.1 1D Pattern -- H.2.1.1 Phase Shifter and Time Delay Steering -- H.2.1.2 General Expression -- H.2.1.3 Conformal Array -- H.2.1.4 Alternate AF Expression -- H.2.2 2D Pattern -- H.2.3 Beamwidth -- H.2.4 Instantaneous Bandwidth (IBW) -- H.2.5 Grating Lobes -- H.2.6 AESA Errors -- H.2.7 Coordinate System Transformations -- H.2.8 Sine Space -- H.2.9 Roll, Pitch, and Yaw Formulas -- H.2.10 Integrated Gain -- H.3 Array Elements -- H.3.1 Fractional Bandwidth.
H.3.2 Polarization -- H.3.3 Active Match -- H.3.4 Scan Loss -- H.4 Transmit Receive Modules -- H.4.1 Amplifier Expressions -- H.4.2 Reliability -- H.5 Beamformer -- H.5.1 General Beamformer Expressions -- H.5.2 Beam Spoiling -- H.5.3 Monopulse AOA -- H.6 AESA Cascaded Performance -- H.6.1 Fundamental Expressions -- H.6.2 AESA Cascaded Expressions -- H.7 Adaptive Beamforming -- Reference -- Index -- EULA.
Record Nr. UNINA-9910830652903321
Brown Arik D (Arik Darnell)  
Hoboken, New Jersey : , : IEEE Press : , : John Wiley & Sons, Inc., , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Adaptive antennas and phased arrays for radar and communications / / Alan J. Fenn
Adaptive antennas and phased arrays for radar and communications / / Alan J. Fenn
Autore Fenn A. J (Alan Jeffrey), <1953->
Pubbl/distr/stampa Boston : , : Artech House/ Massachusetts Institute of Technology, Lincoln Laboratory, , 2008
Descrizione fisica 1 online resource (410 p.)
Disciplina 621.38483
Collana Artech House radar series
Soggetto topico Antenna arrays
Antennas (Electronics)
Radar
Telecommunication
Soggetto genere / forma Electronic books.
ISBN 1-59693-274-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Adaptive Antennas and Phased Arrays for Radar and Communications; Contents; Preface; 1 Adaptive Antennas and Degrees of Freedom; 2 Array Mutual Coupling Effects on Adaptive Radar Clutter Suppression; 3 Focused Near-Field Technique for Evaluating Adaptive Phased Arrays; 4 Moment Method Analysis of Focused Near-Field Adaptive Nulling; 5 Focused Near-Field Testing of Multiphase-Center Adaptive Array Radar Systems; 6 Experimental Testing of Focused Near-Field Adaptive Nulling; 7 Experimental Testing of High-Resolution Nulling with a Multiple Beam Antenna; 8 Phased Array Antennas: An Introduction
9 Monopole Phased Array Antenna Design, Analysis, and Measurements10 Monopole Phased Array Field Characteristics in the Focused Near-Field Region; 11 Displaced Phase Center AntennaMeasurements Using Near-Field Scanning; 12 Low-Sidelobe Phased Array Antenna Measurements Using Near-Field Scanning; 13 Arrays of Horizontally Polarized Omnidirectional Elements; 14 Finite Arrays of Crossed V-Dipole Elements; 15 Experimental Ultrawideband Dipole Antenna Array; 16 Finite Rectangular Waveguide Phased Arrays; About the Author; Index
Record Nr. UNINA-9910454411903321
Fenn A. J (Alan Jeffrey), <1953->  
Boston : , : Artech House/ Massachusetts Institute of Technology, Lincoln Laboratory, , 2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Adaptive antennas and phased arrays for radar and communications / / Alan J. Fenn
Adaptive antennas and phased arrays for radar and communications / / Alan J. Fenn
Autore Fenn A. J (Alan Jeffrey), <1953->
Pubbl/distr/stampa Boston : , : Artech House/ Massachusetts Institute of Technology, Lincoln Laboratory, , 2008
Descrizione fisica 1 online resource (410 p.)
Disciplina 621.38483
Collana Artech House radar series
Soggetto topico Antenna arrays
Antennas (Electronics)
Radar
Telecommunication
ISBN 1-59693-274-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Adaptive Antennas and Phased Arrays for Radar and Communications; Contents; Preface; 1 Adaptive Antennas and Degrees of Freedom; 2 Array Mutual Coupling Effects on Adaptive Radar Clutter Suppression; 3 Focused Near-Field Technique for Evaluating Adaptive Phased Arrays; 4 Moment Method Analysis of Focused Near-Field Adaptive Nulling; 5 Focused Near-Field Testing of Multiphase-Center Adaptive Array Radar Systems; 6 Experimental Testing of Focused Near-Field Adaptive Nulling; 7 Experimental Testing of High-Resolution Nulling with a Multiple Beam Antenna; 8 Phased Array Antennas: An Introduction
9 Monopole Phased Array Antenna Design, Analysis, and Measurements10 Monopole Phased Array Field Characteristics in the Focused Near-Field Region; 11 Displaced Phase Center AntennaMeasurements Using Near-Field Scanning; 12 Low-Sidelobe Phased Array Antenna Measurements Using Near-Field Scanning; 13 Arrays of Horizontally Polarized Omnidirectional Elements; 14 Finite Arrays of Crossed V-Dipole Elements; 15 Experimental Ultrawideband Dipole Antenna Array; 16 Finite Rectangular Waveguide Phased Arrays; About the Author; Index
Record Nr. UNINA-9910782298303321
Fenn A. J (Alan Jeffrey), <1953->  
Boston : , : Artech House/ Massachusetts Institute of Technology, Lincoln Laboratory, , 2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Adaptive antennas and phased arrays for radar and communications / / Alan J. Fenn
Adaptive antennas and phased arrays for radar and communications / / Alan J. Fenn
Autore Fenn A. J (Alan Jeffrey), <1953->
Edizione [1st ed.]
Pubbl/distr/stampa Boston ; ; London, : Artech House, c2008
Descrizione fisica 1 online resource (410 p.)
Disciplina 621.38483
Collana Artech House radar library
Soggetto topico Antenna arrays
Antennas (Electronics)
Radar
Telecommunication
ISBN 1-59693-274-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Adaptive Antennas and Phased Arrays for Radar and Communications; Contents; Preface; 1 Adaptive Antennas and Degrees of Freedom; 2 Array Mutual Coupling Effects on Adaptive Radar Clutter Suppression; 3 Focused Near-Field Technique for Evaluating Adaptive Phased Arrays; 4 Moment Method Analysis of Focused Near-Field Adaptive Nulling; 5 Focused Near-Field Testing of Multiphase-Center Adaptive Array Radar Systems; 6 Experimental Testing of Focused Near-Field Adaptive Nulling; 7 Experimental Testing of High-Resolution Nulling with a Multiple Beam Antenna; 8 Phased Array Antennas: An Introduction
9 Monopole Phased Array Antenna Design, Analysis, and Measurements10 Monopole Phased Array Field Characteristics in the Focused Near-Field Region; 11 Displaced Phase Center AntennaMeasurements Using Near-Field Scanning; 12 Low-Sidelobe Phased Array Antenna Measurements Using Near-Field Scanning; 13 Arrays of Horizontally Polarized Omnidirectional Elements; 14 Finite Arrays of Crossed V-Dipole Elements; 15 Experimental Ultrawideband Dipole Antenna Array; 16 Finite Rectangular Waveguide Phased Arrays; About the Author; Index
Record Nr. UNINA-9910815514603321
Fenn A. J (Alan Jeffrey), <1953->  
Boston ; ; London, : Artech House, c2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advanced antenna array engineering for 6G and beyond wireless communications / / Y. Jay Guo, Richard W. Ziolkowski
Advanced antenna array engineering for 6G and beyond wireless communications / / Y. Jay Guo, Richard W. Ziolkowski
Autore Guo Y. Jay
Pubbl/distr/stampa Piscataway, New Jersey ; ; Hoboken, New Jersey : , : IEEE Press : , : Wiley, , [2022]
Descrizione fisica 1 online resource (331 pages)
Disciplina 621.3824
Soggetto topico Antenna arrays
Wireless communication systems
Soggetto genere / forma Electronic books.
ISBN 1-119-71292-0
1-119-71294-7
1-119-71291-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Chapter 1 A Perspective of Antennas for 5G and 6G -- 1.1 5G Requirements of Antenna Arrays -- 1.1.1 Array Characteristics -- 1.1.2 Frequency Bands -- 1.1.3 Component Integration and Antennas-in-Package (AiP) -- 1.2 6G and Its Antenna Requirements -- 1.3 From Digital to Hybrid Multiple Beamforming -- 1.3.1 Digital Beamforming -- 1.3.2 Hybrid Beamforming -- 1.4 Analog Multiple Beamforming -- 1.4.1 Butler Matrix -- 1.4.2 Luneburg Lenses -- 1.5 Millimeter-Wave Antennas -- 1.6 THz Antennas -- 1.7 Lens Antennas -- 1.8 SIMO and MIMO Multi-Beam Antennas -- 1.9 In-Band Full Duplex Antennas -- 1.10 Conclusions -- References -- Chapter 2 Millimeter-Wave Beamforming Networks -- 2.1 Circuit-Type BFNs: SIW-Based Butler and Nolen Matrixes -- 2.1.1 Butler Matrix for One-Dimensional Multi-Beam Arrays -- 2.1.2 Butler Matrix for a 1-D Multi-Beam Array with Low Sidelobes -- 2.1.3 Butler Matrix for 2-D Multi-Beam Arrays -- 2.1.4 Nolen Matrix -- 2.2 Quasi Optical BFNs: Rotman Lens and Reflectors -- 2.2.1 Rotman Lens -- 2.2.2 Reflectors -- 2.2.2.1 Single Reflectors -- 2.2.2.2 Dual Reflectors -- 2.3 Conclusions -- References -- Chapter 3 Decoupling Methods for Antenna Arrays -- 3.1 Electromagnetic Bandgap Structures -- 3.2 Defected Ground Structures -- 3.3 Neutralization Lines -- 3.4 Array-Antenna Decoupling Surfaces -- 3.5 Metamaterial Structures -- 3.6 Parasitic Resonators -- 3.7 Polarization Decoupling -- 3.8 Conclusions -- References -- Chapter 4 De-scattering Methods for Coexistent Antenna Arrays -- 4.1 De-scattering vs. Decoupling in Coexistent Antenna Arrays -- 4.2 Mantle Cloak De-scattering -- 4.3 Lumped-Choke De-scattering -- 4.4 Distributed-Choke De-scattering -- 4.5 Mitigating the Effect of HB Antennas on LB Antennas -- 4.6 Conclusions -- References -- Chapter 5 Differential-Fed Antenna Arrays.
5.1 Differential Systems -- 5.2 Differential-Fed Antenna Elements -- 5.2.1 Linearly Polarized Differential Antennas -- 5.2.2 Circularly Polarized Differential Antennas -- 5.3 Differential-Fed Antenna Arrays -- 5.3.1 Balanced Power Dividers -- 5.3.2 Differential-Fed Antenna Arrays Employing Balanced Power Dividers -- 5.4 Differential-Fed Multi-Beam Antennas -- 5.5 Conclusion -- References -- Chapter 6 Conformal Transmitarrays -- 6.1 Conformal Transmitarray Challenges -- 6.1.1 Ultrathin Element with High Transmission Efficiency -- 6.1.2 Beam Scanning and Multi-Beam Operation -- 6.2 Conformal Transmitarrays Employing Triple-Layer Elements -- 6.2.1 Element Designs -- 6.2.2 Conformal Transmitarray Design -- 6.3 Beam Scanning Conformal Transmitarrays -- 6.3.1 Scanning Mechanism -- 6.3.2 Experimental Results -- 6.3.3 Limits of the Beam Scanning Range -- 6.4 Conformal Transmitarray Employing Ultrathin Dual-Layer Huygens Elements -- 6.4.1 Huygens Surface Theory -- 6.4.2 Ultrathin Dual-Layer Huygens Elements -- 6.4.3 Conformal Transmitarray Design -- 6.5 Elliptically Conformal Multi-Beam Transmitarray with Wide-Angle Scanning Ability -- 6.5.1 Multi-Beam Transmitarray Design -- 6.5.2 Concept Verification Through Simulation -- 6.6 Conclusions -- References -- Chapter 7 Frequency-Independent Beam Scanning Leaky-Wave Antennas -- 7.1 Reconfigurable Fabry-Pérot (FP) LWA -- 7.1.1 Analysis of 1-D Fabry-Pérot LWA -- 7.1.2 Effect of Cj on the Leaky-Mode Dispersion Curves -- 7.1.3 Optimization of the FP Cavity Height -- 7.1.4 Antenna Prototype and Measured Results -- 7.2 Period-Reconfigurable SIW-Based LWA -- 7.2.1 Antenna Configuration and Element Design -- 7.2.2 Suppression of Higher-Order Harmonics -- 7.2.3 Element Activation States and Scanning Properties -- 7.2.4 Results and Discussion -- 7.2.4.1 Element Pattern and Antenna Prototype.
7.2.4.2 Radiation Patterns and S-Parameters -- 7.3 Reconfigurable Composite Right/Left-Handed LWA -- 7.3.1 Parametric Analysis -- 7.3.2 Initial Frequency-Scanning CRLH LWA -- 7.3.3 Reconfigurable Fixed-Frequency Scanning CRLH LWA -- 7.3.3.1 Antenna Configuration -- 7.3.3.2 DC Biasing Strategy -- 7.3.3.3 Simulation Results -- 7.3.3.4 Measured Results -- 7.3.3.5 Discussions -- 7.4 Two-Dimensional Multi-Beam LWA -- 7.4.1 Antenna Design -- 7.4.1.1 Horn BFN -- 7.4.1.2 Phase-Compensation Method -- 7.4.1.3 Phase Shifter Based on Phase Inverter -- 7.4.1.4 Fixed-Frequency Beam Scanning Leaky-Wave Antenna -- 7.4.2 Performance and Discussion -- 7.5 Conclusions -- References -- Chapter 8 Beam Pattern Synthesis of Analog Arrays -- 8.1 Thinned Antenna Arrays -- 8.1.1 Modified Iterative FFT -- 8.1.2 Examples of Thinned Arrays -- 8.2 Arrays with Rotated Elements -- 8.2.1 The Pattern of an Element-Rotated Array -- 8.2.2 Vectorial Shaped Pattern Synthesis Using Joint Rotation/Phase Optimization -- 8.2.3 The Algorithm -- 8.2.4 Examples of Pattern Synthesis Based on Element Rotation and Phase -- 8.2.4.1 Flat-Top Pattern Synthesis with a Rotated U-Slot Loaded Microstrip Antenna Array -- 8.2.4.2 Circular Flat-Top Pattern Synthesis for a Planar Array with Rotated Cavity-Backed Patch Antennas -- 8.3 Arrays with Tracking Abilities Employing Sum and Difference Patterns -- 8.3.1 Nonuniformly Spaced Dipole-Rotated Linear Array -- 8.3.2 PSO-Based Element Rotation and Position Optimization -- 8.3.3 Examples -- 8.3.3.1 Synthesis of a 56-Element Sparse Linear Dipole Array -- 8.3.3.2 Synthesizing Sum and Difference Patterns with Multi-Region SLL and XPL Constraints -- 8.4 Synthesis of SIMO Arrays -- 8.4.1 Analog Dual-Beam Antenna Arrays with Linear Phase Distribution -- 8.4.2 Phase-Only Optimization of Multi-Beam Arrays -- 8.4.3 The Algorithm -- 8.4.4 Simulation Examples.
8.5 Conclusions -- References -- Index -- EULA.
Record Nr. UNINA-9910555252003321
Guo Y. Jay  
Piscataway, New Jersey ; ; Hoboken, New Jersey : , : IEEE Press : , : Wiley, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advanced antenna array engineering for 6G and beyond wireless communications / / Y. Jay Guo, Richard W. Ziolkowski
Advanced antenna array engineering for 6G and beyond wireless communications / / Y. Jay Guo, Richard W. Ziolkowski
Autore Guo Y. Jay
Pubbl/distr/stampa Piscataway, New Jersey ; ; Hoboken, New Jersey : , : IEEE Press : , : Wiley, , [2022]
Descrizione fisica 1 online resource (331 pages)
Disciplina 621.3824
Soggetto topico Antenna arrays
Wireless communication systems
ISBN 1-119-71292-0
1-119-71294-7
1-119-71291-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Chapter 1 A Perspective of Antennas for 5G and 6G -- 1.1 5G Requirements of Antenna Arrays -- 1.1.1 Array Characteristics -- 1.1.2 Frequency Bands -- 1.1.3 Component Integration and Antennas-in-Package (AiP) -- 1.2 6G and Its Antenna Requirements -- 1.3 From Digital to Hybrid Multiple Beamforming -- 1.3.1 Digital Beamforming -- 1.3.2 Hybrid Beamforming -- 1.4 Analog Multiple Beamforming -- 1.4.1 Butler Matrix -- 1.4.2 Luneburg Lenses -- 1.5 Millimeter-Wave Antennas -- 1.6 THz Antennas -- 1.7 Lens Antennas -- 1.8 SIMO and MIMO Multi-Beam Antennas -- 1.9 In-Band Full Duplex Antennas -- 1.10 Conclusions -- References -- Chapter 2 Millimeter-Wave Beamforming Networks -- 2.1 Circuit-Type BFNs: SIW-Based Butler and Nolen Matrixes -- 2.1.1 Butler Matrix for One-Dimensional Multi-Beam Arrays -- 2.1.2 Butler Matrix for a 1-D Multi-Beam Array with Low Sidelobes -- 2.1.3 Butler Matrix for 2-D Multi-Beam Arrays -- 2.1.4 Nolen Matrix -- 2.2 Quasi Optical BFNs: Rotman Lens and Reflectors -- 2.2.1 Rotman Lens -- 2.2.2 Reflectors -- 2.2.2.1 Single Reflectors -- 2.2.2.2 Dual Reflectors -- 2.3 Conclusions -- References -- Chapter 3 Decoupling Methods for Antenna Arrays -- 3.1 Electromagnetic Bandgap Structures -- 3.2 Defected Ground Structures -- 3.3 Neutralization Lines -- 3.4 Array-Antenna Decoupling Surfaces -- 3.5 Metamaterial Structures -- 3.6 Parasitic Resonators -- 3.7 Polarization Decoupling -- 3.8 Conclusions -- References -- Chapter 4 De-scattering Methods for Coexistent Antenna Arrays -- 4.1 De-scattering vs. Decoupling in Coexistent Antenna Arrays -- 4.2 Mantle Cloak De-scattering -- 4.3 Lumped-Choke De-scattering -- 4.4 Distributed-Choke De-scattering -- 4.5 Mitigating the Effect of HB Antennas on LB Antennas -- 4.6 Conclusions -- References -- Chapter 5 Differential-Fed Antenna Arrays.
5.1 Differential Systems -- 5.2 Differential-Fed Antenna Elements -- 5.2.1 Linearly Polarized Differential Antennas -- 5.2.2 Circularly Polarized Differential Antennas -- 5.3 Differential-Fed Antenna Arrays -- 5.3.1 Balanced Power Dividers -- 5.3.2 Differential-Fed Antenna Arrays Employing Balanced Power Dividers -- 5.4 Differential-Fed Multi-Beam Antennas -- 5.5 Conclusion -- References -- Chapter 6 Conformal Transmitarrays -- 6.1 Conformal Transmitarray Challenges -- 6.1.1 Ultrathin Element with High Transmission Efficiency -- 6.1.2 Beam Scanning and Multi-Beam Operation -- 6.2 Conformal Transmitarrays Employing Triple-Layer Elements -- 6.2.1 Element Designs -- 6.2.2 Conformal Transmitarray Design -- 6.3 Beam Scanning Conformal Transmitarrays -- 6.3.1 Scanning Mechanism -- 6.3.2 Experimental Results -- 6.3.3 Limits of the Beam Scanning Range -- 6.4 Conformal Transmitarray Employing Ultrathin Dual-Layer Huygens Elements -- 6.4.1 Huygens Surface Theory -- 6.4.2 Ultrathin Dual-Layer Huygens Elements -- 6.4.3 Conformal Transmitarray Design -- 6.5 Elliptically Conformal Multi-Beam Transmitarray with Wide-Angle Scanning Ability -- 6.5.1 Multi-Beam Transmitarray Design -- 6.5.2 Concept Verification Through Simulation -- 6.6 Conclusions -- References -- Chapter 7 Frequency-Independent Beam Scanning Leaky-Wave Antennas -- 7.1 Reconfigurable Fabry-Pérot (FP) LWA -- 7.1.1 Analysis of 1-D Fabry-Pérot LWA -- 7.1.2 Effect of Cj on the Leaky-Mode Dispersion Curves -- 7.1.3 Optimization of the FP Cavity Height -- 7.1.4 Antenna Prototype and Measured Results -- 7.2 Period-Reconfigurable SIW-Based LWA -- 7.2.1 Antenna Configuration and Element Design -- 7.2.2 Suppression of Higher-Order Harmonics -- 7.2.3 Element Activation States and Scanning Properties -- 7.2.4 Results and Discussion -- 7.2.4.1 Element Pattern and Antenna Prototype.
7.2.4.2 Radiation Patterns and S-Parameters -- 7.3 Reconfigurable Composite Right/Left-Handed LWA -- 7.3.1 Parametric Analysis -- 7.3.2 Initial Frequency-Scanning CRLH LWA -- 7.3.3 Reconfigurable Fixed-Frequency Scanning CRLH LWA -- 7.3.3.1 Antenna Configuration -- 7.3.3.2 DC Biasing Strategy -- 7.3.3.3 Simulation Results -- 7.3.3.4 Measured Results -- 7.3.3.5 Discussions -- 7.4 Two-Dimensional Multi-Beam LWA -- 7.4.1 Antenna Design -- 7.4.1.1 Horn BFN -- 7.4.1.2 Phase-Compensation Method -- 7.4.1.3 Phase Shifter Based on Phase Inverter -- 7.4.1.4 Fixed-Frequency Beam Scanning Leaky-Wave Antenna -- 7.4.2 Performance and Discussion -- 7.5 Conclusions -- References -- Chapter 8 Beam Pattern Synthesis of Analog Arrays -- 8.1 Thinned Antenna Arrays -- 8.1.1 Modified Iterative FFT -- 8.1.2 Examples of Thinned Arrays -- 8.2 Arrays with Rotated Elements -- 8.2.1 The Pattern of an Element-Rotated Array -- 8.2.2 Vectorial Shaped Pattern Synthesis Using Joint Rotation/Phase Optimization -- 8.2.3 The Algorithm -- 8.2.4 Examples of Pattern Synthesis Based on Element Rotation and Phase -- 8.2.4.1 Flat-Top Pattern Synthesis with a Rotated U-Slot Loaded Microstrip Antenna Array -- 8.2.4.2 Circular Flat-Top Pattern Synthesis for a Planar Array with Rotated Cavity-Backed Patch Antennas -- 8.3 Arrays with Tracking Abilities Employing Sum and Difference Patterns -- 8.3.1 Nonuniformly Spaced Dipole-Rotated Linear Array -- 8.3.2 PSO-Based Element Rotation and Position Optimization -- 8.3.3 Examples -- 8.3.3.1 Synthesis of a 56-Element Sparse Linear Dipole Array -- 8.3.3.2 Synthesizing Sum and Difference Patterns with Multi-Region SLL and XPL Constraints -- 8.4 Synthesis of SIMO Arrays -- 8.4.1 Analog Dual-Beam Antenna Arrays with Linear Phase Distribution -- 8.4.2 Phase-Only Optimization of Multi-Beam Arrays -- 8.4.3 The Algorithm -- 8.4.4 Simulation Examples.
8.5 Conclusions -- References -- Index -- EULA.
Record Nr. UNINA-9910831025703321
Guo Y. Jay  
Piscataway, New Jersey ; ; Hoboken, New Jersey : , : IEEE Press : , : Wiley, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui