top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
High entropy materials : processing, properties, and applications / / Krishanu Biswa [and three others]
High entropy materials : processing, properties, and applications / / Krishanu Biswa [and three others]
Autore Biswas Krishanu
Pubbl/distr/stampa Singapore : , : Springer, , [2022]
Descrizione fisica 1 online resource (476 pages)
Disciplina 669.94
Collana Materials Horizons: from Nature to Nanomaterials Series
Soggetto topico Alloys
Alloys - Thermal properties
ISBN 981-19-3919-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Foreword -- Preface -- Acknowledgments -- Contents -- About the Authors -- 1 High Entropy Materials (HEMs): An Overview -- 1.1 Alloys Why So Important for Civilization -- 1.2 Advent of HEMs: Why Multicomponent Equiatomic Alloys Were Not Extensively Investigated Earlier? -- 1.3 Research on HEMs-How It Started? -- 1.3.1 Research Done by Pioneers -- 1.3.2 J.-W. Yeh -- 1.3.3 S. Rangananthan -- 1.3.4 Jon-Paul Maria and Jian Luo -- 1.4 High Entropy Materials-Basic Concepts -- 1.5 Entropy versus Enthalpy -- 1.6 HEM Family -- 1.7 HEMs and Beyond -- 1.8 Properties -- 1.9 The Scope of the Book -- References -- 2 High Entropy Materials: Basic Concepts -- 2.1 Introduction -- 2.2 Emergence of Four Core Effects-Framing the Basic Concepts -- 2.2.1 The High Entropy Effect -- 2.2.2 The Lattice Distortion Effect -- 2.2.3 The Sluggish Diffusion Effect -- 2.2.4 The "Cocktail" Effect -- 2.3 High Entropy Alloys and Ceramics: Definition and Classification -- 2.3.1 Constituent Element-Based Classification -- 2.3.2 Traditional Crystal Structure-Based Classification -- 2.3.3 Microstructure-Based Classification -- 2.3.4 Density-Based Classification -- 2.3.5 Deformation Mechanism-Based Classification -- 2.4 Composition Notation -- References -- 3 Phase and Microstructural Selection in High Entropy Materials -- 3.1 Introduction -- 3.2 Alloy Design Strategies -- 3.2.1 Predicting Solid Solubility from Hume-Rothery Rules -- 3.2.2 Parametric Approach -- 3.2.3 CALPHAD Approach -- 3.2.4 Ab Initio Approach -- 3.2.5 Pettifor Map Approach to Predict the Formation of HEMs -- 3.3 Phase Selection Approach to Find Single Phase Versus Multiphase HEMs -- 3.4 Design Strategies for High Entropy Ceramics (HECs) -- 3.5 Microstructure of HEMs -- 3.6 Design Strategies for High Entropy Metallic Glasses -- 3.6.1 Trial and Error Method -- 3.6.2 Nearly-Free-Electron Method.
3.6.3 Valence Electron Concentration Method -- 3.6.4 Discrete Variational Method -- 3.6.5 Machine Learning Methods -- References -- 4 Diffusion in High Entropy Materials -- 4.1 Introduction -- 4.2 Diffusion in Alloys -- 4.3 Diffusion in Multicomponent Systems -- 4.4 Measured Diffusivities in High Entropy Alloys-Validity of the Core Concept of Sluggish Diffusion -- 4.5 Implications for Diffusion-Controlled Processes -- 4.5.1 Creep and Superplasticity -- 4.5.2 Diffusional Solid State Phase Transformation in HEAs-Phase Separation and Precipitation -- 4.5.3 Grain Growth in HEAs -- References -- 5 Application of Artificial Intelligence in the Design of HEMs -- 5.1 Introduction -- 5.2 ICME -- 5.2.1 CALPHAD -- 5.2.2 Ab Initio -- 5.2.3 DFT/MD Simulation -- 5.2.4 MC Simulation -- 5.2.5 Phase-Field Simulations -- 5.2.6 Machine Learning Approaches -- 5.3 Future Outlook and Summary -- References -- 6 Synthesis and Processing of Bulk High Entropy Materials -- 6.1 Introduction -- 6.2 Processing of HEAs -- 6.2.1 Melting and Casting Route -- 6.2.2 Powder Metallurgical Processing Route -- 6.3 HEA-Based Composites -- 6.4 High Entropy Ceramics: Oxides, Carbides, and Borides -- 6.5 Combinatorial Materials Synthesis -- 6.6 Additive Manufacturing -- 6.7 Summary -- References -- 7 Synthesis and Processing of HEA Coating and Thin Films -- 7.1 Introduction -- 7.2 HEA Coatings: Challenges -- 7.2.1 Mechanical Alloying -- 7.2.2 Spray Technique -- 7.2.3 Laser Cladding -- 7.3 HEA Thin Films: Preparation and Challenges -- 7.3.1 Sputtering Technique -- 7.3.2 Ion Beam Sputter Deposition (IBSD) -- References -- 8 Structural Properties -- 8.1 Introduction -- 8.2 Hot and Cold Working of HEAs -- 8.2.1 Hot Working of HEAs -- 8.2.2 Cold Working of HEAs -- 8.2.3 Severe Plastic Deformation -- 8.3 Mechanical Properties of HEAs -- 8.3.1 Elastic Properties -- 8.3.2 Quasistatic Tensile Behavior.
8.3.3 Transient Plastic Deformation -- 8.3.4 Dynamic Tensile Behavior -- 8.3.5 Fracture Toughness -- 8.3.6 Strength Ductility Paradox -- 8.3.7 Hardness and Wear Resistance -- 8.3.8 Fatigue -- 8.3.9 Creep and Superplasticity -- 8.4 Corrosion and Oxidation -- 8.5 Summary -- References -- 9 Functional Applications of High Entropy Alloys -- 9.1 Introduction -- 9.2 Magnetism -- 9.3 Electronics -- 9.4 Thermoelectrics -- 9.5 Hydrogen Storage -- 9.6 Catalytic Application -- 9.7 Sensor Application -- References -- 10 Summary and Future Direction -- 10.1 Introduction -- 10.2 Goals of Property Improvement -- 10.3 Advanced Applications Requiring HEMs -- 10.4 Technology Development -- 10.5 Patents on HEMs -- 10.6 Future Direction -- References -- Appendix A -- Appendix B -- List of Patents -- Appendix C -- References.
Record Nr. UNISA-996499861603316
Biswas Krishanu  
Singapore : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
High entropy materials : processing, properties, and applications / / Krishanu Biswa [and three others]
High entropy materials : processing, properties, and applications / / Krishanu Biswa [and three others]
Autore Biswas Krishanu
Pubbl/distr/stampa Singapore : , : Springer, , [2022]
Descrizione fisica 1 online resource (476 pages)
Disciplina 669.94
Collana Materials Horizons: from Nature to Nanomaterials Series
Soggetto topico Alloys
Alloys - Thermal properties
ISBN 981-19-3919-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Foreword -- Preface -- Acknowledgments -- Contents -- About the Authors -- 1 High Entropy Materials (HEMs): An Overview -- 1.1 Alloys Why So Important for Civilization -- 1.2 Advent of HEMs: Why Multicomponent Equiatomic Alloys Were Not Extensively Investigated Earlier? -- 1.3 Research on HEMs-How It Started? -- 1.3.1 Research Done by Pioneers -- 1.3.2 J.-W. Yeh -- 1.3.3 S. Rangananthan -- 1.3.4 Jon-Paul Maria and Jian Luo -- 1.4 High Entropy Materials-Basic Concepts -- 1.5 Entropy versus Enthalpy -- 1.6 HEM Family -- 1.7 HEMs and Beyond -- 1.8 Properties -- 1.9 The Scope of the Book -- References -- 2 High Entropy Materials: Basic Concepts -- 2.1 Introduction -- 2.2 Emergence of Four Core Effects-Framing the Basic Concepts -- 2.2.1 The High Entropy Effect -- 2.2.2 The Lattice Distortion Effect -- 2.2.3 The Sluggish Diffusion Effect -- 2.2.4 The "Cocktail" Effect -- 2.3 High Entropy Alloys and Ceramics: Definition and Classification -- 2.3.1 Constituent Element-Based Classification -- 2.3.2 Traditional Crystal Structure-Based Classification -- 2.3.3 Microstructure-Based Classification -- 2.3.4 Density-Based Classification -- 2.3.5 Deformation Mechanism-Based Classification -- 2.4 Composition Notation -- References -- 3 Phase and Microstructural Selection in High Entropy Materials -- 3.1 Introduction -- 3.2 Alloy Design Strategies -- 3.2.1 Predicting Solid Solubility from Hume-Rothery Rules -- 3.2.2 Parametric Approach -- 3.2.3 CALPHAD Approach -- 3.2.4 Ab Initio Approach -- 3.2.5 Pettifor Map Approach to Predict the Formation of HEMs -- 3.3 Phase Selection Approach to Find Single Phase Versus Multiphase HEMs -- 3.4 Design Strategies for High Entropy Ceramics (HECs) -- 3.5 Microstructure of HEMs -- 3.6 Design Strategies for High Entropy Metallic Glasses -- 3.6.1 Trial and Error Method -- 3.6.2 Nearly-Free-Electron Method.
3.6.3 Valence Electron Concentration Method -- 3.6.4 Discrete Variational Method -- 3.6.5 Machine Learning Methods -- References -- 4 Diffusion in High Entropy Materials -- 4.1 Introduction -- 4.2 Diffusion in Alloys -- 4.3 Diffusion in Multicomponent Systems -- 4.4 Measured Diffusivities in High Entropy Alloys-Validity of the Core Concept of Sluggish Diffusion -- 4.5 Implications for Diffusion-Controlled Processes -- 4.5.1 Creep and Superplasticity -- 4.5.2 Diffusional Solid State Phase Transformation in HEAs-Phase Separation and Precipitation -- 4.5.3 Grain Growth in HEAs -- References -- 5 Application of Artificial Intelligence in the Design of HEMs -- 5.1 Introduction -- 5.2 ICME -- 5.2.1 CALPHAD -- 5.2.2 Ab Initio -- 5.2.3 DFT/MD Simulation -- 5.2.4 MC Simulation -- 5.2.5 Phase-Field Simulations -- 5.2.6 Machine Learning Approaches -- 5.3 Future Outlook and Summary -- References -- 6 Synthesis and Processing of Bulk High Entropy Materials -- 6.1 Introduction -- 6.2 Processing of HEAs -- 6.2.1 Melting and Casting Route -- 6.2.2 Powder Metallurgical Processing Route -- 6.3 HEA-Based Composites -- 6.4 High Entropy Ceramics: Oxides, Carbides, and Borides -- 6.5 Combinatorial Materials Synthesis -- 6.6 Additive Manufacturing -- 6.7 Summary -- References -- 7 Synthesis and Processing of HEA Coating and Thin Films -- 7.1 Introduction -- 7.2 HEA Coatings: Challenges -- 7.2.1 Mechanical Alloying -- 7.2.2 Spray Technique -- 7.2.3 Laser Cladding -- 7.3 HEA Thin Films: Preparation and Challenges -- 7.3.1 Sputtering Technique -- 7.3.2 Ion Beam Sputter Deposition (IBSD) -- References -- 8 Structural Properties -- 8.1 Introduction -- 8.2 Hot and Cold Working of HEAs -- 8.2.1 Hot Working of HEAs -- 8.2.2 Cold Working of HEAs -- 8.2.3 Severe Plastic Deformation -- 8.3 Mechanical Properties of HEAs -- 8.3.1 Elastic Properties -- 8.3.2 Quasistatic Tensile Behavior.
8.3.3 Transient Plastic Deformation -- 8.3.4 Dynamic Tensile Behavior -- 8.3.5 Fracture Toughness -- 8.3.6 Strength Ductility Paradox -- 8.3.7 Hardness and Wear Resistance -- 8.3.8 Fatigue -- 8.3.9 Creep and Superplasticity -- 8.4 Corrosion and Oxidation -- 8.5 Summary -- References -- 9 Functional Applications of High Entropy Alloys -- 9.1 Introduction -- 9.2 Magnetism -- 9.3 Electronics -- 9.4 Thermoelectrics -- 9.5 Hydrogen Storage -- 9.6 Catalytic Application -- 9.7 Sensor Application -- References -- 10 Summary and Future Direction -- 10.1 Introduction -- 10.2 Goals of Property Improvement -- 10.3 Advanced Applications Requiring HEMs -- 10.4 Technology Development -- 10.5 Patents on HEMs -- 10.6 Future Direction -- References -- Appendix A -- Appendix B -- List of Patents -- Appendix C -- References.
Record Nr. UNINA-9910768447003321
Biswas Krishanu  
Singapore : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
High temperature strain of metals and alloys [[electronic resource] ] : physical fundamentals / / Valim Levitin
High temperature strain of metals and alloys [[electronic resource] ] : physical fundamentals / / Valim Levitin
Autore Levitin Valim
Pubbl/distr/stampa Weinheim ; ; Chichester, : Wiley-VCH, 2006
Descrizione fisica 1 online resource (181 p.)
Disciplina 620.1617
669.83
Soggetto topico Metals - Effect of high temperatures on
Alloys - Thermal properties
Soggetto genere / forma Electronic books.
ISBN 1-280-85422-7
9786610854226
3-527-60795-1
3-527-60714-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto High Temperature Strain of Metals and Alloys; Contents; Introduction; 1 Macroscopic Characteristics of Strain of Metallic Materials at High Temperatures; 2 The Experimental Equipment and the in situ X-ray Investigation Technique; 2.1 Experimental Installation; 2.2 Measurement Procedure; 2.3 Measurements of Structural Parameters; 2.4 Diffraction Electron Microscopy; 2.5 Amplitude of Atomic Vibrations; 2.6 Materials under Investigation; 2.7 Summary; 3 Structural Parameters in High-Temperature Deformed Metals; 3.1 Evolution of Structural Parameters; 3.2 Dislocation Structure
3.3 Distances between Dislocations in Sub-boundaries3.4 Sub-boundaries as Dislocation Sources and Obstacles; 3.5 Dislocations inside Subgrains; 3.6 Vacancy Loops and Helicoids; 3.7 Total Combination of Structural Peculiarities of High-temperature Deformation; 3.8 Summary; 4 Physical Mechanism and Structural Model of Strain at High Temperatures; 4.1 Physical Model and Theory; 4.2 Velocity of Dislocations; 4.3 Dislocation Density; 4.4 Rate of the Steady-State Creep; 4.5 Effect of Alloying: Relationship between Creep Rate and Mean-Square Atomic Amplitudes
4.6 Formation of Jogs. Low-Angle Sub-boundaries in f.c.c. and b.c.c. Crystal Lattices4.7 Significance of the Stacking Faults Energy; 4.8 Stability of Dislocation Sub-boundaries; 4.9 Scope of Application of the Theory; 4.10 Summary; 5 Simulation of the Evolution of Parameters during Deformation; 5.1 Parameters of the Physical Model; 5.2 Equations; 5.2.1 Strain Rate; 5.2.2 Change in the Dislocation Density; 5.2.3 The Dislocation Slip Velocity; 5.2.4 The Dislocation Climb Velocity; 5.2.5 The Dislocation Spacing in Sub-boundaries; 5.2.6 Variation of the Subgrain Size
5.2.7 System of Differential Equations5.3 Results of Simulation: Changes in the Structural Parameters; 5.4 Density of Dislocations during Stationary Creep; 5.5 Summary; 6 High-temperature Deformation of Superalloys; 6.1 γ ́ Phase in Superalloys; 6.2 Changes in the Matrix of Alloys during Strain; 6.3 Interaction of Dislocations and Particles of the Hardening Phase; 6.4 Dependence of Creep Rate on Stress. The Average Length of the Activated Dislocation Segments; 6.5 Mechanism of Strain and the Creep Rate Equation; 6.6 Composition of the γ ́ Phase and Mean-square Amplitudes of Atomic Vibrations
6.7 Influence of the Particle Size and Concentration6.8 The Prediction of Properties on the Basis of Integrated Databases; 6.9 Summary; 7 Single Crystals of Superalloys; 7.1 Effect of Orientation on Properties; 7.2 Deformation of Single-crystal Superalloys at Lower Temperatures and Higher Stress; 7.3 Deformation of Single-crystal Superalloys at Higher Temperatures and Lower Stress; 7.4 On the Composition of Superalloys; 7.5 Rafting; 7.6 Effect of Composition and Temperature on γ/γ ́ Misfit; 7.7 Other Creep Equations; 7.8 Summary; 8 High-temperature Deformation of Some Refractory Metals
8.1 The Creep Behavior
Record Nr. UNINA-9910144704403321
Levitin Valim  
Weinheim ; ; Chichester, : Wiley-VCH, 2006
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
High temperature strain of metals and alloys [[electronic resource] ] : physical fundamentals / / Valim Levitin
High temperature strain of metals and alloys [[electronic resource] ] : physical fundamentals / / Valim Levitin
Autore Levitin Valim
Pubbl/distr/stampa Weinheim ; ; Chichester, : Wiley-VCH, 2006
Descrizione fisica 1 online resource (181 p.)
Disciplina 620.1617
669.83
Soggetto topico Metals - Effect of high temperatures on
Alloys - Thermal properties
ISBN 1-280-85422-7
9786610854226
3-527-60795-1
3-527-60714-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto High Temperature Strain of Metals and Alloys; Contents; Introduction; 1 Macroscopic Characteristics of Strain of Metallic Materials at High Temperatures; 2 The Experimental Equipment and the in situ X-ray Investigation Technique; 2.1 Experimental Installation; 2.2 Measurement Procedure; 2.3 Measurements of Structural Parameters; 2.4 Diffraction Electron Microscopy; 2.5 Amplitude of Atomic Vibrations; 2.6 Materials under Investigation; 2.7 Summary; 3 Structural Parameters in High-Temperature Deformed Metals; 3.1 Evolution of Structural Parameters; 3.2 Dislocation Structure
3.3 Distances between Dislocations in Sub-boundaries3.4 Sub-boundaries as Dislocation Sources and Obstacles; 3.5 Dislocations inside Subgrains; 3.6 Vacancy Loops and Helicoids; 3.7 Total Combination of Structural Peculiarities of High-temperature Deformation; 3.8 Summary; 4 Physical Mechanism and Structural Model of Strain at High Temperatures; 4.1 Physical Model and Theory; 4.2 Velocity of Dislocations; 4.3 Dislocation Density; 4.4 Rate of the Steady-State Creep; 4.5 Effect of Alloying: Relationship between Creep Rate and Mean-Square Atomic Amplitudes
4.6 Formation of Jogs. Low-Angle Sub-boundaries in f.c.c. and b.c.c. Crystal Lattices4.7 Significance of the Stacking Faults Energy; 4.8 Stability of Dislocation Sub-boundaries; 4.9 Scope of Application of the Theory; 4.10 Summary; 5 Simulation of the Evolution of Parameters during Deformation; 5.1 Parameters of the Physical Model; 5.2 Equations; 5.2.1 Strain Rate; 5.2.2 Change in the Dislocation Density; 5.2.3 The Dislocation Slip Velocity; 5.2.4 The Dislocation Climb Velocity; 5.2.5 The Dislocation Spacing in Sub-boundaries; 5.2.6 Variation of the Subgrain Size
5.2.7 System of Differential Equations5.3 Results of Simulation: Changes in the Structural Parameters; 5.4 Density of Dislocations during Stationary Creep; 5.5 Summary; 6 High-temperature Deformation of Superalloys; 6.1 γ ́ Phase in Superalloys; 6.2 Changes in the Matrix of Alloys during Strain; 6.3 Interaction of Dislocations and Particles of the Hardening Phase; 6.4 Dependence of Creep Rate on Stress. The Average Length of the Activated Dislocation Segments; 6.5 Mechanism of Strain and the Creep Rate Equation; 6.6 Composition of the γ ́ Phase and Mean-square Amplitudes of Atomic Vibrations
6.7 Influence of the Particle Size and Concentration6.8 The Prediction of Properties on the Basis of Integrated Databases; 6.9 Summary; 7 Single Crystals of Superalloys; 7.1 Effect of Orientation on Properties; 7.2 Deformation of Single-crystal Superalloys at Lower Temperatures and Higher Stress; 7.3 Deformation of Single-crystal Superalloys at Higher Temperatures and Lower Stress; 7.4 On the Composition of Superalloys; 7.5 Rafting; 7.6 Effect of Composition and Temperature on γ/γ ́ Misfit; 7.7 Other Creep Equations; 7.8 Summary; 8 High-temperature Deformation of Some Refractory Metals
8.1 The Creep Behavior
Record Nr. UNINA-9910830230803321
Levitin Valim  
Weinheim ; ; Chichester, : Wiley-VCH, 2006
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
High temperature strain of metals and alloys [[electronic resource] ] : physical fundamentals / / Valim Levitin
High temperature strain of metals and alloys [[electronic resource] ] : physical fundamentals / / Valim Levitin
Autore Levitin Valim
Pubbl/distr/stampa Weinheim ; ; Chichester, : Wiley-VCH, 2006
Descrizione fisica 1 online resource (181 p.)
Disciplina 620.1617
669.83
Soggetto topico Metals - Effect of high temperatures on
Alloys - Thermal properties
ISBN 1-280-85422-7
9786610854226
3-527-60795-1
3-527-60714-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto High Temperature Strain of Metals and Alloys; Contents; Introduction; 1 Macroscopic Characteristics of Strain of Metallic Materials at High Temperatures; 2 The Experimental Equipment and the in situ X-ray Investigation Technique; 2.1 Experimental Installation; 2.2 Measurement Procedure; 2.3 Measurements of Structural Parameters; 2.4 Diffraction Electron Microscopy; 2.5 Amplitude of Atomic Vibrations; 2.6 Materials under Investigation; 2.7 Summary; 3 Structural Parameters in High-Temperature Deformed Metals; 3.1 Evolution of Structural Parameters; 3.2 Dislocation Structure
3.3 Distances between Dislocations in Sub-boundaries3.4 Sub-boundaries as Dislocation Sources and Obstacles; 3.5 Dislocations inside Subgrains; 3.6 Vacancy Loops and Helicoids; 3.7 Total Combination of Structural Peculiarities of High-temperature Deformation; 3.8 Summary; 4 Physical Mechanism and Structural Model of Strain at High Temperatures; 4.1 Physical Model and Theory; 4.2 Velocity of Dislocations; 4.3 Dislocation Density; 4.4 Rate of the Steady-State Creep; 4.5 Effect of Alloying: Relationship between Creep Rate and Mean-Square Atomic Amplitudes
4.6 Formation of Jogs. Low-Angle Sub-boundaries in f.c.c. and b.c.c. Crystal Lattices4.7 Significance of the Stacking Faults Energy; 4.8 Stability of Dislocation Sub-boundaries; 4.9 Scope of Application of the Theory; 4.10 Summary; 5 Simulation of the Evolution of Parameters during Deformation; 5.1 Parameters of the Physical Model; 5.2 Equations; 5.2.1 Strain Rate; 5.2.2 Change in the Dislocation Density; 5.2.3 The Dislocation Slip Velocity; 5.2.4 The Dislocation Climb Velocity; 5.2.5 The Dislocation Spacing in Sub-boundaries; 5.2.6 Variation of the Subgrain Size
5.2.7 System of Differential Equations5.3 Results of Simulation: Changes in the Structural Parameters; 5.4 Density of Dislocations during Stationary Creep; 5.5 Summary; 6 High-temperature Deformation of Superalloys; 6.1 γ ́ Phase in Superalloys; 6.2 Changes in the Matrix of Alloys during Strain; 6.3 Interaction of Dislocations and Particles of the Hardening Phase; 6.4 Dependence of Creep Rate on Stress. The Average Length of the Activated Dislocation Segments; 6.5 Mechanism of Strain and the Creep Rate Equation; 6.6 Composition of the γ ́ Phase and Mean-square Amplitudes of Atomic Vibrations
6.7 Influence of the Particle Size and Concentration6.8 The Prediction of Properties on the Basis of Integrated Databases; 6.9 Summary; 7 Single Crystals of Superalloys; 7.1 Effect of Orientation on Properties; 7.2 Deformation of Single-crystal Superalloys at Lower Temperatures and Higher Stress; 7.3 Deformation of Single-crystal Superalloys at Higher Temperatures and Lower Stress; 7.4 On the Composition of Superalloys; 7.5 Rafting; 7.6 Effect of Composition and Temperature on γ/γ ́ Misfit; 7.7 Other Creep Equations; 7.8 Summary; 8 High-temperature Deformation of Some Refractory Metals
8.1 The Creep Behavior
Record Nr. UNINA-9910840538203321
Levitin Valim  
Weinheim ; ; Chichester, : Wiley-VCH, 2006
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Thermal conductivities of three Inconel alloys at temperatures from 100 to 700 degrees C / / Henry E. Robinson, Silas Katz
Thermal conductivities of three Inconel alloys at temperatures from 100 to 700 degrees C / / Henry E. Robinson, Silas Katz
Autore Robinson Henry E
Pubbl/distr/stampa Gaithersburg, MD : , : U.S. Dept. of Commerce, National Institute of Standards and Technology, , 1955
Descrizione fisica 1 online resource
Altri autori (Persone) KatzSilas
RobinsonHenry E
Collana NBS report
Soggetto topico Alloys - Thermal properties
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910711296503321
Robinson Henry E  
Gaithersburg, MD : , : U.S. Dept. of Commerce, National Institute of Standards and Technology, , 1955
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui