top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
The ACM journal of experimental algorithmics
The ACM journal of experimental algorithmics
Pubbl/distr/stampa New York, : ACM
Disciplina 004
Soggetto topico Computer algorithms
Data structures (Computer science)
Algorithms
Algorismes
Algorismes computacionals
Estructures de dades (Informàtica)
Soggetto genere / forma Periodicals.
Revistes electròniques.
Formato Materiale a stampa
Livello bibliografico Periodico
Lingua di pubblicazione eng
Altri titoli varianti Journal of experimental algorithmics
JEA
ACM JEA
Association for Computing Machinery journal of experimental algorithmics
Record Nr. UNINA-9910376057303321
New York, : ACM
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Algorithmic Aspects of Cloud Computing : 7th International Symposium, ALGOCLOUD 2022, Potsdam, Germany, September 6, 2022, Revised Selected Papers / / edited by Luca Foschini, Spyros Kontogiannis
Algorithmic Aspects of Cloud Computing : 7th International Symposium, ALGOCLOUD 2022, Potsdam, Germany, September 6, 2022, Revised Selected Papers / / edited by Luca Foschini, Spyros Kontogiannis
Autore Foschini Luca
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (111 pages)
Disciplina 004.0151
Altri autori (Persone) KontogiannisSpyros
Collana Lecture Notes in Computer Science
Soggetto topico Computer science
Computer networks
Computers, Special purpose
Data structures (Computer science)
Information theory
Application software
Computer systems
Theory of Computation
Computer Communication Networks
Special Purpose and Application-Based Systems
Data Structures and Information Theory
Computer and Information Systems Applications
Computer System Implementation
Computació en núvol
Algorismes computacionals
Matemàtica
Soggetto genere / forma Llibres electrònics
ISBN 9783031334375
303133437X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cloud-Based Urban Mobility Services -- SQL Query Optimization in Distributed NoSQL Databases for Cloud-based Applications -- MAGMA: Proposing a Massive Historical Graph Management System -- New Results in Priority-Based Bin Packing -- More Sparking Soundex-based Privacy-Preserving Record Linkage -- Privacy Preserving Queries of Shortest Path Distances.
Record Nr. UNINA-9910728390403321
Foschini Luca  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Algorithmic foundations of robotics XIV : proceedings of the Fourteenth Workshop on the Algorithmic Foundations of Robotics / / editors, Steven M. LaValle [et al.]
Algorithmic foundations of robotics XIV : proceedings of the Fourteenth Workshop on the Algorithmic Foundations of Robotics / / editors, Steven M. LaValle [et al.]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (581 pages)
Disciplina 629.892
Collana Springer Proceedings in Advanced Robotics
Soggetto topico Robotics
Robotics - Mathematics
Machine learning
Algorithms
Robòtica
Algorismes computacionals
Aprenentatge automàtic
Soggetto genere / forma Congressos
Llibres electrònics
ISBN 3-030-66723-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910483482303321
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Algorithms with JULIA : optimization, machine learning, and differential Equations using the JULIA language / / Clemens Heitzinger
Algorithms with JULIA : optimization, machine learning, and differential Equations using the JULIA language / / Clemens Heitzinger
Autore Heitzinger Clemens
Pubbl/distr/stampa Cham, Switzerland : , : Springer International Publishing, , [2023]
Descrizione fisica 1 online resource (447 pages)
Disciplina 005.1
Soggetto topico Computer algorithms
Julia (Computer program language)
Algorismes computacionals
Soggetto genere / forma Llibres electrònics
ISBN 9783031165603
9783031165597
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910634042203321
Heitzinger Clemens  
Cham, Switzerland : , : Springer International Publishing, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Algorithms with JULIA : optimization, machine learning, and differential Equations using the JULIA language / / Clemens Heitzinger
Algorithms with JULIA : optimization, machine learning, and differential Equations using the JULIA language / / Clemens Heitzinger
Autore Heitzinger Clemens
Pubbl/distr/stampa Cham, Switzerland : , : Springer International Publishing, , [2023]
Descrizione fisica 1 online resource (447 pages)
Disciplina 005.1
Soggetto topico Computer algorithms
Julia (Computer program language)
Algorismes computacionals
Soggetto genere / forma Llibres electrònics
ISBN 9783031165603
9783031165597
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996503551003316
Heitzinger Clemens  
Cham, Switzerland : , : Springer International Publishing, , [2023]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Ant colony optimization and applications / / Stefka Fidanova
Ant colony optimization and applications / / Stefka Fidanova
Autore Fidanova Stefka <1964->
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (135 pages) : illustrations
Disciplina 519.3
Collana Studies in Computational Intelligence
Soggetto topico Computational intelligence
Algorismes computacionals
Investigació operativa
Intel·ligència computacional
Soggetto genere / forma Llibres electrònics
ISBN 3-030-67380-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910484772503321
Fidanova Stefka <1964->  
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Applications of advanced computing in systems : proceedings of International Conference on Advances in Systems, Control and Computing / / Rajesh Kumar, [and three others], editors
Applications of advanced computing in systems : proceedings of International Conference on Advances in Systems, Control and Computing / / Rajesh Kumar, [and three others], editors
Pubbl/distr/stampa Singapore : , : Springer, , [2021]
Descrizione fisica 1 online resource (334 pages)
Disciplina 006.3
Collana Algorithms for intelligent systems
Soggetto topico Computer algorithms
Machine learning
Artificial intelligence
Algorismes computacionals
Aprenentatge automàtic
Intel·ligència artificial
Soggetto genere / forma Llibres electrònics
Congressos
ISBN 981-334-862-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti AISCC 2020
Record Nr. UNINA-9910736018503321
Singapore : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Applications of flower pollination algorithm and its variants / / editor, Nilanjan Dey
Applications of flower pollination algorithm and its variants / / editor, Nilanjan Dey
Pubbl/distr/stampa Singapore : , : Springer, , [2021]
Descrizione fisica 1 online resource (247 pages) : illustrations
Disciplina 518.1
Collana Springer Tracts in Nature-Inspired Computing
Soggetto topico Algorithms
Swarm intelligence
Computational intelligence
Algorismes computacionals
Intel·ligència computacional
Soggetto genere / forma Llibres electrònics
ISBN 981-336-104-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- Editor and Contributors -- 1 Flower Pollination Algorithm: Basic Concepts, Variants, and Applications -- 1 Introduction -- 2 Biological Inspirations: Pollination of Flowering Plants -- 3 Flower Pollination Optimization Algorithm (FPA) -- 3.1 Global Search in FPA: Biotic Pollination Process -- 3.2 Local Search in FPA: Abiotic Pollination Process -- 3.3 Switch Probability in FPA -- 3.4 Parametric Study for FPA -- 3.5 Implementation of FPA -- 3.6 Advantages of FPA -- 4 Variants of FPA -- 4.1 Multi-objective Flower Pollination Algorithm (MOFPA) -- 4.2 Modified Flower Pollination Algorithms (M-FPA) -- 4.3 Hybridized Variants of FPA -- 5 Applications of FPA and Its Variants -- 6 Comparative Analytical Studies of FPA and its Variants -- 7 Limitations of FPA -- 8 Challenging Problems in FPA -- 9 Conclusions -- References -- 2 Optimization of Non-rigid Demons Registration Using Flower Pollination Algorithm -- 1 Introduction -- 2 Methodology -- 2.1 Demons Registration -- 2.2 Flower Pollination Algorithm -- 3 Proposed Method -- 4 Results and Discussion -- 5 Conclusion -- References -- 3 Adaptive Neighbor Heuristics Flower Pollination Algorithm Strategy for Sequence Test Generation -- 1 Introduction -- 2 T-way Tests Generation Problem -- 2.1 T-way Tests Generation -- 2.2 Sequence t-way Tests Generation -- 3 Related Works -- 4 Adaptive Neighbor Heuristics Flower Pollination Algorithm Strategy -- 5 Experimental Results -- 5.1 Benchmarking with Existing Strategies -- 5.2 Convergence Rate Analysis -- 6 Summary -- References -- 4 Implementation of Flower Pollination Algorithm to the Design Optimization of Planar Antennas -- 1 Introduction -- 2 Flower Pollination Algorithm -- 2.1 Pollination Phenomenon -- 2.2 Modeling of Flower Pollination Algorithm -- 3 The Cooperating Platform for Simulation and Optimization of the Antenna Designs.
3.1 The Cooperating Platform -- 3.2 S-parameters -- 3.3 Cooperation of FPA and the Simulator -- 4 The Optimized Designs of Planar Antennas -- 4.1 UWB Antenna Design -- 4.2 Dual BN Characteristic Optimization of the UWB Antenna -- 4.3 Single UWB Antenna Element for a Quad-Element MIMO Antenna -- 4.4 Quad-Element MIMO Antenna -- 5 Conclusions -- References -- 5 Flower Pollination Algorithm for Slope Stability Analysis -- 1 Introduction -- 2 Problem Statement -- 2.1 Generation of Trial Slip Surface -- 2.2 Calculation of Factor of Safety -- 2.3 Application of Optimization Method -- 3 Flower Pollination Algorithm -- 4 Numerical Analysis -- 4.1 Sensitivity Analysis -- 4.2 Case-1 -- 4.3 Case-2 -- 4.4 Case-3 -- 5 Discussion and Conclusions -- References -- 6 Optimum Sizing of Truss Structures Using a Hybrid Flower Pollinations -- 1 Introduction -- 2 Sizing Optimization Problem -- 3 Optimization Algorithms -- 3.1 Flower Pollination Algorithm -- 3.2 Differential Evolution -- 3.3 Hybrid Flower Pollination-Differential Evolution -- 4 Numerical Experiments and Results -- 5 10-Bar Planar Truss -- 5.1 17-Bar Planar Truss -- 5.2 45-Bar Planar Truss -- 6 Conclusion -- References -- 7 Optimizing Reinforced Cantilever Retaining Walls Under Dynamic Loading Using Improved Flower Pollination Algorithm -- 1 Introduction -- 2 Design Steps of Reinforced Retaining Walls -- 2.1 Geometrical Design Variables -- 2.2 Geotechnical Stability of Reinforced Cantilever Retaining Walls -- 2.3 Structural Constraints for Reinforced Cantilever Retaining Walls -- 3 Optimum Design of Reinforced Concrete Cantilever Retaining Walls -- 3.1 Objective Function -- 4 Optimization Algorithms -- 4.1 Flower Pollination Algorithm -- 4.2 Improved Flower Pollination Algorithm -- 5 Numerical Experiments -- 5.1 Example 1 -- 5.2 Example 2 -- 6 Conclusions -- References.
8 Multi-objective Flower Pollination Algorithm and Its Variants to Find Optimal Golomb Rulers for WDM Systems -- 1 Introduction -- 2 Optimal Golomb Rulers (OGRs) -- 3 Multi-objective Flower Pollination Algorithm and Its Variants -- 3.1 Multi-objective Flower Pollination Algorithm -- 3.2 Variants of Multi-objective Flower Pollination Algorithm -- 4 Problem Formulation -- 5 Results and Discussion -- 5.1 Comparative Study of Flower Pollination-Inspired MOAs in Terms of the Ruler Length and Total Occupied Unequally Spaced Optical Channel Bandwidth -- 5.2 Comparative Study of Flower Pollination-Inspired MOAs in Terms of BEF -- 5.3 Comparative Study of Flower Pollination-Inspired MOAs in Terms of Computational CPU Time -- 5.4 Maximum Computation Complexity of Flower Pollination-Inspired MOAs in Terms of Big O Notation -- 5.5 Wilcoxon Rank-Sum Test of Flower Pollination-Inspired MOAs -- 6 Conclusions -- References -- 9 Applications of Flower Pollination Algorithm in Wireless Sensor Networking and Image Processing: A Detailed Study -- 1 Introduction -- 2 Swarm Intelligence Algorithm -- 2.1 Bat Algorithm -- 2.2 Firefly Algorithm -- 2.3 Particle Swarm Optimization -- 2.4 Artificial Bee Colony Algorithm -- 2.5 Cuckoo Search Algorithm -- 3 Flower Pollination Algorithm -- 3.1 Flower Pollination -- 3.2 The Flower Pollination Algorithm (FPA) -- 3.3 Variants of Flower Pollination Algorithm (FPA) -- 4 Wireless Sensor Networks -- 4.1 Impact of Flower Pollination Algorithm in Wireless Sensor Networking -- 5 Image Processing -- 5.1 Impact of Flower Pollination Algorithm in Image Processing -- 6 Discussion -- 7 Conclusion -- References -- 10 Flower Pollination Algorithm Tuned PID Controller for Multi-source Interconnected Multi-area Power System -- 1 Introduction -- 2 Power System Investigation -- 2.1 Proportional Integral Derivative (PID) Controller.
3 Flower Pollination Algorithm Tuned PID Controller -- 4 Result Analysis and Discussions -- 5 Conclusions -- References.
Record Nr. UNINA-9910767581903321
Singapore : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Black box optimization, machine learning, and no-free lunch theorems / / Panos M. Pardalos, Varvara Rasskazova, Michael N. Vrahatis, editors
Black box optimization, machine learning, and no-free lunch theorems / / Panos M. Pardalos, Varvara Rasskazova, Michael N. Vrahatis, editors
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (393 pages)
Disciplina 006.31
Collana Springer Optimization and Its Applications
Soggetto topico Machine learning - Mathematics
Aprenentatge automàtic
Optimització matemàtica
Algorismes computacionals
Soggetto genere / forma Llibres electrònics
ISBN 3-030-66515-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- Learning Enabled Constrained Black-Box Optimization -- 1 Introduction -- 2 Constrained Black-Box Optimization -- 3 The Basic Probabilistic Framework -- 3.1 Gaussian Processes -- 3.2 GP-Based Optimization -- 4 Constrained Bayesian Optimization -- 5 Constrained Bayesian Optimization for Partially Defined Objective Functions -- 6 Software for the Generation of Constrained Test Problems -- 6.1 Emmental-Type GKLS Generator -- 7 Conclusions -- References -- Black-Box Optimization: Methods and Applications -- 1 Introduction -- 2 Overview of BBO Methods -- 2.1 Direct Search Methods -- 2.1.1 Simplex Search -- 2.1.2 Coordinate Search -- 2.1.3 Generalized Pattern Search -- 2.1.4 Mesh Adaptive Direct Search -- 2.2 Model-Based Methods -- 2.2.1 Model-Based Trust Region -- 2.2.2 Projection-Based Methods -- 2.3 Heuristic Methods -- 2.3.1 DIRECT -- 2.3.2 Multilevel Coordinate Search -- 2.3.3 Hit-and-Run algorithms -- 2.3.4 Simulated Annealing -- 2.3.5 Genetic Algorithm -- 2.3.6 Particle Swarm Optimization -- 2.3.7 Surrogate Management Framework -- 2.3.8 Branch and Fit -- 2.4 Hybrid Methods -- 2.5 Extension to Constrained Problems -- 2.5.1 Penalty Method -- 2.5.2 Augmented Lagrangian -- 2.5.3 Filter Method -- 2.5.4 Surrogate Modeling -- 3 BBO Solvers -- 4 Recent Applications -- 4.1 Automatic Machine Learning -- 4.2 Optimization Solvers -- 4.3 Fluid Mechanics -- 4.4 Oilfield Development and Operations -- 4.5 Chemical and Biochemical Engineering -- 5 Open Problems and Future Research Directions -- References -- Tuning Algorithms for Stochastic Black-Box Optimization: State of the Art and Future Perspectives -- 1 Introduction -- 2 Tuning: Strategies -- 2.1 Key Topics -- 2.2 Stochastic Optimization Algorithms -- 2.3 Algorithm Tuning -- 2.4 Example: Grefenstette's Study of Control Parameters for Genetic Algorithms.
2.5 No Free Lunch Theorems -- 2.6 Tuning for Deterministic Algorithms -- 3 Test Sets -- 3.1 Test Functions -- 3.2 Application Domains -- 3.2.1 Tuning in Industry -- 3.2.2 Energy -- 3.2.3 Water Industry -- 3.2.4 Steel Industry -- 3.2.5 Automotive -- 3.2.6 Information Technology -- 4 Statistical Considerations -- 4.1 Experimental Setup -- 4.2 Design of Experiments -- 4.3 Measuring Performance -- 4.4 Reporting Results -- 5 Parallelization -- 5.1 Overview -- 5.2 Simplistic Approaches -- 5.3 Parallelization in Surrogate Model-Based Optimization -- 5.3.1 Uncertainty-Based Methods -- 5.3.2 Surrogate-Assisted Algorithms -- 6 Tuning Approaches -- 6.1 Overview -- 6.2 Manual Tuning -- 6.3 Automatic Tuning -- 6.4 Interactive Tuning -- 6.5 Internal Tuning -- 7 Tuning Software -- 7.1 Overview -- 7.2 IRACE -- 7.3 SPOT -- 7.4 SMAC -- 7.5 ParamILS -- 7.6 GGA -- 7.7 Usability and Availability of Tuning Software -- 7.8 Example: SPOT -- 8 Research Directions and Open Problems -- 9 Summary and Outlook -- References -- Quality-Diversity Optimization: A Novel Branch of Stochastic Optimization -- 1 Introduction -- 2 Problem Formulation -- 2.1 Collections of Solutions -- 2.2 How Do We Measure the Performance of a QD Algorithm? -- 3 Optimizing a Collection of Solutions -- 3.1 MAP-Elites -- 3.2 A Unified Framework -- 3.2.1 Containers -- 3.2.2 Selection Operators -- 3.2.3 Population Scores -- 3.3 Considerations of Quality-Diversity Optimization -- 4 Origins and Related Work -- 4.1 Searching for Diverse Behaviors -- 4.2 Connections to Multimodal Optimization -- 4.3 Connections to Multitask Optimization -- 5 Current Topics -- 5.1 Expensive Objective Functions -- 5.2 High-Dimensional Feature Space -- 5.3 Learning the Behavior Descriptor -- 5.4 Improving Variation Operators -- 5.5 Noisy Functions -- 6 Conclusion -- References.
Multi-Objective Evolutionary Algorithms: Past, Present, and Future -- 1 Introduction -- 2 Basic Concepts -- 3 The Past -- 3.1 Non-Elitist Non-Pareto Approaches -- 3.1.1 Linear Aggregating Functions -- 3.1.2 Vector Evaluated Genetic Algorithm (VEGA) -- 3.1.3 Lexicographic Ordering -- 3.1.4 Target-Vector Approaches -- 3.2 Non-Elitist Pareto-Based Approaches -- 3.2.1 Multi-Objective Genetic Algorithm (MOGA) -- 3.2.2 Nondominated Sorting Genetic Algorithm (NSGA) -- 3.2.3 Niched-Pareto Genetic Algorithm (NPGA) -- 3.3 Elitist Pareto-Based Approaches -- 3.3.1 The Strength Pareto Evolutionary Algorithm (SPEA) -- 3.3.2 The Pareto Archived Evolution Strategy (PAES) -- 3.3.3 The Nondominated Sorting Genetic Algorithm-II (NSGA-II) -- 4 The Present -- 4.1 Some Applications -- 5 The Future -- 6 Conclusions -- References -- Black-Box and Data-Driven Computation -- 1 Introduction -- 2 Black Box and Oracle -- 3 Reduction -- 4 Data-Driven Computation -- References -- Mathematically Rigorous Global Optimization and FuzzyOptimization -- 1 Introduction -- 2 Interval Analysis: Fundamentals and Philosophy -- 2.1 Overview -- 2.2 Interval Logic -- 2.3 Extensions -- 2.4 History and References -- 3 Fuzzy Sets: Fundamentals and Philosophy -- 3.1 Fuzzy Logic -- 3.2 A Brief History -- 4 The Branch and Bound Framework: Some Definitions and Details -- 5 Interval Technology: Some Details -- 5.1 Interval Newton Methods -- 5.2 Constraint Propagation -- 5.3 Relaxations -- 5.4 Interval Arithmetic Software -- 6 Fuzzy Technology: A Few Details -- 7 Conclusions -- References -- Optimization Under Uncertainty Explains Empirical Success of Deep Learning Heuristics -- 1 Formulation of the Problem -- 2 Why Rectified Linear Neurons Are Efficient: A Theoretical Explanation -- 3 Why Sigmoid Activation Functions -- 4 Selection of Poolings -- 5 Why Softmax -- 6 Which Averaging Should We Choose.
7 Proofs -- References -- Variable Neighborhood Programming as a Tool of Machine Learning -- 1 Introduction -- 2 Variable Neighborhood Search -- 3 Variable Neighborhood Programming -- 3.1 Solution Presentation -- 3.2 Neighborhood Structures -- 3.3 Elementary Tree Transformation in Automatic Programming -- 3.3.1 ETT in the Tree of an Undirected Graph -- 3.3.2 ETT in AP Tree -- 3.3.3 Bound on Cardinality of AP-ETT(T) -- 4 VNP for Symbolic Regression -- 4.1 Test Instances and Parameter Values -- 4.2 Comparison of BVNP with Other Methods -- 5 Life Expectancy Estimation as a Symbolic Regression Problem Solved by VNP: Case Study on Russian Districts -- 5.1 Life Expectancy Estimation as a Machine Learning Problem -- 5.2 VNP for Estimating Life Expectancy Problem -- 5.3 Case Study at Russian Districts -- 5.3.1 One-Attribute Analysis -- 5.3.2 Results and Discussion on 3-Attribute Data -- 5.4 Conclusions -- 6 Preventive Maintenance in Railway Planning as a Machine Learning Problem -- 6.1 Literature Review and Motivation -- 6.2 Reduced VNP for Solving the Preventive Maintenance Planning of Railway Infrastructure -- 6.2.1 Learning for Stage 1: Prediction -- 6.2.2 Learning for Stage 2: Classification -- 6.3 Computation Results -- 6.3.1 Prediction -- 6.3.2 Classification -- 6.4 Conclusions and Future Work -- 7 Conclusions -- References -- Non-lattice Covering and Quantization of High Dimensional Sets -- 1 Introduction -- 2 Weak Covering -- 2.1 Comparison of Designs from the View Point of Weak Covering -- 2.2 Reduction to the Probability of Covering a Point by One Ball -- 2.3 Designs of Theoretical Interest -- 3 Approximation of Cd(Zn,r) for Design 1 -- 3.1 Normal Approximation for PU,δ,α,r -- 3.2 Refined Approximation for PU,δ,α,r -- 3.3 Approximation for Cd(Zn,r) for Design 1 -- 4 Approximating Cd(Zn,r) for Design 2a -- 4.1 Normal Approximation for PU,δ,0,r.
4.2 Refined Approximation for PU,δ,0,r -- 4.3 Approximation for Cd(Zn,r) -- 5 Approximating Cd(Zn,r) for Design 2b -- 5.1 Establishing a Connection Between Sampling with and Without Replacement: General Case -- 5.2 Approximation of Cd(Zn,r) for Design 2b. -- 6 Numerical Study -- 6.1 Assessing Accuracy of Approximations of Cd(Zn,r) and Studying Their Dependence on δ -- 6.2 Comparison Across α -- 7 Quantization in a Cube -- 7.1 Quantization Error and Its Relation to Weak Covering -- 7.2 Quantization Error for Design 1 -- 7.3 Quantization Error for Design 2a -- 7.4 Quantization Error for Design 2b -- 7.5 Accuracy of Approximations for Quantization Error and the δ-Effect -- 8 Comparative Numerical Studies of Covering Properties for Several Designs -- 8.1 Covering Comparisons -- 8.2 Quantization Comparisons -- 9 Covering and Quantization in the d-Simplex -- 9.1 Characteristics of Interest -- 9.2 Numerical Investigation of the δ-Effect for d-Simplex -- 10 Appendix: An Auxiliary Lemma -- References -- Finding Effective SAT Partitionings Via Black-Box Optimization -- 1 Introduction -- 2 Preliminaries -- 2.1 Boolean Satisfiability Problem (SAT) -- 2.2 SAT-Based Cryptanalysis -- 3 Decomposition Sets and Backdoors in SAT with Application to Inversion of Discrete Functions -- 3.1 On Interconnection Between Plain Partitionings and Cryptographic Attacks -- 3.2 Using Monte Carlo Method to Estimate Runtime of SAT-Based Guess-and-Determine Attacks -- 4 Practical Aspects of Evaluating Effectiveness of SAT Partitionings -- 4.1 Narrowing Search Space to SUPBS -- 4.2 Applications of Incremental SAT Solving -- 4.3 Finding Partitionings via Incremental SAT -- 5 Employed Optimization Algorithms -- 6 Experimental Results -- 6.1 Considered Problems -- 6.2 Implementations of Objective Functions -- 6.3 Finding Effective SAT Partitionings.
6.4 Solving Hard SAT Instances via Found Partitionings.
Record Nr. UNISA-996466410203316
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Black box optimization, machine learning, and no-free lunch theorems / / Panos M. Pardalos, Varvara Rasskazova, Michael N. Vrahatis, editors
Black box optimization, machine learning, and no-free lunch theorems / / Panos M. Pardalos, Varvara Rasskazova, Michael N. Vrahatis, editors
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (393 pages)
Disciplina 006.31
Collana Springer Optimization and Its Applications
Soggetto topico Machine learning - Mathematics
Aprenentatge automàtic
Optimització matemàtica
Algorismes computacionals
Soggetto genere / forma Llibres electrònics
ISBN 3-030-66515-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- Learning Enabled Constrained Black-Box Optimization -- 1 Introduction -- 2 Constrained Black-Box Optimization -- 3 The Basic Probabilistic Framework -- 3.1 Gaussian Processes -- 3.2 GP-Based Optimization -- 4 Constrained Bayesian Optimization -- 5 Constrained Bayesian Optimization for Partially Defined Objective Functions -- 6 Software for the Generation of Constrained Test Problems -- 6.1 Emmental-Type GKLS Generator -- 7 Conclusions -- References -- Black-Box Optimization: Methods and Applications -- 1 Introduction -- 2 Overview of BBO Methods -- 2.1 Direct Search Methods -- 2.1.1 Simplex Search -- 2.1.2 Coordinate Search -- 2.1.3 Generalized Pattern Search -- 2.1.4 Mesh Adaptive Direct Search -- 2.2 Model-Based Methods -- 2.2.1 Model-Based Trust Region -- 2.2.2 Projection-Based Methods -- 2.3 Heuristic Methods -- 2.3.1 DIRECT -- 2.3.2 Multilevel Coordinate Search -- 2.3.3 Hit-and-Run algorithms -- 2.3.4 Simulated Annealing -- 2.3.5 Genetic Algorithm -- 2.3.6 Particle Swarm Optimization -- 2.3.7 Surrogate Management Framework -- 2.3.8 Branch and Fit -- 2.4 Hybrid Methods -- 2.5 Extension to Constrained Problems -- 2.5.1 Penalty Method -- 2.5.2 Augmented Lagrangian -- 2.5.3 Filter Method -- 2.5.4 Surrogate Modeling -- 3 BBO Solvers -- 4 Recent Applications -- 4.1 Automatic Machine Learning -- 4.2 Optimization Solvers -- 4.3 Fluid Mechanics -- 4.4 Oilfield Development and Operations -- 4.5 Chemical and Biochemical Engineering -- 5 Open Problems and Future Research Directions -- References -- Tuning Algorithms for Stochastic Black-Box Optimization: State of the Art and Future Perspectives -- 1 Introduction -- 2 Tuning: Strategies -- 2.1 Key Topics -- 2.2 Stochastic Optimization Algorithms -- 2.3 Algorithm Tuning -- 2.4 Example: Grefenstette's Study of Control Parameters for Genetic Algorithms.
2.5 No Free Lunch Theorems -- 2.6 Tuning for Deterministic Algorithms -- 3 Test Sets -- 3.1 Test Functions -- 3.2 Application Domains -- 3.2.1 Tuning in Industry -- 3.2.2 Energy -- 3.2.3 Water Industry -- 3.2.4 Steel Industry -- 3.2.5 Automotive -- 3.2.6 Information Technology -- 4 Statistical Considerations -- 4.1 Experimental Setup -- 4.2 Design of Experiments -- 4.3 Measuring Performance -- 4.4 Reporting Results -- 5 Parallelization -- 5.1 Overview -- 5.2 Simplistic Approaches -- 5.3 Parallelization in Surrogate Model-Based Optimization -- 5.3.1 Uncertainty-Based Methods -- 5.3.2 Surrogate-Assisted Algorithms -- 6 Tuning Approaches -- 6.1 Overview -- 6.2 Manual Tuning -- 6.3 Automatic Tuning -- 6.4 Interactive Tuning -- 6.5 Internal Tuning -- 7 Tuning Software -- 7.1 Overview -- 7.2 IRACE -- 7.3 SPOT -- 7.4 SMAC -- 7.5 ParamILS -- 7.6 GGA -- 7.7 Usability and Availability of Tuning Software -- 7.8 Example: SPOT -- 8 Research Directions and Open Problems -- 9 Summary and Outlook -- References -- Quality-Diversity Optimization: A Novel Branch of Stochastic Optimization -- 1 Introduction -- 2 Problem Formulation -- 2.1 Collections of Solutions -- 2.2 How Do We Measure the Performance of a QD Algorithm? -- 3 Optimizing a Collection of Solutions -- 3.1 MAP-Elites -- 3.2 A Unified Framework -- 3.2.1 Containers -- 3.2.2 Selection Operators -- 3.2.3 Population Scores -- 3.3 Considerations of Quality-Diversity Optimization -- 4 Origins and Related Work -- 4.1 Searching for Diverse Behaviors -- 4.2 Connections to Multimodal Optimization -- 4.3 Connections to Multitask Optimization -- 5 Current Topics -- 5.1 Expensive Objective Functions -- 5.2 High-Dimensional Feature Space -- 5.3 Learning the Behavior Descriptor -- 5.4 Improving Variation Operators -- 5.5 Noisy Functions -- 6 Conclusion -- References.
Multi-Objective Evolutionary Algorithms: Past, Present, and Future -- 1 Introduction -- 2 Basic Concepts -- 3 The Past -- 3.1 Non-Elitist Non-Pareto Approaches -- 3.1.1 Linear Aggregating Functions -- 3.1.2 Vector Evaluated Genetic Algorithm (VEGA) -- 3.1.3 Lexicographic Ordering -- 3.1.4 Target-Vector Approaches -- 3.2 Non-Elitist Pareto-Based Approaches -- 3.2.1 Multi-Objective Genetic Algorithm (MOGA) -- 3.2.2 Nondominated Sorting Genetic Algorithm (NSGA) -- 3.2.3 Niched-Pareto Genetic Algorithm (NPGA) -- 3.3 Elitist Pareto-Based Approaches -- 3.3.1 The Strength Pareto Evolutionary Algorithm (SPEA) -- 3.3.2 The Pareto Archived Evolution Strategy (PAES) -- 3.3.3 The Nondominated Sorting Genetic Algorithm-II (NSGA-II) -- 4 The Present -- 4.1 Some Applications -- 5 The Future -- 6 Conclusions -- References -- Black-Box and Data-Driven Computation -- 1 Introduction -- 2 Black Box and Oracle -- 3 Reduction -- 4 Data-Driven Computation -- References -- Mathematically Rigorous Global Optimization and FuzzyOptimization -- 1 Introduction -- 2 Interval Analysis: Fundamentals and Philosophy -- 2.1 Overview -- 2.2 Interval Logic -- 2.3 Extensions -- 2.4 History and References -- 3 Fuzzy Sets: Fundamentals and Philosophy -- 3.1 Fuzzy Logic -- 3.2 A Brief History -- 4 The Branch and Bound Framework: Some Definitions and Details -- 5 Interval Technology: Some Details -- 5.1 Interval Newton Methods -- 5.2 Constraint Propagation -- 5.3 Relaxations -- 5.4 Interval Arithmetic Software -- 6 Fuzzy Technology: A Few Details -- 7 Conclusions -- References -- Optimization Under Uncertainty Explains Empirical Success of Deep Learning Heuristics -- 1 Formulation of the Problem -- 2 Why Rectified Linear Neurons Are Efficient: A Theoretical Explanation -- 3 Why Sigmoid Activation Functions -- 4 Selection of Poolings -- 5 Why Softmax -- 6 Which Averaging Should We Choose.
7 Proofs -- References -- Variable Neighborhood Programming as a Tool of Machine Learning -- 1 Introduction -- 2 Variable Neighborhood Search -- 3 Variable Neighborhood Programming -- 3.1 Solution Presentation -- 3.2 Neighborhood Structures -- 3.3 Elementary Tree Transformation in Automatic Programming -- 3.3.1 ETT in the Tree of an Undirected Graph -- 3.3.2 ETT in AP Tree -- 3.3.3 Bound on Cardinality of AP-ETT(T) -- 4 VNP for Symbolic Regression -- 4.1 Test Instances and Parameter Values -- 4.2 Comparison of BVNP with Other Methods -- 5 Life Expectancy Estimation as a Symbolic Regression Problem Solved by VNP: Case Study on Russian Districts -- 5.1 Life Expectancy Estimation as a Machine Learning Problem -- 5.2 VNP for Estimating Life Expectancy Problem -- 5.3 Case Study at Russian Districts -- 5.3.1 One-Attribute Analysis -- 5.3.2 Results and Discussion on 3-Attribute Data -- 5.4 Conclusions -- 6 Preventive Maintenance in Railway Planning as a Machine Learning Problem -- 6.1 Literature Review and Motivation -- 6.2 Reduced VNP for Solving the Preventive Maintenance Planning of Railway Infrastructure -- 6.2.1 Learning for Stage 1: Prediction -- 6.2.2 Learning for Stage 2: Classification -- 6.3 Computation Results -- 6.3.1 Prediction -- 6.3.2 Classification -- 6.4 Conclusions and Future Work -- 7 Conclusions -- References -- Non-lattice Covering and Quantization of High Dimensional Sets -- 1 Introduction -- 2 Weak Covering -- 2.1 Comparison of Designs from the View Point of Weak Covering -- 2.2 Reduction to the Probability of Covering a Point by One Ball -- 2.3 Designs of Theoretical Interest -- 3 Approximation of Cd(Zn,r) for Design 1 -- 3.1 Normal Approximation for PU,δ,α,r -- 3.2 Refined Approximation for PU,δ,α,r -- 3.3 Approximation for Cd(Zn,r) for Design 1 -- 4 Approximating Cd(Zn,r) for Design 2a -- 4.1 Normal Approximation for PU,δ,0,r.
4.2 Refined Approximation for PU,δ,0,r -- 4.3 Approximation for Cd(Zn,r) -- 5 Approximating Cd(Zn,r) for Design 2b -- 5.1 Establishing a Connection Between Sampling with and Without Replacement: General Case -- 5.2 Approximation of Cd(Zn,r) for Design 2b. -- 6 Numerical Study -- 6.1 Assessing Accuracy of Approximations of Cd(Zn,r) and Studying Their Dependence on δ -- 6.2 Comparison Across α -- 7 Quantization in a Cube -- 7.1 Quantization Error and Its Relation to Weak Covering -- 7.2 Quantization Error for Design 1 -- 7.3 Quantization Error for Design 2a -- 7.4 Quantization Error for Design 2b -- 7.5 Accuracy of Approximations for Quantization Error and the δ-Effect -- 8 Comparative Numerical Studies of Covering Properties for Several Designs -- 8.1 Covering Comparisons -- 8.2 Quantization Comparisons -- 9 Covering and Quantization in the d-Simplex -- 9.1 Characteristics of Interest -- 9.2 Numerical Investigation of the δ-Effect for d-Simplex -- 10 Appendix: An Auxiliary Lemma -- References -- Finding Effective SAT Partitionings Via Black-Box Optimization -- 1 Introduction -- 2 Preliminaries -- 2.1 Boolean Satisfiability Problem (SAT) -- 2.2 SAT-Based Cryptanalysis -- 3 Decomposition Sets and Backdoors in SAT with Application to Inversion of Discrete Functions -- 3.1 On Interconnection Between Plain Partitionings and Cryptographic Attacks -- 3.2 Using Monte Carlo Method to Estimate Runtime of SAT-Based Guess-and-Determine Attacks -- 4 Practical Aspects of Evaluating Effectiveness of SAT Partitionings -- 4.1 Narrowing Search Space to SUPBS -- 4.2 Applications of Incremental SAT Solving -- 4.3 Finding Partitionings via Incremental SAT -- 5 Employed Optimization Algorithms -- 6 Experimental Results -- 6.1 Considered Problems -- 6.2 Implementations of Objective Functions -- 6.3 Finding Effective SAT Partitionings.
6.4 Solving Hard SAT Instances via Found Partitionings.
Record Nr. UNINA-9910483695503321
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui