top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Applications of wavelet multiresolution analysis / / Silvia Alejandra Seminara, Juan Pablo Muszkats, María Inés Troparevsky, editors
Applications of wavelet multiresolution analysis / / Silvia Alejandra Seminara, Juan Pablo Muszkats, María Inés Troparevsky, editors
Edizione [1st ed. 2021.]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (XII, 88 p. 46 illus., 36 illus. in color.)
Disciplina 510
Collana ICIAM 2019 SEMA SIMAI Springer Series
Soggetto topico Mathematics
Ondetes (Matemàtica)
Anàlisi multivariable
Soggetto genere / forma Congressos
Llibres electrònics
ISBN 3-030-61713-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Fabio, M. et al., Approximate Solutions to Fractional Boundary Value Problems by Wavelet Decomposition Methods -- Calderón, L., Wavelet B-splines bases on the interval for solving boundary value problems -- La Mura, G. et al, Kalman-Wavelet combined Filtering -- Arouxet, M. et al., Using the Wavelet Transform for Time Series Analysis -- Muszkats, J. et al., Application of Wavelet Transform to Damage Detection in Brittle Materials via Energy and Entropy Evaluation of Acoustic Emission Signals.
Record Nr. UNISA-996466556903316
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Applications of wavelet multiresolution analysis / / Silvia Alejandra Seminara, Juan Pablo Muszkats, María Inés Troparevsky, editors
Applications of wavelet multiresolution analysis / / Silvia Alejandra Seminara, Juan Pablo Muszkats, María Inés Troparevsky, editors
Edizione [1st ed. 2021.]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (XII, 88 p. 46 illus., 36 illus. in color.)
Disciplina 510
Collana ICIAM 2019 SEMA SIMAI Springer Series
Soggetto topico Mathematics
Ondetes (Matemàtica)
Anàlisi multivariable
Soggetto genere / forma Congressos
Llibres electrònics
ISBN 3-030-61713-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Fabio, M. et al., Approximate Solutions to Fractional Boundary Value Problems by Wavelet Decomposition Methods -- Calderón, L., Wavelet B-splines bases on the interval for solving boundary value problems -- La Mura, G. et al, Kalman-Wavelet combined Filtering -- Arouxet, M. et al., Using the Wavelet Transform for Time Series Analysis -- Muszkats, J. et al., Application of Wavelet Transform to Damage Detection in Brittle Materials via Energy and Entropy Evaluation of Acoustic Emission Signals.
Record Nr. UNINA-9910484210103321
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Applied logistic regression [[electronic resource] ] : David W. Hosmer, Stanley Lemeshow, Rodney X. Sturdivant
Applied logistic regression [[electronic resource] ] : David W. Hosmer, Stanley Lemeshow, Rodney X. Sturdivant
Autore Hosmer David W
Edizione [3rd ed.]
Pubbl/distr/stampa Hoboken, N.J., : Wiley, 2013
Descrizione fisica 1 online resource (528 p.)
Disciplina 519.5/36
Altri autori (Persone) LemeshowStanley
SturdivantRodney X
Collana Wiley series in probability and statistics
Soggetto topico Regression analysis
Anàlisi de regressió
Anàlisi multivariable
Estadística
Soggetto genere / forma Llibres electrònics
ISBN 1-118-54838-8
1-118-54835-3
1-299-40240-2
1-118-54839-6
Classificazione MAT029030
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Applied Logistic Regression; Contents; Preface to the Third Edition; 1 Introduction to the Logistic Regression Model; 1.1 Introduction; 1.2 Fitting the Logistic Regression Model; 1.3 Testing for the Significance of the Coefficients; 1.4 Confidence Interval Estimation; 1.5 Other Estimation Methods; 1.6 Data Sets Used in Examples and Exercises; 1.6.1 The ICU Study; 1.6.2 The Low Birth Weight Study; 1.6.3 The Global Longitudinal Study of Osteoporosis in Women; 1.6.4 The Adolescent Placement Study; 1.6.5 The Burn Injury Study; 1.6.6 The Myopia Study; 1.6.7 The NHANES Study
1.6.8 The Polypharmacy StudyExercises; 2 The Multiple Logistic Regression Model; 2.1 Introduction; 2.2 The Multiple Logistic Regression Model; 2.3 Fitting the Multiple Logistic Regression Model; 2.4 Testing for the Significance of the Model; 2.5 Confidence Interval Estimation; 2.6 Other Estimation Methods; Exercises; 3 Interpretation of the Fitted Logistic Regression Model; 3.1 Introduction; 3.2 Dichotomous Independent Variable; 3.3 Polychotomous Independent Variable; 3.4 Continuous Independent Variable; 3.5 Multivariable Models; 3.6 Presentation and Interpretation of the Fitted Values
3.7 A Comparison of Logistic Regression and Stratified Analysis for 2 x 2 TablesExercises; 4 Model-Building Strategies and Methods for Logistic Regression; 4.1 Introduction; 4.2 Purposeful Selection of Covariates; 4.2.1 Methods to Examine the Scale of a Continuous Covariate in the Logit; 4.2.2 Examples of Purposeful Selection; 4.3 Other Methods for Selecting Covariates; 4.3.1 Stepwise Selection of Covariates; 4.3.2 Best Subsets Logistic Regression; 4.3.3 Selecting Covariates and Checking their Scale Using Multivariable Fractional Polynomials; 4.4 Numerical Problems; Exercises
5 Assessing the Fit of the Model5.1 Introduction; 5.2 Summary Measures of Goodness of Fit; 5.2.1 Pearson Chi-Square Statistic, Deviance, and Sum-of-Squares; 5.2.2 The Hosmer-Lemeshow Tests; 5.2.3 Classification Tables; 5.2.4 Area Under the Receiver Operating Characteristic Curve; 5.2.5 Other Summary Measures; 5.3 Logistic Regression Diagnostics; 5.4 Assessment of Fit via External Validation; 5.5 Interpretation and Presentation of the Results from a Fitted Logistic Regression Model; Exercises; 6 Application of Logistic Regression with Different Sampling Models; 6.1 Introduction
6.2 Cohort Studies6.3 Case-Control Studies; 6.4 Fitting Logistic Regression Models to Data from Complex Sample Surveys; Exercises; 7 Logistic Regression for Matched Case-Control Studies; 7.1 Introduction; 7.2 Methods For Assessment of Fit in a 1-M Matched Study; 7.3 An Example Using the Logistic Regression Model in a 1-1 Matched Study; 7.4 An Example Using the Logistic Regression Model in a 1-M Matched Study; Exercises; 8 Logistic Regression Models for Multinomial and Ordinal Outcomes; 8.1 The Multinomial Logistic Regression Model
8.1.1 Introduction to the Model and Estimation of Model Parameters
Record Nr. UNINA-9910139038403321
Hosmer David W  
Hoboken, N.J., : Wiley, 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Applied Multivariate Statistical Analysis / / by Wolfgang Karl Härdle, Léopold Simar
Applied Multivariate Statistical Analysis / / by Wolfgang Karl Härdle, Léopold Simar
Autore Härdle Wolfgang
Edizione [5th ed. 2019.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Descrizione fisica 1 online resource (xii, 558 pages) : 443 illustrations, 308 illustrations in color
Disciplina 519.535
Soggetto topico Statistics
Social sciences - Mathematics
Econometrics
Statistical Theory and Methods
Statistics in Business, Management, Economics, Finance, Insurance
Mathematics in Business, Economics and Finance
Quantitative Economics
Statistics in Engineering, Physics, Computer Science, Chemistry and Earth Sciences
Anàlisi multivariable
Estadística econòmica
Soggetto genere / forma Llibres electrònics
ISBN 9783030260064
3030260062
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Part I Descriptive Techniques -- 1 Comparison of Batches -- Part II Multivariate Random Variables -- 2 A Short Excursion into Matrix Algebra -- 3 Moving to Higher Dimensions -- 4 Multivariate Distributions -- 5 Theory of the Multinormal -- 6 Theory of Estimation -- 7 Hypothesis Testing -- Part III Multivariate Techniques -- 8 Regression Models -- 9 Variable Selection.-10 Decomposition of Data Matrices by Factors -- 11 Principal Components Analysis -- 12 Factor Analysis -- 13 Cluster Analysis -- 14 Discriminant Analysis -- 15 Correspondence Analysis -- 16 Canonical Correlation Analysis -- 17 Multidimensional Scaling -- 18 Conjoint Measurement Analysis -- 19 Applications in Finance -- 20 Computationally Intensive Techniques -- Part IV Appendix -- A Symbols and Notations -- B Data -- Index -- References.
Record Nr. UNINA-9910360852903321
Härdle Wolfgang  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Applied Multivariate Statistics with R [[electronic resource] /] / by Daniel Zelterman
Applied Multivariate Statistics with R [[electronic resource] /] / by Daniel Zelterman
Autore Zelterman Daniel
Edizione [2nd ed. 2022.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
Descrizione fisica 1 online resource (469 pages)
Disciplina 570.285
Collana Statistics for Biology and Health
Soggetto topico Biometry
Bioinformatics
Epidemiology
Biostatistics
Anàlisi multivariable
Processament de dades
R (Llenguatge de programació)
Soggetto genere / forma Llibres electrònics
ISBN 9783031130052
9783031130045
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1. Introduction -- Chapter 2. Elements of R -- Chapter 3. Graphical Displays -- Chapter 4. Basic Linear Algebra -- Chapter 5. The Univariate Normal Distribution -- Chapter 6. Bivariate Normal Distribution -- Chapter 7. Multivariate Normal Distribution -- Chapter 8. Factor Methods -- Chapter 9. Multivariate Linear Regression -- Chapter 10. Discrimination and Classification -- Chapter 11. Clustering Methods -- Chapter 12. Basic Models for Longitudinal Data -- Chapter 13. Time Series Models -- Chapter 14. Other Useful Methods.
Record Nr. UNISA-996508571303316
Zelterman Daniel  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Applied Multivariate Statistics with R / / by Daniel Zelterman
Applied Multivariate Statistics with R / / by Daniel Zelterman
Autore Zelterman Daniel
Edizione [2nd ed. 2022.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
Descrizione fisica 1 online resource (469 pages)
Disciplina 570.285
519.53502855133
Collana Statistics for Biology and Health
Soggetto topico Biometry
Bioinformatics
Epidemiology
Biostatistics
Anàlisi multivariable
Processament de dades
R (Llenguatge de programació)
Soggetto genere / forma Llibres electrònics
ISBN 9783031130052
9783031130045
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1. Introduction -- Chapter 2. Elements of R -- Chapter 3. Graphical Displays -- Chapter 4. Basic Linear Algebra -- Chapter 5. The Univariate Normal Distribution -- Chapter 6. Bivariate Normal Distribution -- Chapter 7. Multivariate Normal Distribution -- Chapter 8. Factor Methods -- Chapter 9. Multivariate Linear Regression -- Chapter 10. Discrimination and Classification -- Chapter 11. Clustering Methods -- Chapter 12. Basic Models for Longitudinal Data -- Chapter 13. Time Series Models -- Chapter 14. Other Useful Methods.
Record Nr. UNINA-9910645887003321
Zelterman Daniel  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Classification and Data Science in the Digital Age / / edited by Paula Brito, José G. Dias, Berthold Lausen, Angela Montanari, Rebecca Nugent
Classification and Data Science in the Digital Age / / edited by Paula Brito, José G. Dias, Berthold Lausen, Angela Montanari, Rebecca Nugent
Autore Brito Paula
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham, : Springer Nature, 2023
Descrizione fisica 1 online resource (393 pages)
Disciplina 005.7
Altri autori (Persone) DiasJosé G
LausenBerthold
MontanariAngela
NugentRebecca
Collana Studies in Classification, Data Analysis, and Knowledge Organization
Soggetto topico Artificial intelligence - Data processing
Machine learning
Data mining
Multivariate analysis
Statistics - Computer programs
Data Science
Statistical Learning
Machine Learning
Data Mining and Knowledge Discovery
Multivariate Analysis
Statistical Software
Intel·ligència artificial
Aprenentatge automàtic
Mineria de dades
Anàlisi multivariable
Soggetto genere / forma Llibres electrònics
ISBN 3-031-09034-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface -- R. Abdesselam: A Topological Clustering of Individuals -- C. Anton and I. Smith: Model Based Clustering of Functional Data with Mild Outliers -- F. Antonazzo and S. Ingrassia: A Trivariate Geometric Classification of Decision Boundaries for Mixtures of Regressions -- E. Arnone, E. Cunial, and L. M. Sangalli: Generalized Spatio-temporal Regression with PDE Penalization -- R. Ascari and S. Migliorati: A New Regression Model for the Analysis of Microbiome Data -- R. Aschenbruck, G. Szepannek, and A. F. X. Wilhelm: Stability of Mixed-type Cluster Partitions for Determination of the Number of Clusters -- A. Ashofteh and P. Campos: A Review on Official Survey Item Classification for Mixed-Mode Effects Adjustment -- V. Batagelj: Clustering and Blockmodeling Temporal Networks – Two Indirect Approaches -- R. Boutalbi, L. Labiod, and M. Nadif: Latent Block Regression Model -- N. Chabane, M. Achraf Bouaoune, R. Amir Sofiane Tighilt, B. Mazoure, N. Tahiri, and V. Makarenkov: Using Clustering and Machine Learning Methods to Provide Intelligent Grocery Shopping Recommendations -- T. Chadjipadelis and S. Magopoulou: COVID-19 Pandemic: a Methodological Model for the Analysis of Government’s Preventing Measures and Health Data Records -- J. Champagne Gareau, É. Beaudry, and V. Makarenkov: pcTVI: Parallel MDP Solver Using a Decomposition into Independent Chains -- C. Di Nuzzo and S. Ingrassia: Three-way Spectral Clustering -- J. Dobša and H. A. L. Kiers: Improving Classification of Documents by Semi-supervised Clustering in a Semantic Space -- J. Gama: Trends in Data Stream Mining -- L. A. García-Escudero, A. Mayo-Iscar, G. Morelli, and M. Riani: Old and New Constraints in Model Based Clustering -- V. G Genova, G. Giordano, G . Ragozini, and M. Prosperina Vitale: Clustering Student Mobility Data in 3-way Networks -- R. Giubilei: Clustering Brain Connectomes Through a Density-peak Approach -- T. Górecki, M. Šuczak, and P. Piasecki: Similarity Forest for Time Series Classification -- K. Hayashi, E. Hoshino, M. Suzuki, E. Nakanishi, K. Sakai, and M. Obatake: Detection of the Biliary Atresia Using Deep Convolutional Neural Networks Based on Statistical Learning Weights via Optimal Similarity and Resampling Methods -- Ch. Hennig: Some Issues in Robust Clustering -- J. Kalina and P. Janá£ek: Robustness Aspects of Optimized Centroids -- L. Labiod and M. Nadif: Data Clustering and Representation Learning Based on Networked Data -- Lazhar Labiod and Mohamed Nadif: Towards a Bi-stochastic Matrix Approximation of k-means and Some Variants -- A. LaLonde, T. Love, D. R. Young, and T. Wu: Clustering Adolescent Female Physical Activity Levels with an Infinite Mixture Model on Random Effects -- Á. López-Oriona, J. A. Vilar, and P. D’Urso: Unsupervised Classification of Categorical Time Series Through Innovative Distances -- D. Masís, E. Segura, J. Trejos, and A. Xavier: Fuzzy Clustering by Hyperbolic Smoothing -- R. Meng, H. K. H. Lee, and K. Bouchard: Stochastic Collapsed Variational Inference for Structured Gaussian Process Regression Networks -- H. Duy Nguyen, F. Forbes, G. Fort, and O. Cappé: An Online Minorization-Maximization Algorithm -- L. Palazzo and R. Ievoli: Detecting Differences in Italian Regional Health Services During Two Covid-19 Waves -- G. Panagiotidou and T. Chadjipadelis: Political and Religion Attitudes in Greece: Behavioral Discourses -- K. Pawlasová, I. Karafiátová, and J. Dvořák: Supervised Classification via Neural Networks for Replicated Point Patterns -- G. Perrone and G. Soffritti: Parsimonious Mixtures of Seemingly Unrelated Contaminated Normal Regression Models -- N. Pronello, R. Ignaccolo, L. Ippoliti, and S. Fontanella: Penalized Model-based Functional Clustering: a Regularization Approach via Shrinkage Methods -- D. Rodrigues, L. P. Reis, and B. M. Faria: Emotion Classification Based on Single Electrode Brain Data: Applications for Assistive Technology -- R. Scimone, A. Menafoglio, L. M. Sangalli, and P. Secchi: The Death Process in Italy Before and During the Covid-19 Pandemic: a Functional Compositional Approach -- O. Silva, Á. Sousa, and H. Bacelar-Nicolau: Clustering Validation in the Context of Hierarchical Cluster Analysis: an Empirical Study -- C. Silvestre, M. G. M. S. Cardoso, and M. Figueiredo: An MML Embedded Approach for Estimating the Number of Clusters -- Á. Sousa, O. Silva, M. Graça Batista, S. Cabral, and H. Bacelar-Nicolau: Typology of Motivation Factors for Employees in the Banking Sector: An Empirical Study Using Multivariate Data Analysis Methods -- J. Michael Spoor, J. Weber, and J. Ovtcharova: A Proposal for Formalization and Definition of Anomalies in Dynamical Systems -- N. Tahiri and A. Koshkarov: New Metrics for Classifying Phylogenetic Trees Using -means and the Symmetric Difference Metric -- S. D. Tomarchio: On Parsimonious Modelling via Matrix-variate t Mixtures -- G. Zammarchi, M. Romano, and C. Conversano: Evolution of Media Coverage on Climate Change and Environmental Awareness: an Analysis of Tweets from UK and US Newspapers.
Record Nr. UNINA-9910768481303321
Brito Paula  
Cham, : Springer Nature, 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Compositional data analysis : theory and applications / / edited by Vera Pawlowsky-Glahn, Antonella Buccianti
Compositional data analysis : theory and applications / / edited by Vera Pawlowsky-Glahn, Antonella Buccianti
Edizione [1st ed.]
Pubbl/distr/stampa Hoboken, N.J., : Wiley, 2011
Descrizione fisica 1 online resource (402 p.)
Disciplina 519.5/35
Altri autori (Persone) Pawlowsky-GlahnVera
BucciantiAntonella
Soggetto topico Multivariate analysis
Correlation (Statistics)
Anàlisi multivariable
Correlació (Estadística)
ISBN 9786613204516
9781283204514
1283204517
9781119976462
1119976464
9781119976479
1119976472
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto pt. 1. Introduction -- pt. 2. Theory-- statistical modelling -- pt. 3. Theory-- algebra and calculus -- pt. 4. Applications -- pt. 5. Software.
Record Nr. UNINA-9910133221303321
Hoboken, N.J., : Wiley, 2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
High-dimensional covariance matrix estimation : an introduction to random matrix theory / / Aygul Zagidullina
High-dimensional covariance matrix estimation : an introduction to random matrix theory / / Aygul Zagidullina
Autore Zagidullina Aygul
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (123 pages)
Disciplina 512.9434
Collana SpringerBriefs in Applied Statistics and Econometrics
Soggetto topico Random matrices
Asymptotic efficiencies (Statistics)
Multivariate analysis
Matrius aleatòries
Anàlisi multivariable
Soggetto genere / forma Llibres electrònics
ISBN 3-030-80065-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996466409803316
Zagidullina Aygul  
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Innovations in Multivariate Statistical Modeling [[electronic resource] ] : Navigating Theoretical and Multidisciplinary Domains / / edited by Andriëtte Bekker, Johannes T. Ferreira, Mohammad Arashi, Ding-Geng Chen
Innovations in Multivariate Statistical Modeling [[electronic resource] ] : Navigating Theoretical and Multidisciplinary Domains / / edited by Andriëtte Bekker, Johannes T. Ferreira, Mohammad Arashi, Ding-Geng Chen
Edizione [1st ed. 2022.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
Descrizione fisica 1 online resource (434 pages)
Disciplina 780
Collana Emerging Topics in Statistics and Biostatistics
Soggetto topico Statistics
Applied Statistics
Statistical Theory and Methods
Anàlisi multivariable
Soggetto genere / forma Llibres electrònics
ISBN 3-031-13971-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface -- PART 1: Trends in Multi- and Matrix-Variate Analysis -- Q. Guo, X. Deng and N. Ravishanker: Association-based Optimal Subpopulation Selection of Multivariate Data -- T. B. Mattos, L. A. Matos, V. H Lachos Aldo: Likelihood-Based Inference For Linear Mixed-Effects Models With Censored Response Using Skew-Normal Distribution -- Y. Melnykov, M. Perry, V. Melnykov: Robust Estimation of Multiple Change Points in Multivariate Processes -- T. Botha, J. T Ferreira and A. Bekker: Some Computational Aspects Of A Noncentral Dirichlet Family -- Y. Murat Bulut and Olcay Arslan: Modeling Handwritten Digits Dataset Using The Matrix Variate T Distribution -- B. Byukusenge, D. von Rosen and M. Singull: On The Identification Of Extreme Elements In A Residual For The Gmanova-Manova Model -- M. Billio, R. Casarin, M. Costola and M. Iacopini: Matrix-variate Smooth Transition Models for Temporal Networks -- H. Baghishani and J. Ownuk: A Flexible Matrix-Valued Response Regression For Skewed Data -- J. Trink, H. Haghbin and M. Maadooliat: Multivariate Functional Singular Spectrum Analysis: A Nonparametric Approach for Analyzing Functional Time Series -- M. Greenacre: Compositional Data Analysis — Linear Algebra, Visualization And Interpretation -- A. Alzaatreh, F. Famoye and C. Lee: Multivariate Count Data Regression Models And Their Applications -- A. Iranmanesh, M. Rafiei and D. Nagar: A Generalized Multivariate Gamma Distribution -- PART 2: Aspects of High Dimensional Methodology and Bayesian Learning -- G. D' Angella and C. Hennig: A Comparison Of Different Clustering Approaches For High-Dimensional Presence-Absence Data -- S. Millard, M. Arashi and G. Maribe: High-Dimensional Feature Selection For Logistic Regression Using Blended Penalty Functions -- I. Munaweera, S. Muthukumarana and M. Jafari Jozani: A Generalized Quadratic Garrote Approach Towards Ridge Regression Analysis -- M. Roozbeh: High Dimensional Nonlinear Optimization Problem In Semiparametric Regression Model -- PART 3: Frontiers in Robust Analysis and Mixture Modelling -- A. Punzo and S. D. Tomarchia: Parsimonious Finite Mixtures Of Matrix-Variate Regressions -- F. Zehra Doğru and Olcay Arslan:Robust Multivariate Modelling for Heterogeneous Data Sets With Mixtures of Multivariate Skew Laplace Normal Distributions -- M. Norouzirad, M. Arashi, F. J Marques and F. Esmaeili: Robust Estimation Through Preliminary Testing Based On The Lad-Lasso.
Record Nr. UNISA-996503550403316
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui