top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Introduction to Ring and Module Theory / / by Alberto Facchini
Introduction to Ring and Module Theory / / by Alberto Facchini
Autore Facchini Alberto
Edizione [1st ed. 2025.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Birkhäuser, , 2025
Descrizione fisica 1 online resource (440 pages)
Disciplina 512.46
Collana Compact Textbooks in Mathematics
Soggetto topico Associative rings
Associative algebras
Algebra, Homological
Associative Rings and Algebras
Category Theory, Homological Algebra
Anells associatius
Àlgebres associatives
Àlgebra homològica
Soggetto genere / forma Llibres electrònics
ISBN 9783031825095
3031825098
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto - 1. Basic Notions -- 2. Some Classes of Modules -- 3. Right Artinian Rings -- 4. Local Rings, Injective Modules, Flat Modules -- 5. Additive Categories, Abelian Categories -- 6. Appendices.
Record Nr. UNINA-9910992788803321
Facchini Alberto  
Cham : , : Springer Nature Switzerland : , : Imprint : Birkhäuser, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Polynomial identities in algebras / / edited by Onofrio Mario Di Vincenzo and Antonio Giambruno
Polynomial identities in algebras / / edited by Onofrio Mario Di Vincenzo and Antonio Giambruno
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (424 pages) : illustrations
Disciplina 512.4
Collana Springer INdAM
Soggetto topico PI-algebras
Anells associatius
Soggetto genere / forma Congressos
Llibres electrònics
ISBN 3-030-63111-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- About the Editors -- Some Thoughts on the Current State of the Theory of Identical Relations in Lie Algebras -- 1 Introduction -- 2 Finite Basis Problem -- 3 Engel Lie Algebras -- 3.1 Global Nilpotence -- 3.2 Restricted Burnside Problem: Local Nilpotence of Engel Lie algebras -- 4 Identities of Simple Lie Algebras -- 4.1 The Isomorphism Problem -- 4.2 Identities of Cartan Type Lie Algebras -- 4.3 Capelli Identities -- 5 Codimension Growth -- 5.1 Exponential Growth -- 5.2 Overexponential Growth -- 5.3 Colength -- 6 Graded Lie Algebras and Identities -- 7 Graded Identities of Lie Algebras and Generalizations -- 7.1 Codimension Growth -- 7.2 Isomorphism of H-Algebras -- 8 Special Lie Algebras -- References -- Minimal Degree of Identities of Matrix Algebras with Additional Structures -- 1 Introduction -- 2 Involution Case -- 3 Graded Case -- 4 Graded Involution Case -- References -- On the Asymptotics of Capelli Polynomials -- 1 Introduction -- 2 Ordinary Case -- 3 Z2-Graded Case -- 4 Involution Case -- 4.1 -Capelli Polynomials and the -Algebra UT(A1, ..., An) -- 4.2 Asymptotics for -Capelli Polynomials -- References -- Regev's Conjecture for Algebras with Hopf Actions -- 1 Introduction -- 2 Regev's Conjectures for Algebras Without Actions -- 2.1 Background on Magnums -- 2.2 Codimension Sequences -- 3 H-Cocharacters -- 4 Rationality of Poincaré Series -- 5 Young Derived Sequences -- References -- -Weak Identities and Central Polynomials for Matrices -- 1 Introduction -- 2 Preliminaries -- 2.1 Identities, Central Polynomials and Examples -- 2.2 Spechtian Polynomials -- 3 Weak Identities -- 3.1 Weak and Strong Variables -- 3.2 Modules of Weak Identities -- 4 Central Polynomials for Matrices -- 4.1 -Weak Central Polynomials -- 5 The Connection to the Representation Theory -- 5.1 Identities and the Group Algebra.
5.2 Identities and Representations -- 6 Weak Identities and the Case n = 2 -- 6.1 Polynomials of Degree m = 2 -- 6.2 Weak Identities of Degree m = 3 -- 6.3 Weak Identities of Degree m = 4 -- 7 The Weak PI-Degree of M3(F) -- 7.1 Fields of Characteristic Not 3 -- 7.2 The Case char F=3 -- 8 Weak Identities for M3(F) in Degree 6 -- 8.1 Weak Identities of M3(F) -- 8.2 Halpin's Identity and Its Projections -- 8.3 Identities from the Okubo Algebra -- 9 Matrices of Size n≥4 -- 9.1 Shadows of Identities -- 9.2 Weak Identities Degree 2n -- References -- Computing Multiplicities in the Sign Trace Cocharacters of M2,1(F) -- 1 Introduction -- 2 Reduced Notation -- 3 The Sign Trace Cocharacter of M2,1(F) -- 3.1 Computation of the Coefficient for {n-2,2} -- 4 The Final Result -- References -- b-Generalized Skew Derivations on Multilinear Polynomials in Prime Rings -- 1 Introduction -- 2 Some Results on Differential Identities with Automorphisms -- 3 Commuting Generalized Derivations and Commuting Generalized Skew Derivations -- 4 Some Remarks on Matrix Algebras -- 5 Commuting Inner b-Generalized Skew Derivations -- 6 Commuting b-Generalized Derivations on Multilinear Polynomials -- 7 The Main Result -- 7.1 Let d and δ be C-Linearly Independent Modulo SDint -- 7.2 Let d and δ be C-Linearly Dependent Modulo SDint -- 8 Some Open Problems -- References -- Relatively Free Algebras of Finite Rank -- 1 Introduction -- 2 Models for Relatively Free Algebras -- 3 General Remarks -- 4 Polynomial Identities for UT2(G(k)) -- 4.1 The Case UT2(G(2m)), for 1≤m≤2 -- 5 Polynomial Identities for Fk(UT2(G)) -- 6 Conclusion -- References -- Graded Algebras, Algebraic Functions, Planar Trees, and Elliptic Integrals -- 1 Introduction -- 2 Growth of Algebras and Hilbert Series -- 3 Algebras with Prescribed Hilbert Series -- 4 PI-Algebras -- 5 Algebraic and Transcendental Power Series.
6 Planar Rooted Trees and Algebraic Series -- 7 Noncommutative Invariant Theory -- References -- Central Polynomials of Algebras and Their Growth -- 1 Introduction -- 2 A General Setting -- 3 Examples of Central Polynomials -- 4 Algebras Without Proper Central Polynomials -- 5 The Proper Central Exponent -- 6 The Central Exponent -- 7 Non Associative Algebras -- References -- Trace Identities on Diagonal Matrix Algebras -- 1 Introduction -- 2 Preliminaries -- 3 Matrix Algebras with Trace -- 4 Some Results on Dn -- 5 Trace Identities on D2 -- 6 Trace Identities on D3 -- References -- Codimension Growth for Weak Polynomial Identities, and Non-integrality of the PI Exponent -- 1 Introduction -- 2 Preliminaries -- 2.1 Generalities -- 2.2 Polynomial Identities -- 2.3 Multilinear Polynomials. Modules over the Symmetric Group -- 2.4 The Exponent -- 2.5 The Action of the General Linear Group -- 2.6 Special Pairs and Pairs of Associative Type -- 3 Polynomial Growth of the Codimensions -- 3.1 Slow Growth of the Codimensions -- 3.2 Characterizing Varieties of Pairs of Polynomial Growth -- 3.3 Almost Polynomial Growth -- 3.3.1 The Pair (UT2,UT2(-)) -- 3.3.2 The Pair (E,E(-)) -- 3.3.3 The Pair (M2,sl2) -- 3.3.4 More Examples -- 4 Graded Pairs and Amitsur's Conjecture -- 4.1 Weak Graded Polynomial Identities -- 4.2 Finitely Generated Superpairs -- 4.3 Non-integral Exponent: An Example -- References -- On Codimensions of Algebras with Involution -- 1 Introduction -- 2 *-Codimensions and *-Fundamental Algebras -- 3 Low Exponential Growth -- References -- Context-Free Languages and Associative Algebras with Algebraic Hilbert Series -- 1 Introduction -- 2 Preliminaries -- 2.1 Associative Algebras and Their Hilbert Series -- 2.2 The Homology and Hilbert Series of Monomial Algebras -- 2.3 Automaton Algebras and Homologically Unambiguous Algebras.
3 Finitely Presented Algebras Associated to Context-Free Languages -- 3.1 The General Construction -- 3.2 Graded Algebras Examples -- References -- On Almost Nilpotent Varieties of Linear Algebras -- 1 Introduction -- 2 Almost Nilpotent Varieties Generated by One or Two Dimensional Algebra -- 3 Almost Nilpotent Varieties and Skew Symmetric Polynomials -- 4 A Commutative Metabelian Algebra with Skew Symmetric Polynomials (a Jordan Algebra) -- 5 Anti-Commutative Metabelian Algebra with Skew Symmetric Polynomials -- 6 A Characterization of Almost Nilpotent Varieties in Different Classes of Algebras -- 7 An Infinite Series of Almost Nilpotent Metabelian Varieties with Polynomial Growth -- 8 Almost Nilpotent Varieties with Exponentional Growth -- References -- (δ,)-Differential Identities of UTm(F) -- 1 Introduction -- 2 The Problem -- 3 The Coupled Actions of δ and on UTm(F) -- 4 The Separate Actions of δ and on UTm(F) -- 5 Behind the Scenes -- References -- Identities in Group Rings, Enveloping Algebras and Poisson Algebras -- 1 Introduction -- 2 Identical Relations of Group Rings -- 3 Identical Relations of Enveloping Algebras -- 4 Poisson Algebras and Their Identities -- 4.1 Poisson Algebras -- 4.2 Examples of Poisson Algebras -- 4.3 Poisson Identities -- 5 Multilinear Identities of Symmetric Poisson Algebras -- 6 Lie Identities of Symmetric Poisson Algebras -- 6.1 Lie Nilpotence of Truncated Symmetric Algebras s(L) -- 6.2 Solvability of Truncated Symmetric Algebras s(L) -- 6.3 Nilpotency and Solvability of Symmetric Algebras S(L) -- 6.4 Delta-Sets and Multilinear Poisson Identical Relations -- 6.5 Products of Commutators in Poisson Algebras -- 6.6 Solvability of Symmetric Algebras s(L) and S(L) in Case Char K = 2 -- References -- Notes on the History of Identities on Group (and Loop) Algebras -- 1 Introduction.
2 Existence of Polynomial Identities -- 3 Group Theoretical Properties of Unit Groups -- 4 Group Indentities -- 5 Loop Algebras -- References -- Cayley Hamilton Algebras -- 1 Introduction -- 2 The Cayley-Hamilton Identity -- 3 The First and Second Fundamental Theorem -- 3.1 The Free Trace Algebra -- 3.3 A Characteristic Free Approach -- 3.12 Symbolic Approach -- 3.12.1 The Approach of Zieplies and Vaccarino -- References -- Growth of Differential Identities -- 1 Introduction -- 2 L-Algebras and Differential Identities -- 3 On Algebras with Derivations of Polynomial Growth -- 4 The Algebra of 2 x 2 Upper Triangular Matrices and Its Differential Identities -- 5 On Differential Identities of the Grassmann Algebra -- References -- Derived Lengths of Symmetric Poisson Algebras -- 1 Introduction -- 2 Definitions and Notation -- 3 The Lie Structure of Enveloping Algebras -- 4 Symmetric Poisson Algebras Satisfying a Poisson Identity -- 5 Lie Nilpotence and Solvability of S(L) and s(L) -- 6 Derived Lengths of s(L) -- References -- Group and Polynomial Identities in Group Rings -- 1 Introduction -- 2 -Group Identities for U(FG) -- 3 Group Identities for Unitary Units of FG -- References.
Record Nr. UNISA-996466544303316
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Polynomial identities in algebras / / edited by Onofrio Mario Di Vincenzo and Antonio Giambruno
Polynomial identities in algebras / / edited by Onofrio Mario Di Vincenzo and Antonio Giambruno
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (424 pages) : illustrations
Disciplina 512.4
Collana Springer INdAM
Soggetto topico PI-algebras
Anells associatius
Soggetto genere / forma Congressos
Llibres electrònics
ISBN 3-030-63111-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- About the Editors -- Some Thoughts on the Current State of the Theory of Identical Relations in Lie Algebras -- 1 Introduction -- 2 Finite Basis Problem -- 3 Engel Lie Algebras -- 3.1 Global Nilpotence -- 3.2 Restricted Burnside Problem: Local Nilpotence of Engel Lie algebras -- 4 Identities of Simple Lie Algebras -- 4.1 The Isomorphism Problem -- 4.2 Identities of Cartan Type Lie Algebras -- 4.3 Capelli Identities -- 5 Codimension Growth -- 5.1 Exponential Growth -- 5.2 Overexponential Growth -- 5.3 Colength -- 6 Graded Lie Algebras and Identities -- 7 Graded Identities of Lie Algebras and Generalizations -- 7.1 Codimension Growth -- 7.2 Isomorphism of H-Algebras -- 8 Special Lie Algebras -- References -- Minimal Degree of Identities of Matrix Algebras with Additional Structures -- 1 Introduction -- 2 Involution Case -- 3 Graded Case -- 4 Graded Involution Case -- References -- On the Asymptotics of Capelli Polynomials -- 1 Introduction -- 2 Ordinary Case -- 3 Z2-Graded Case -- 4 Involution Case -- 4.1 -Capelli Polynomials and the -Algebra UT(A1, ..., An) -- 4.2 Asymptotics for -Capelli Polynomials -- References -- Regev's Conjecture for Algebras with Hopf Actions -- 1 Introduction -- 2 Regev's Conjectures for Algebras Without Actions -- 2.1 Background on Magnums -- 2.2 Codimension Sequences -- 3 H-Cocharacters -- 4 Rationality of Poincaré Series -- 5 Young Derived Sequences -- References -- -Weak Identities and Central Polynomials for Matrices -- 1 Introduction -- 2 Preliminaries -- 2.1 Identities, Central Polynomials and Examples -- 2.2 Spechtian Polynomials -- 3 Weak Identities -- 3.1 Weak and Strong Variables -- 3.2 Modules of Weak Identities -- 4 Central Polynomials for Matrices -- 4.1 -Weak Central Polynomials -- 5 The Connection to the Representation Theory -- 5.1 Identities and the Group Algebra.
5.2 Identities and Representations -- 6 Weak Identities and the Case n = 2 -- 6.1 Polynomials of Degree m = 2 -- 6.2 Weak Identities of Degree m = 3 -- 6.3 Weak Identities of Degree m = 4 -- 7 The Weak PI-Degree of M3(F) -- 7.1 Fields of Characteristic Not 3 -- 7.2 The Case char F=3 -- 8 Weak Identities for M3(F) in Degree 6 -- 8.1 Weak Identities of M3(F) -- 8.2 Halpin's Identity and Its Projections -- 8.3 Identities from the Okubo Algebra -- 9 Matrices of Size n≥4 -- 9.1 Shadows of Identities -- 9.2 Weak Identities Degree 2n -- References -- Computing Multiplicities in the Sign Trace Cocharacters of M2,1(F) -- 1 Introduction -- 2 Reduced Notation -- 3 The Sign Trace Cocharacter of M2,1(F) -- 3.1 Computation of the Coefficient for {n-2,2} -- 4 The Final Result -- References -- b-Generalized Skew Derivations on Multilinear Polynomials in Prime Rings -- 1 Introduction -- 2 Some Results on Differential Identities with Automorphisms -- 3 Commuting Generalized Derivations and Commuting Generalized Skew Derivations -- 4 Some Remarks on Matrix Algebras -- 5 Commuting Inner b-Generalized Skew Derivations -- 6 Commuting b-Generalized Derivations on Multilinear Polynomials -- 7 The Main Result -- 7.1 Let d and δ be C-Linearly Independent Modulo SDint -- 7.2 Let d and δ be C-Linearly Dependent Modulo SDint -- 8 Some Open Problems -- References -- Relatively Free Algebras of Finite Rank -- 1 Introduction -- 2 Models for Relatively Free Algebras -- 3 General Remarks -- 4 Polynomial Identities for UT2(G(k)) -- 4.1 The Case UT2(G(2m)), for 1≤m≤2 -- 5 Polynomial Identities for Fk(UT2(G)) -- 6 Conclusion -- References -- Graded Algebras, Algebraic Functions, Planar Trees, and Elliptic Integrals -- 1 Introduction -- 2 Growth of Algebras and Hilbert Series -- 3 Algebras with Prescribed Hilbert Series -- 4 PI-Algebras -- 5 Algebraic and Transcendental Power Series.
6 Planar Rooted Trees and Algebraic Series -- 7 Noncommutative Invariant Theory -- References -- Central Polynomials of Algebras and Their Growth -- 1 Introduction -- 2 A General Setting -- 3 Examples of Central Polynomials -- 4 Algebras Without Proper Central Polynomials -- 5 The Proper Central Exponent -- 6 The Central Exponent -- 7 Non Associative Algebras -- References -- Trace Identities on Diagonal Matrix Algebras -- 1 Introduction -- 2 Preliminaries -- 3 Matrix Algebras with Trace -- 4 Some Results on Dn -- 5 Trace Identities on D2 -- 6 Trace Identities on D3 -- References -- Codimension Growth for Weak Polynomial Identities, and Non-integrality of the PI Exponent -- 1 Introduction -- 2 Preliminaries -- 2.1 Generalities -- 2.2 Polynomial Identities -- 2.3 Multilinear Polynomials. Modules over the Symmetric Group -- 2.4 The Exponent -- 2.5 The Action of the General Linear Group -- 2.6 Special Pairs and Pairs of Associative Type -- 3 Polynomial Growth of the Codimensions -- 3.1 Slow Growth of the Codimensions -- 3.2 Characterizing Varieties of Pairs of Polynomial Growth -- 3.3 Almost Polynomial Growth -- 3.3.1 The Pair (UT2,UT2(-)) -- 3.3.2 The Pair (E,E(-)) -- 3.3.3 The Pair (M2,sl2) -- 3.3.4 More Examples -- 4 Graded Pairs and Amitsur's Conjecture -- 4.1 Weak Graded Polynomial Identities -- 4.2 Finitely Generated Superpairs -- 4.3 Non-integral Exponent: An Example -- References -- On Codimensions of Algebras with Involution -- 1 Introduction -- 2 *-Codimensions and *-Fundamental Algebras -- 3 Low Exponential Growth -- References -- Context-Free Languages and Associative Algebras with Algebraic Hilbert Series -- 1 Introduction -- 2 Preliminaries -- 2.1 Associative Algebras and Their Hilbert Series -- 2.2 The Homology and Hilbert Series of Monomial Algebras -- 2.3 Automaton Algebras and Homologically Unambiguous Algebras.
3 Finitely Presented Algebras Associated to Context-Free Languages -- 3.1 The General Construction -- 3.2 Graded Algebras Examples -- References -- On Almost Nilpotent Varieties of Linear Algebras -- 1 Introduction -- 2 Almost Nilpotent Varieties Generated by One or Two Dimensional Algebra -- 3 Almost Nilpotent Varieties and Skew Symmetric Polynomials -- 4 A Commutative Metabelian Algebra with Skew Symmetric Polynomials (a Jordan Algebra) -- 5 Anti-Commutative Metabelian Algebra with Skew Symmetric Polynomials -- 6 A Characterization of Almost Nilpotent Varieties in Different Classes of Algebras -- 7 An Infinite Series of Almost Nilpotent Metabelian Varieties with Polynomial Growth -- 8 Almost Nilpotent Varieties with Exponentional Growth -- References -- (δ,)-Differential Identities of UTm(F) -- 1 Introduction -- 2 The Problem -- 3 The Coupled Actions of δ and on UTm(F) -- 4 The Separate Actions of δ and on UTm(F) -- 5 Behind the Scenes -- References -- Identities in Group Rings, Enveloping Algebras and Poisson Algebras -- 1 Introduction -- 2 Identical Relations of Group Rings -- 3 Identical Relations of Enveloping Algebras -- 4 Poisson Algebras and Their Identities -- 4.1 Poisson Algebras -- 4.2 Examples of Poisson Algebras -- 4.3 Poisson Identities -- 5 Multilinear Identities of Symmetric Poisson Algebras -- 6 Lie Identities of Symmetric Poisson Algebras -- 6.1 Lie Nilpotence of Truncated Symmetric Algebras s(L) -- 6.2 Solvability of Truncated Symmetric Algebras s(L) -- 6.3 Nilpotency and Solvability of Symmetric Algebras S(L) -- 6.4 Delta-Sets and Multilinear Poisson Identical Relations -- 6.5 Products of Commutators in Poisson Algebras -- 6.6 Solvability of Symmetric Algebras s(L) and S(L) in Case Char K = 2 -- References -- Notes on the History of Identities on Group (and Loop) Algebras -- 1 Introduction.
2 Existence of Polynomial Identities -- 3 Group Theoretical Properties of Unit Groups -- 4 Group Indentities -- 5 Loop Algebras -- References -- Cayley Hamilton Algebras -- 1 Introduction -- 2 The Cayley-Hamilton Identity -- 3 The First and Second Fundamental Theorem -- 3.1 The Free Trace Algebra -- 3.3 A Characteristic Free Approach -- 3.12 Symbolic Approach -- 3.12.1 The Approach of Zieplies and Vaccarino -- References -- Growth of Differential Identities -- 1 Introduction -- 2 L-Algebras and Differential Identities -- 3 On Algebras with Derivations of Polynomial Growth -- 4 The Algebra of 2 x 2 Upper Triangular Matrices and Its Differential Identities -- 5 On Differential Identities of the Grassmann Algebra -- References -- Derived Lengths of Symmetric Poisson Algebras -- 1 Introduction -- 2 Definitions and Notation -- 3 The Lie Structure of Enveloping Algebras -- 4 Symmetric Poisson Algebras Satisfying a Poisson Identity -- 5 Lie Nilpotence and Solvability of S(L) and s(L) -- 6 Derived Lengths of s(L) -- References -- Group and Polynomial Identities in Group Rings -- 1 Introduction -- 2 -Group Identities for U(FG) -- 3 Group Identities for Unitary Units of FG -- References.
Record Nr. UNINA-9910484534203321
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The theory of near-rings / / Robert Lockhart
The theory of near-rings / / Robert Lockhart
Autore Lockhart Robert (Mathematician)
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (555 pages)
Disciplina 512.4
Collana Lecture Notes in Mathematics
Soggetto topico Near-rings
Anells associatius
Soggetto genere / forma Llibres electrònics
ISBN 9783030817558
9783030817541
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Foreword by Günter Pilz -- Preface -- Notation -- Gothic Symbols -- Contents -- Part I Structure Theory -- 1 Stems, Mappings and Near-Rings -- 1.1 Basic Group Theory -- 1.1.1 Sylow Theory -- 1.1.2 The Jordan-Hölder Theorem -- 1.1.3 Solvable, Supersolvable and Nilpotent Groups -- 1.2 Homological Algebra and Category Theory -- 1.3 Topology -- 1.3.1 The Kuratowski Closure Axioms -- 1.4 Stems and Near-Rings -- 1.4.1 Star Notation -- 1.4.2 Pre-Near-Rings -- 1.4.3 Conventions and Notation -- 1.4.4 Examples of p.n.r. and of Near-Rings -- 1.5 Hosting -- 1.6 Ideals -- 1.7 Subdirect Products of Near-Rings -- 1.8 Sideals and Near-Ring Groups -- 1.8.1 Generalisations -- 1.8.2 Right Near-Ring Groups -- 1.8.3 Highly Non-standard Terminology -- 1.8.4 Sub-Structures and Mideals -- 1.8.5 Faithfulness -- 1.8.6 Monogenicity -- 1.8.7 Some Two-Sided Sideals -- 1.8.8 The Weak Left Ideal Property -- 1.8.9 Rings and Modules -- 1.9 Semi-simplicity -- 1.10 Prime and Semi-prime Ideals -- 1.10.1 Prime Ideals -- 1.10.2 Semi-prime Ideals -- 1.10.3 Complements of Prime and Semi-prime Ideals -- 1.10.4 Prime and Semi-prime Ideals -- 1.11 Near-Fields -- 1.12 A-Matrices -- 1.13 Functions and Function Composition -- 1.14 The δ Operator and Phomomorphisms -- 1.14.1 The δ Operator -- 1.14.2 Phomomorphisms -- 1.15 Annihilators -- 1.16 Conjugacy and Annihilators -- 1.17 Sylow Subgroups -- 1.18 The Zeroiser Ideal -- 1.19 The Core of a Left Ideal -- 1.20 Anti-chains of Subgroups -- 1.21 Subsets -- 1.21.1 Generating Near-Rings -- 1.21.2 Lifting Near-Rings -- 1.22 Nil and Nilpotent Sets -- 1.22.1 Sums of Nil Ideals -- 1.22.2 Sums of Nilpotent Ideals -- 1.23 Cores -- 1.24 Classes of Near-Rings -- 1.24.1 Distributively Generated and F-Near-Rings -- 1.24.2 Class F Near-Rings -- 1.24.3 The Fj Cores, (j = 1,2, 3) -- 1.24.4 Constant and Near-Constant Near-Rings -- 1.24.5 Opposites.
1.24.6 Non-Zero-Symmetric Near-Rings -- 1.25 The Distributor and the Annular Ideal -- 1.25.1 The Distributor Ideal -- 1.25.2 The Multiplicative Centre -- 1.25.3 The Annular Ideal -- 1.26 Bi-distributive Stems -- 1.27 Subgroup Series -- 1.27.1 Weak Distributivity -- 1.27.2 Annularity -- 1.27.3 N(+)-Nilpotence -- 1.28 Modular Ideals -- 1.29 Quasi-regular Left Ideals -- 1.29.1 Quasi-regularity in Rings -- 1.30 Pseudo-Rings -- 1.31 Propriety -- 1.31.1 ``Left'' and ``Right'' Confusion -- 1.31.2 Proper Structures -- 1.31.3 Transferred Epithets -- 1.31.4 Problematic Terminology -- 1.32 An Unsettling Homomorphism -- 2 Near-Ring Theory -- 2.1 Pre-Near-Ring Construction Conditions and the Associativity Core -- 2.1.1 Host Determination Strategies -- 2.1.2 Distributive Generation -- 2.1.3 Co-structures: A Sort of Duality -- 2.1.4 Reduced Free Groups and Another Sort of Duality -- 2.1.5 Construction Conditions and F-Near-Rings -- 2.1.6 Bounds on Associativity Checking -- 2.2 Coupling and Dickson Near-Rings -- 2.2.1 D-Near-Rings -- 2.3 Affine Near-Rings -- 2.4 Near-Rings Hosted by Semi-direct Products -- 2.4.1 Near-Rings Hosted by Dn -- 2.5 Ideas from Mathematical Logic and Universal Algebra -- 2.5.1 Equational Products -- 2.5.2 Boolean Algebras and Boolean Rings -- 2.5.3 Boolean Near-Rings -- 2.5.4 Finite Boolean Near-Rings -- 2.5.5 Partially Ordered Sets -- 2.5.6 Lattices -- 2.5.7 Finiteness Conditions: Chains, Intersections, Generators -- 2.5.8 Ultra-Products -- 2.6 Adjoining an Identity -- 2.7 Planarity -- 2.7.1 The Ferrero Construction -- 3 Near-Fields -- 3.1 Near-Fields -- 3.1.1 Near-Fields Not of Characteristic 2 -- 3.1.2 General Near-Fields -- 3.2 Commutators and the Sub-near-Field L -- 3.2.1 The Sub-near-Field F -- 3.3 Finite Near-Fields -- 3.3.1 The Smallest Proper Near-Field -- 3.3.2 General Cases -- 3.3.3 The Normal Core of D*.
3.3.4 The Multiplicative Centre -- 3.3.5 The Multiplicative Group Structure of Finite Near-Fields -- 3.3.6 Presentations for Finite Near-Fields with S2 Cyclic -- 3.3.7 Z-Group Properties -- 3.3.8 The Product of All the Non-zero Elements -- 3.4 Finite Dickson Near-Fields -- 3.4.1 Coupling Maps and Dickson Near-Fields -- 3.4.2 A Theorem Reported by Marshall Hall -- 3.4.3 The Smallest Proper Near-Field Having All Sylow Subgroups Cyclic -- 3.4.4 The Algebra of the Dickson Process -- 3.4.5 A Generalisation of the Dickson Process -- 3.4.6 The Historical Dickson Process -- 3.4.7 When N* Is a Z-Group -- 3.4.8 Multiplication in Finite Dickson Near-Fields -- 3.4.9 Isomorphism in Finite Dickson Near-Fields -- 3.4.10 Sub-near-Fields -- 3.4.11 Number-Theoretic Issues -- 3.4.12 Near-Field Automorphisms -- 3.4.13 Prime Divisors of δ: Hall's Theorem -- 3.4.14 L and N -- 3.4.15 An Intrinsic Characterisation of Dickson Near-Fields -- 3.5 Group Structure of N* -- 3.5.1 Presentations for Solvable Near-Fields with S2 Quaternionic -- 3.5.2 Presentation for Non-Dickson Solvable Cases -- 3.6 Frobenius Groups -- 3.6.1 Basics -- 3.6.2 Sharply 2-Transitive Groups -- 3.6.3 Affine Groups -- 3.6.4 Near-Fields to Sharply 2-Transitive Groups -- 3.6.5 Further Affine Groups -- 3.6.6 Sharply 2-Transitive Groups to Near-Fields -- 3.6.7 Dickson and Non-Dickson Near-Fields -- 3.7 Finite Non-Dickson Near-Fields -- 3.7.1 A Classification Lemma -- 3.7.2 Element Orders -- 3.8 General Finite Non-fields -- 3.9 Infinite Near-Fields -- 3.9.1 Characteristic Zero -- 3.10 A Continuing Story -- Part II Near-Rings Hosted by Classes of Groups -- 4 Near-Rings on Groups with Low Order -- 4.1 Small Non-abelian Groups -- 4.1.1 Groups with Order 16 -- 4.1.2 Groups with Order 18 -- 4.1.3 Non-abelian Groups with Order 21 -- 4.1.4 Groups with Order 24 -- 4.1.5 Groups with Order 27 -- 4.1.6 Coda.
5 Near-Rings on Some Families of Groups -- 5.1 Finite Symmetric Groups -- 5.2 Finite Simple Non-abelian Groups -- 5.2.1 Isotopy -- 5.2.2 A Class of Non-trivial Near-Rings Hosted by Any Group -- 5.3 Unital Near-Rings on Sn -- 5.4 The Quaternion Group with Order 8 -- 5.4.1 Unital d.g. p.n.r. Hosted by Q8 -- 5.5 Dihedral Groups -- 5.5.1 The Dihedral Group of Order 8 -- 5.5.2 Other Finite Dihedral Groups -- 5.5.3 Pre-Near-Rings -- 5.5.4 The Infinite Dihedral Group -- 5.6 Finite Groups from the Krimmel Class -- 5.6.1 A Classification Theorem Reported in Gorenstein -- 5.7 Generalised Quaternion Groups -- 5.8 Dicyclic Groups -- 5.9 Finite Hamiltonian Groups -- 5.10 Semi-dihedral Groups -- 5.11 Gorenstein's Group Mm(p) -- 5.12 Central Products -- 5.13 Free Products -- 5.14 Finite Non-solvable Groups -- 5.14.1 Groups with Order 360 -- 5.14.2 Groups with Order 600 -- 5.14.3 Groups with Order 720 -- 5.14.4 Remaining Possibilities with Order 720 -- 5.14.5 Direct Sums of Simple Groups -- 6 Near-Rings Hosted by p-Groups and Related Groups -- 6.1 Groups with Order p -- 6.2 The Klein Group -- 6.3 Groups with Order 2p (p > -- 2) -- 6.4 Groups with Order pq Where p and q Are Prime and (p < -- q) -- 6.5 Groups with Order p2 -- 6.6 Groups with Order 2p2 (p > -- 2) -- 6.7 Groups with Order p3 (p > -- 2) -- 6.8 Groups with Order 2p3 or Order 2p4 (p > -- 2) -- 6.9 Groups with Order p4 (p > -- 2) -- 6.10 The Prüfer Groups -- 6.11 A Research Suggestion -- Part III Representations and Cohomology -- 7 Transformation Near-Rings -- 7.1 Introduction -- 7.2 Preliminaries -- 7.2.1 Mapping Notation -- 7.2.2 Ideals of T(N) -- 7.2.3 Automorphisms of T(N) -- 7.2.4 The Finite Topology -- 7.2.5 Sub-near-Rings -- 7.2.6 E(N), I(N), A(N), B(N), and Phom(N) -- 7.3 Multiplicative Structure -- 7.3.1 Sideals and Cleiks -- 7.3.2 A-Matrices -- 7.3.3 Operating on (a,b).
7.3.4 Left and Right Sideals -- 7.3.5 Nilpotence -- 7.3.6 Idempotence -- 7.3.7 T0(N) Generalised -- 7.3.8 A Sub-near-Ring of T0(S3) -- 7.4 T(N), H(N) and B(N) -- 7.4.1 The Structure of H(N) -- 7.4.2 The Structure of T(N) -- 7.4.3 More on the Representation -- 7.4.4 Permutations and Additive Isomorphisms -- 7.4.5 Automorphisms of T0(N) -- 7.4.6 The Structure of B(N) -- 7.4.7 Further Investigation -- 7.5 Some Examples -- 7.5.1 The Cyclic Group C3 -- 7.5.2 Finite Dihedral Groups -- 7.5.3 Dn when n Is Odd -- 7.5.4 Dn when n Is Even -- 7.5.5 D∞ and A(D∞) -- 7.5.6 Q8 -- 7.6 Additive Structure -- 7.6.1 M(N) -- 7.6.2 Centraliser Near-Rings -- 7.6.3 A Duality of Semi-Groups -- 7.6.4 Density -- 7.7 MS() when S Is Fixed-Point-Free -- 7.7.1 The Structure of Minimal Left Ideals -- 7.7.2 Right Near-Ring Groups -- 7.7.3 Annihilators -- 7.7.4 Chains of Left Ideals -- 7.7.5 Simple Near-Rings -- 7.7.6 Left Ideals -- 7.7.7 Modular Left Ideals -- 8 Generalisations and Sub-near-Rings of Transformation Near-Rings -- 8.1 Commutators -- 8.2 More Sub-near-Rings -- 8.2.1 Special Cases -- 8.3 Hadamard Products -- 8.4 Endomorphism Near-Rings -- 8.4.1 Related Sub-near-Rings -- 8.4.2 Sequences of Endomorphism Near-Rings -- 8.5 Other Kinds of Endomorphism Near-Ring -- 8.6 Change of Groups -- 8.6.1 Near-Loops -- 8.6.2 Homomorphisms and Normal Sub-Loops -- 8.6.3 The Host Problem -- 8.6.4 Transformations on Near-Loops -- 8.6.5 Transformations on Sets -- 8.7 The Stemhome Near-Ring -- 8.7.1 The Stemhome Functor -- 8.8 The Wurzel -- 8.9 Elementary Closure Procedures -- 8.9.1 Additive and Multiplicative Closures -- 8.9.2 A Topological Closure -- 8.10 Polynomials -- 8.10.1 Near-Rings -- 8.10.2 Skew Polynomial Near-Rings -- 9 Phomomorphisms -- 9.1 General Theory -- 9.1.1 Extending Mappings to Phomomorphisms -- 9.1.2 Phomomorphism-Invariant Subgroups -- 9.2 Cohomology Groups.
9.2.1 Non-abelian Group Cohomology.
Record Nr. UNINA-9910508454403321
Lockhart Robert (Mathematician)  
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The theory of near-rings / / Robert Lockhart
The theory of near-rings / / Robert Lockhart
Autore Lockhart Robert (Mathematician)
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (555 pages)
Disciplina 512.4
Collana Lecture Notes in Mathematics
Soggetto topico Near-rings
Anells associatius
Soggetto genere / forma Llibres electrònics
ISBN 9783030817558
9783030817541
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Foreword by Günter Pilz -- Preface -- Notation -- Gothic Symbols -- Contents -- Part I Structure Theory -- 1 Stems, Mappings and Near-Rings -- 1.1 Basic Group Theory -- 1.1.1 Sylow Theory -- 1.1.2 The Jordan-Hölder Theorem -- 1.1.3 Solvable, Supersolvable and Nilpotent Groups -- 1.2 Homological Algebra and Category Theory -- 1.3 Topology -- 1.3.1 The Kuratowski Closure Axioms -- 1.4 Stems and Near-Rings -- 1.4.1 Star Notation -- 1.4.2 Pre-Near-Rings -- 1.4.3 Conventions and Notation -- 1.4.4 Examples of p.n.r. and of Near-Rings -- 1.5 Hosting -- 1.6 Ideals -- 1.7 Subdirect Products of Near-Rings -- 1.8 Sideals and Near-Ring Groups -- 1.8.1 Generalisations -- 1.8.2 Right Near-Ring Groups -- 1.8.3 Highly Non-standard Terminology -- 1.8.4 Sub-Structures and Mideals -- 1.8.5 Faithfulness -- 1.8.6 Monogenicity -- 1.8.7 Some Two-Sided Sideals -- 1.8.8 The Weak Left Ideal Property -- 1.8.9 Rings and Modules -- 1.9 Semi-simplicity -- 1.10 Prime and Semi-prime Ideals -- 1.10.1 Prime Ideals -- 1.10.2 Semi-prime Ideals -- 1.10.3 Complements of Prime and Semi-prime Ideals -- 1.10.4 Prime and Semi-prime Ideals -- 1.11 Near-Fields -- 1.12 A-Matrices -- 1.13 Functions and Function Composition -- 1.14 The δ Operator and Phomomorphisms -- 1.14.1 The δ Operator -- 1.14.2 Phomomorphisms -- 1.15 Annihilators -- 1.16 Conjugacy and Annihilators -- 1.17 Sylow Subgroups -- 1.18 The Zeroiser Ideal -- 1.19 The Core of a Left Ideal -- 1.20 Anti-chains of Subgroups -- 1.21 Subsets -- 1.21.1 Generating Near-Rings -- 1.21.2 Lifting Near-Rings -- 1.22 Nil and Nilpotent Sets -- 1.22.1 Sums of Nil Ideals -- 1.22.2 Sums of Nilpotent Ideals -- 1.23 Cores -- 1.24 Classes of Near-Rings -- 1.24.1 Distributively Generated and F-Near-Rings -- 1.24.2 Class F Near-Rings -- 1.24.3 The Fj Cores, (j = 1,2, 3) -- 1.24.4 Constant and Near-Constant Near-Rings -- 1.24.5 Opposites.
1.24.6 Non-Zero-Symmetric Near-Rings -- 1.25 The Distributor and the Annular Ideal -- 1.25.1 The Distributor Ideal -- 1.25.2 The Multiplicative Centre -- 1.25.3 The Annular Ideal -- 1.26 Bi-distributive Stems -- 1.27 Subgroup Series -- 1.27.1 Weak Distributivity -- 1.27.2 Annularity -- 1.27.3 N(+)-Nilpotence -- 1.28 Modular Ideals -- 1.29 Quasi-regular Left Ideals -- 1.29.1 Quasi-regularity in Rings -- 1.30 Pseudo-Rings -- 1.31 Propriety -- 1.31.1 ``Left'' and ``Right'' Confusion -- 1.31.2 Proper Structures -- 1.31.3 Transferred Epithets -- 1.31.4 Problematic Terminology -- 1.32 An Unsettling Homomorphism -- 2 Near-Ring Theory -- 2.1 Pre-Near-Ring Construction Conditions and the Associativity Core -- 2.1.1 Host Determination Strategies -- 2.1.2 Distributive Generation -- 2.1.3 Co-structures: A Sort of Duality -- 2.1.4 Reduced Free Groups and Another Sort of Duality -- 2.1.5 Construction Conditions and F-Near-Rings -- 2.1.6 Bounds on Associativity Checking -- 2.2 Coupling and Dickson Near-Rings -- 2.2.1 D-Near-Rings -- 2.3 Affine Near-Rings -- 2.4 Near-Rings Hosted by Semi-direct Products -- 2.4.1 Near-Rings Hosted by Dn -- 2.5 Ideas from Mathematical Logic and Universal Algebra -- 2.5.1 Equational Products -- 2.5.2 Boolean Algebras and Boolean Rings -- 2.5.3 Boolean Near-Rings -- 2.5.4 Finite Boolean Near-Rings -- 2.5.5 Partially Ordered Sets -- 2.5.6 Lattices -- 2.5.7 Finiteness Conditions: Chains, Intersections, Generators -- 2.5.8 Ultra-Products -- 2.6 Adjoining an Identity -- 2.7 Planarity -- 2.7.1 The Ferrero Construction -- 3 Near-Fields -- 3.1 Near-Fields -- 3.1.1 Near-Fields Not of Characteristic 2 -- 3.1.2 General Near-Fields -- 3.2 Commutators and the Sub-near-Field L -- 3.2.1 The Sub-near-Field F -- 3.3 Finite Near-Fields -- 3.3.1 The Smallest Proper Near-Field -- 3.3.2 General Cases -- 3.3.3 The Normal Core of D*.
3.3.4 The Multiplicative Centre -- 3.3.5 The Multiplicative Group Structure of Finite Near-Fields -- 3.3.6 Presentations for Finite Near-Fields with S2 Cyclic -- 3.3.7 Z-Group Properties -- 3.3.8 The Product of All the Non-zero Elements -- 3.4 Finite Dickson Near-Fields -- 3.4.1 Coupling Maps and Dickson Near-Fields -- 3.4.2 A Theorem Reported by Marshall Hall -- 3.4.3 The Smallest Proper Near-Field Having All Sylow Subgroups Cyclic -- 3.4.4 The Algebra of the Dickson Process -- 3.4.5 A Generalisation of the Dickson Process -- 3.4.6 The Historical Dickson Process -- 3.4.7 When N* Is a Z-Group -- 3.4.8 Multiplication in Finite Dickson Near-Fields -- 3.4.9 Isomorphism in Finite Dickson Near-Fields -- 3.4.10 Sub-near-Fields -- 3.4.11 Number-Theoretic Issues -- 3.4.12 Near-Field Automorphisms -- 3.4.13 Prime Divisors of δ: Hall's Theorem -- 3.4.14 L and N -- 3.4.15 An Intrinsic Characterisation of Dickson Near-Fields -- 3.5 Group Structure of N* -- 3.5.1 Presentations for Solvable Near-Fields with S2 Quaternionic -- 3.5.2 Presentation for Non-Dickson Solvable Cases -- 3.6 Frobenius Groups -- 3.6.1 Basics -- 3.6.2 Sharply 2-Transitive Groups -- 3.6.3 Affine Groups -- 3.6.4 Near-Fields to Sharply 2-Transitive Groups -- 3.6.5 Further Affine Groups -- 3.6.6 Sharply 2-Transitive Groups to Near-Fields -- 3.6.7 Dickson and Non-Dickson Near-Fields -- 3.7 Finite Non-Dickson Near-Fields -- 3.7.1 A Classification Lemma -- 3.7.2 Element Orders -- 3.8 General Finite Non-fields -- 3.9 Infinite Near-Fields -- 3.9.1 Characteristic Zero -- 3.10 A Continuing Story -- Part II Near-Rings Hosted by Classes of Groups -- 4 Near-Rings on Groups with Low Order -- 4.1 Small Non-abelian Groups -- 4.1.1 Groups with Order 16 -- 4.1.2 Groups with Order 18 -- 4.1.3 Non-abelian Groups with Order 21 -- 4.1.4 Groups with Order 24 -- 4.1.5 Groups with Order 27 -- 4.1.6 Coda.
5 Near-Rings on Some Families of Groups -- 5.1 Finite Symmetric Groups -- 5.2 Finite Simple Non-abelian Groups -- 5.2.1 Isotopy -- 5.2.2 A Class of Non-trivial Near-Rings Hosted by Any Group -- 5.3 Unital Near-Rings on Sn -- 5.4 The Quaternion Group with Order 8 -- 5.4.1 Unital d.g. p.n.r. Hosted by Q8 -- 5.5 Dihedral Groups -- 5.5.1 The Dihedral Group of Order 8 -- 5.5.2 Other Finite Dihedral Groups -- 5.5.3 Pre-Near-Rings -- 5.5.4 The Infinite Dihedral Group -- 5.6 Finite Groups from the Krimmel Class -- 5.6.1 A Classification Theorem Reported in Gorenstein -- 5.7 Generalised Quaternion Groups -- 5.8 Dicyclic Groups -- 5.9 Finite Hamiltonian Groups -- 5.10 Semi-dihedral Groups -- 5.11 Gorenstein's Group Mm(p) -- 5.12 Central Products -- 5.13 Free Products -- 5.14 Finite Non-solvable Groups -- 5.14.1 Groups with Order 360 -- 5.14.2 Groups with Order 600 -- 5.14.3 Groups with Order 720 -- 5.14.4 Remaining Possibilities with Order 720 -- 5.14.5 Direct Sums of Simple Groups -- 6 Near-Rings Hosted by p-Groups and Related Groups -- 6.1 Groups with Order p -- 6.2 The Klein Group -- 6.3 Groups with Order 2p (p > -- 2) -- 6.4 Groups with Order pq Where p and q Are Prime and (p < -- q) -- 6.5 Groups with Order p2 -- 6.6 Groups with Order 2p2 (p > -- 2) -- 6.7 Groups with Order p3 (p > -- 2) -- 6.8 Groups with Order 2p3 or Order 2p4 (p > -- 2) -- 6.9 Groups with Order p4 (p > -- 2) -- 6.10 The Prüfer Groups -- 6.11 A Research Suggestion -- Part III Representations and Cohomology -- 7 Transformation Near-Rings -- 7.1 Introduction -- 7.2 Preliminaries -- 7.2.1 Mapping Notation -- 7.2.2 Ideals of T(N) -- 7.2.3 Automorphisms of T(N) -- 7.2.4 The Finite Topology -- 7.2.5 Sub-near-Rings -- 7.2.6 E(N), I(N), A(N), B(N), and Phom(N) -- 7.3 Multiplicative Structure -- 7.3.1 Sideals and Cleiks -- 7.3.2 A-Matrices -- 7.3.3 Operating on (a,b).
7.3.4 Left and Right Sideals -- 7.3.5 Nilpotence -- 7.3.6 Idempotence -- 7.3.7 T0(N) Generalised -- 7.3.8 A Sub-near-Ring of T0(S3) -- 7.4 T(N), H(N) and B(N) -- 7.4.1 The Structure of H(N) -- 7.4.2 The Structure of T(N) -- 7.4.3 More on the Representation -- 7.4.4 Permutations and Additive Isomorphisms -- 7.4.5 Automorphisms of T0(N) -- 7.4.6 The Structure of B(N) -- 7.4.7 Further Investigation -- 7.5 Some Examples -- 7.5.1 The Cyclic Group C3 -- 7.5.2 Finite Dihedral Groups -- 7.5.3 Dn when n Is Odd -- 7.5.4 Dn when n Is Even -- 7.5.5 D∞ and A(D∞) -- 7.5.6 Q8 -- 7.6 Additive Structure -- 7.6.1 M(N) -- 7.6.2 Centraliser Near-Rings -- 7.6.3 A Duality of Semi-Groups -- 7.6.4 Density -- 7.7 MS() when S Is Fixed-Point-Free -- 7.7.1 The Structure of Minimal Left Ideals -- 7.7.2 Right Near-Ring Groups -- 7.7.3 Annihilators -- 7.7.4 Chains of Left Ideals -- 7.7.5 Simple Near-Rings -- 7.7.6 Left Ideals -- 7.7.7 Modular Left Ideals -- 8 Generalisations and Sub-near-Rings of Transformation Near-Rings -- 8.1 Commutators -- 8.2 More Sub-near-Rings -- 8.2.1 Special Cases -- 8.3 Hadamard Products -- 8.4 Endomorphism Near-Rings -- 8.4.1 Related Sub-near-Rings -- 8.4.2 Sequences of Endomorphism Near-Rings -- 8.5 Other Kinds of Endomorphism Near-Ring -- 8.6 Change of Groups -- 8.6.1 Near-Loops -- 8.6.2 Homomorphisms and Normal Sub-Loops -- 8.6.3 The Host Problem -- 8.6.4 Transformations on Near-Loops -- 8.6.5 Transformations on Sets -- 8.7 The Stemhome Near-Ring -- 8.7.1 The Stemhome Functor -- 8.8 The Wurzel -- 8.9 Elementary Closure Procedures -- 8.9.1 Additive and Multiplicative Closures -- 8.9.2 A Topological Closure -- 8.10 Polynomials -- 8.10.1 Near-Rings -- 8.10.2 Skew Polynomial Near-Rings -- 9 Phomomorphisms -- 9.1 General Theory -- 9.1.1 Extending Mappings to Phomomorphisms -- 9.1.2 Phomomorphism-Invariant Subgroups -- 9.2 Cohomology Groups.
9.2.1 Non-abelian Group Cohomology.
Record Nr. UNISA-996466556303316
Lockhart Robert (Mathematician)  
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui