top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
The ACM journal of experimental algorithmics
The ACM journal of experimental algorithmics
Pubbl/distr/stampa New York, : ACM
Disciplina 004
Soggetto topico Computer algorithms
Data structures (Computer science)
Algorithms
Algorismes
Algorismes computacionals
Estructures de dades (Informàtica)
Soggetto genere / forma Periodicals.
Revistes electròniques.
Formato Materiale a stampa
Livello bibliografico Periodico
Lingua di pubblicazione eng
Altri titoli varianti Journal of experimental algorithmics
JEA
ACM JEA
Association for Computing Machinery journal of experimental algorithmics
Record Nr. UNINA-9910376057303321
New York, : ACM
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advances in Bias and Fairness in Information Retrieval : 4th International Workshop, BIAS 2023, Dublin, Ireland, April 2, 2023, Revised Selected Papers / / edited by Ludovico Boratto, Stefano Faralli, Mirko Marras, Giovanni Stilo
Advances in Bias and Fairness in Information Retrieval : 4th International Workshop, BIAS 2023, Dublin, Ireland, April 2, 2023, Revised Selected Papers / / edited by Ludovico Boratto, Stefano Faralli, Mirko Marras, Giovanni Stilo
Autore Boratto Ludovico
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (187 pages)
Disciplina 025.524
Altri autori (Persone) FaralliStefano
MarrasMirko
StiloGiovanni
Collana Communications in Computer and Information Science
Soggetto topico Computer engineering
Computer networks
Artificial intelligence
Electronic commerce
Computer Engineering and Networks
Artificial Intelligence
e-Commerce and e-Business
Aprenentatge automàtic
Xarxes neuronals (Informàtica)
Intel·ligència artificial
Algorismes
Soggetto genere / forma Congressos
Llibres electrònics
ISBN 9783031372490
3031372492
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto A Study on Accuracy, Miscalibration, and Popularity Bias in Recommendations -- Measuring Bias in Multimodal Models: Multimodal Composite Association Score -- Evaluating Fairness Metrics -- Utilizing Implicit Feedback for User Mainstreaminess Evaluation and Bias Detection in Recommender Systems -- Preserving Utility in Fair Top-k Ranking with Intersectional Bias -- Mitigating Position Bias in Hotels Recommender Systems -- Improving Recommender System Diversity with Variational Autoencoders -- Addressing Biases in the Texts using an End-to-End Pipeline Approach -- Bootless Application of Greedy Re-ranking Algorithms in Fair Neural Team Formation -- How do you feel? Information Retrieval in Psychotherapy and Fair Ranking Assessment -- Understanding Search Behavior Bias in Wikipedia -- Do you MIND? Reflections on the MIND dataset for research on diversity in news recommendations -- Detecting and Measuring Social Bias of Arabic Generative Models in the Context of Search and Recommendation -- What are we missing in algorithmic fairness? Discussing open challenges for fairness analysis in user profiling with Graph Neural Networks.
Record Nr. UNINA-9910734876903321
Boratto Ludovico  
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Algebraic Graph Algorithms : A Practical Guide Using Python / / by K. Erciyes
Algebraic Graph Algorithms : A Practical Guide Using Python / / by K. Erciyes
Autore Erciyes Kayhan
Edizione [1st ed. 2021.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2021
Descrizione fisica 1 online resource (229 pages)
Disciplina 511.5
Collana Undergraduate Topics in Computer Science
Soggetto topico Computer science
Computer science - Mathematics
Discrete mathematics
Theory of Computation
Discrete Mathematics in Computer Science
Mathematical Applications in Computer Science
Python (Llenguatge de programació)
Algorismes
Àlgebra
Soggetto genere / forma Llibres electrònics
ISBN 9783030878863
9783030878856
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. Introduction -- 2. Graphs, Matrices and Matroids -- 3. Parallel Matrix Algorithm Kernel -- 4. Basic Graph Algorithms -- 5. Connectivity, Matching and Matroids -- 6. Subgraph Search -- 7. Analysis of Large Graphs -- 8. Clustering in Complex Networks -- 9. Kronecker Graphs -- 10. Sample Algorithms for Complex Networks.
Record Nr. UNINA-9910510574003321
Erciyes Kayhan  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Algorithm Portfolios [[electronic resource] ] : Advances, Applications, and Challenges / / by Dimitris Souravlias, Konstantinos E. Parsopoulos, Ilias S. Kotsireas, Panos M. Pardalos
Algorithm Portfolios [[electronic resource] ] : Advances, Applications, and Challenges / / by Dimitris Souravlias, Konstantinos E. Parsopoulos, Ilias S. Kotsireas, Panos M. Pardalos
Autore Souravlias Dimitris
Edizione [1st ed. 2021.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2021
Descrizione fisica 1 online resource (xiv, 92 pages) : illustrations
Disciplina 518.1
Collana SpringerBriefs in Optimization
Soggetto topico Operations research
Management science
Algorithms
Microprogramming
Discrete mathematics
Operations Research, Management Science
Control Structures and Microprogramming
Discrete Mathematics
Algorismes
Optimització matemàtica
Soggetto genere / forma Llibres electrònics
ISBN 3-030-68514-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. Metaheuristic optimization algorithms -- 2. Algorithm portfolios -- 3. Selection of constituent algorithms -- 4. Allocation of computation resources -- 5. Sequential and parallel models -- 6. Recent applications -- 7. Epilogue -- References.
Record Nr. UNISA-996466562303316
Souravlias Dimitris  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2021
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Algorithm Portfolios : Advances, Applications, and Challenges / / by Dimitris Souravlias, Konstantinos E. Parsopoulos, Ilias S. Kotsireas, Panos M. Pardalos
Algorithm Portfolios : Advances, Applications, and Challenges / / by Dimitris Souravlias, Konstantinos E. Parsopoulos, Ilias S. Kotsireas, Panos M. Pardalos
Autore Souravlias Dimitris
Edizione [1st ed. 2021.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2021
Descrizione fisica 1 online resource (xiv, 92 pages) : illustrations
Disciplina 518.1
Collana SpringerBriefs in Optimization
Soggetto topico Operations research
Management science
Algorithms
Microprogramming
Discrete mathematics
Operations Research, Management Science
Control Structures and Microprogramming
Discrete Mathematics
Algorismes
Optimització matemàtica
Soggetto genere / forma Llibres electrònics
ISBN 3-030-68514-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. Metaheuristic optimization algorithms -- 2. Algorithm portfolios -- 3. Selection of constituent algorithms -- 4. Allocation of computation resources -- 5. Sequential and parallel models -- 6. Recent applications -- 7. Epilogue -- References.
Record Nr. UNINA-9910484845003321
Souravlias Dimitris  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Algorithmic Game Theory : 17th International Symposium, SAGT 2024, Amsterdam, The Netherlands, September 3–6, 2024, Proceedings / / edited by Guido Schäfer, Carmine Ventre
Algorithmic Game Theory : 17th International Symposium, SAGT 2024, Amsterdam, The Netherlands, September 3–6, 2024, Proceedings / / edited by Guido Schäfer, Carmine Ventre
Autore Schäfer Guido
Edizione [1st ed. 2024.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024
Descrizione fisica 1 online resource (549 pages)
Disciplina 003.3
Altri autori (Persone) VentreCarmine
Collana Lecture Notes in Computer Science
Soggetto topico Computer simulation
Data structures (Computer science)
Information theory
Application software
Artificial intelligence
Algorithms
Computer networks
Computer Modelling
Data Structures and Information Theory
Computer and Information Systems Applications
Artificial Intelligence
Design and Analysis of Algorithms
Computer Communication Networks
Algorismes
Programari d'aplicació
Intel·ligència artificial
Xarxes d'ordinadors
Simulació per ordinador
Estructures de dades (Informàtica)
Soggetto genere / forma Congressos
Llibres electrònics
ISBN 3-031-71033-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto -- The Computational Complexity of the Housing Market. -- Ex-post Stability under Two-Sided Matching: Complexity and Characterization. -- Approval-Based Committee Voting under Uncertainty. -- Matching. -- Structural and Algorithmic Results for Stable Cycles and Partitions in the Roommates Problem. -- Online Matching with High Probability. -- The Team Order Problem: Maximizing the Probability of Matching Being Large Enough. -- Fair Division and Resource Allocation. -- Fair Division of Chores with Budget Constraints. -- Fair Division with Interdependent Values. -- Fair Division with Bounded Sharing: Binary and Non-Degenerate Valuations. -- Incentives in Dominant Resource Fair Allocation under Dynamic Demands. -- Mechanism Design. -- Agent-Constrained Truthful Facility Location Games. -- The k-Facility Location Problem Via Optimal Transport: A Bayesian Study of the Percentile Mechanisms. -- Discrete Single-Parameter Optimal Auction Design. -- Estimating the Expected Social Welfare and Cost of Random Serial Dictatorship. -- Game Theory and Repeated Games. -- Swim Till You Sink: Computing the Limit of a Game. -- The Investment Management Game: Extending the Scope of the Notion of Core. -- Edge-Dominance Games on Graphs. -- Playing Repeated Games with Sublinear Randomness. -- Pricing, Revenue, and Regulation. -- Mind the Revenue Gap: On the Performance of Approximation Mechanisms under Budget Constraints. -- Sublogarithmic Approximation for Tollbooth Pricing on a Cactus. -- To Regulate or Not to Regulate: Using Revenue Maximization Tools to Maximize Consumer Utility. -- Balancing Participation and Decentralization in Proof-of-Stake Cryptocurrencies. -- Matroid Theory in Game Theory. -- Price of Anarchy in Paving Matroid Congestion Games. -- Price of Anarchy for Graphic Matroid Congestion Games. -- Non-Adaptive Matroid Prophet Inequalities. -- Matroid Bayesian Online Selection. -- Information Sharing and Decision Making. -- Prediction-Sharing During Training and Inference. -- Calibrated Recommendations for Users with Decaying Attention. -- Matrix Rationalization via Partial Orders. -- Computational Complexity and Resource Allocation. -- k-Times Bin-Packing and its Application to Fair Electricity Distribution. -- Condorcet Markets. -- Complexity of Round-Robin Allocation with Potentially Noisy Queries.
Record Nr. UNINA-9910886077403321
Schäfer Guido  
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Algorithmic learning in a random world / / Vladimir Vovk, Alexander Gammerman, and Glenn Shafer
Algorithmic learning in a random world / / Vladimir Vovk, Alexander Gammerman, and Glenn Shafer
Autore Vovk Vladimir <1960->
Edizione [2nd ed.]
Pubbl/distr/stampa Cham, Switzerland : , : Springer International Publishing, , [2022]
Descrizione fisica 1 online resource (490 pages)
Disciplina 518.1
Soggetto topico Algorithms
Algorithms - Study and teaching
Teoria de la predicció
Algorismes
Processos estocàstics
Soggetto genere / forma Llibres electrònics
ISBN 3-031-06649-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Contents -- Preface to the Second Edition -- Preface to the First Edition -- Notation and Abbreviations -- Sets, Bags, and Sequences -- Stochastics -- Machine Learning -- Programming -- Confidence Prediction -- Other Notations -- Abbreviations -- 1 Introduction -- 1.1 Machine Learning -- 1.1.1 Learning Under Randomness -- 1.1.2 Learning Under Unconstrained Randomness -- 1.2 A Shortcoming of Statistical Learning Theory -- 1.2.1 The Hold-Out Estimate of Confidence -- 1.2.2 The Contribution of This Book -- 1.3 The Online Framework -- 1.3.1 Online Learning -- 1.3.2 Online/Offline Compromises -- 1.3.3 One-Off and Offline Learning -- 1.3.4 Induction, Transduction, and the Online Framework -- 1.4 Conformal Prediction -- 1.4.1 Nested Prediction Sets -- 1.4.2 Validity -- 1.4.3 Efficiency -- 1.4.4 Conditionality -- 1.4.5 Flexibility of Conformal Predictors -- 1.5 Probabilistic Prediction Under Unconstrained Randomness -- 1.5.1 Universally Consistent Probabilistic Predictor -- 1.5.2 Probabilistic Prediction Using a Finite Dataset -- 1.5.3 Venn Prediction -- 1.5.4 Conformal Predictive Distributions -- 1.6 Beyond Randomness -- 1.6.1 Testing Randomness -- 1.6.2 Online Compression Models -- 1.7 Context -- Part I Set Prediction -- 2 Conformal Prediction: General Case and Regression -- 2.1 Confidence Predictors -- 2.1.1 Assumptions -- 2.1.2 Simple Predictors and Confidence Predictors -- 2.1.3 Validity -- 2.1.4 Randomized Confidence Predictors -- 2.1.5 Confidence Predictors Over a Finite Horizon -- 2.1.6 One-Off and Offline Confidence Predictors -- 2.2 Conformal Predictors -- 2.2.1 Bags -- 2.2.2 Nonconformity and Conformity -- 2.2.3 p-Values -- 2.2.4 Definition of Conformal Predictors -- 2.2.5 Validity -- 2.2.6 Smoothed Conformal Predictors -- 2.2.7 Finite-Horizon Conformal Prediction -- 2.2.8 One-Off and Offline Conformal Predictors.
2.2.9 General Schemes for Defining Nonconformity -- Conformity to a Bag -- Conformity to a Property -- 2.2.10 Deleted Conformity Measures -- 2.3 Conformalized Ridge Regression -- 2.3.1 Least Squares and Ridge Regression -- 2.3.2 Basic CRR -- 2.3.3 Two Modifications -- 2.3.4 Dual Form Ridge Regression -- 2.4 Conformalized Nearest Neighbours Regression -- 2.5 Efficiency of Conformalized Ridge Regression -- 2.5.1 Hard and Soft Models -- 2.5.2 Bayesian Ridge Regression -- 2.5.3 Efficiency of CRR -- 2.6 Are There Other Ways to Achieve Validity? -- 2.7 Conformal Transducers -- 2.7.1 Definitions and Properties of Validity -- 2.7.2 Normalized Confidence Predictors and Confidence Transducers -- 2.8 Proofs -- 2.8.1 Proof of Theorem 2.2 -- 2.8.2 Proof of Theorem 2.7 -- Regularizing the Rays in Upper CRR -- Proof Proper -- 2.8.3 Proof of Theorem 2.10 -- 2.9 Context -- 2.9.1 Exchangeability vs Randomness -- 2.9.2 Conformal Prediction -- 2.9.3 Two Equivalent Definitions of Nonconformity Measures -- 2.9.4 The Two Meanings of Conformity in Conformal Prediction -- 2.9.5 Examples of Nonconformity Measures -- 2.9.6 Kernel Methods -- 2.9.7 Burnaev-Wasserman Programme -- 2.9.8 Completeness Results -- 3 Conformal Prediction: Classification and General Case -- 3.1 Criteria of Efficiency for Conformal Prediction -- 3.1.1 Basic Criteria -- 3.1.2 Other Prior Criteria -- 3.1.3 Observed Criteria -- 3.1.4 Idealised Setting -- 3.1.5 Conditionally Proper Criteria of Efficiency -- 3.1.6 Criteria of Efficiency that Are not Conditionally Proper -- 3.1.7 Discussion -- 3.2 More Ways of Computing Nonconformity Scores -- 3.2.1 Nonconformity Scores from Nearest Neighbours -- 3.2.2 Nonconformity Scores from Support Vector Machines -- 3.2.3 Reducing Classification Problems to the Binary Case -- 3.3 Weak Teachers -- 3.3.1 Imperfectly Taught Predictors -- 3.3.2 Weak Validity.
3.3.3 Strong Validity -- 3.3.4 Iterated Logarithm Validity -- 3.3.5 Efficiency -- 3.4 Proofs -- 3.4.1 Proofs for Sect.3.1 -- Proof of Theorem 3.1 -- Proof of Theorem 3.2 -- Proof of Theorem 3.3 -- Proof of Theorem 3.4 -- 3.4.2 Proofs for Sect.3.3 -- Proof of Theorem 3.7, Part I -- Proof of Theorem 3.7, Part II -- Proof of Theorem 3.9 -- Proof of Theorem 3.13 -- 3.5 Context -- 3.5.1 Criteria of Efficiency -- 3.5.2 Examples of Nonconformity Measures -- 3.5.3 Universal Predictors -- 3.5.4 Weak Teachers -- 4 Modifications of Conformal Predictors -- 4.1 The Topics of This Chapter -- 4.2 Inductive Conformal Predictors -- 4.2.1 Inductive Conformal Predictors in the Online Mode -- 4.2.2 Inductive Conformal Predictors in the Offline and Semi-Online Modes -- 4.2.3 The General Scheme for Defining Nonconformity -- 4.2.4 Normalization and Hyper-Parameter Selection -- 4.3 Further Ways of Computing Nonconformity Scores -- 4.3.1 Nonconformity Measures Considered Earlier -- 4.3.2 De-Bayesing -- 4.3.3 Neural Networks and Other Multiclass Scoring Classifiers -- 4.3.4 Decision Trees and Random Forests -- 4.3.5 Binary Scoring Classifiers -- 4.3.6 Logistic Regression -- 4.3.7 Regression and Bootstrap -- 4.3.8 Training Inductive Conformal Predictors -- 4.4 Cross-Conformal Prediction -- 4.4.1 Definition of Cross-Conformal Predictors -- 4.4.2 Computational Efficiency -- 4.4.3 Validity and Lack Thereof for Cross-Conformal Predictors -- 4.5 Transductive Conformal Predictors -- 4.5.1 Definition -- 4.5.2 Validity -- 4.6 Conditional Conformal Predictors -- 4.6.1 One-Off Conditional Conformal Predictors -- 4.6.2 Mondrian Conformal Predictors and Transducers -- 4.6.3 Using Mondrian Conformal Transducers for Prediction -- 4.6.4 Generality of Mondrian Taxonomies -- 4.6.5 Conformal Prediction -- 4.6.6 Inductive Conformal Prediction -- 4.6.7 Label-Conditional Conformal Prediction.
4.6.8 Object-Conditional Conformal Prediction -- 4.7 Training-Conditional Validity -- 4.7.1 Conditional Validity -- 4.7.2 Training-Conditional Validity of Inductive Conformal Predictors -- 4.8 Context -- 4.8.1 Computationally Efficient Hedged Prediction -- 4.8.2 Specific Learning Algorithms and Nonconformity Measures -- 4.8.3 Training Conformal Predictors -- 4.8.4 Cross-Conformal Predictors and Alternative Approaches -- 4.8.5 Transductive Conformal Predictors -- 4.8.6 Conditional Conformal Predictors -- Part II Probabilistic Prediction -- 5 Impossibility Results -- 5.1 Introduction -- 5.2 Diverse Datasets -- 5.3 Impossibility of Estimation of Probabilities -- 5.3.1 Binary Case -- 5.3.2 Multiclass Case -- 5.4 Proof of Theorem 5.2 -- 5.4.1 Probability Estimators and Statistical Tests -- 5.4.2 Complete Statistical Tests -- 5.4.3 Restatement of the Theorem in Terms of Statistical Tests -- 5.4.4 The Proof of the Theorem -- 5.5 Context -- 5.5.1 More Advanced Results -- 5.5.2 Density Estimation, Regression Estimation, and Regression with Deterministic Objects -- 5.5.3 Universal Probabilistic Predictors -- 5.5.4 Algorithmic Randomness Perspective -- 6 Probabilistic Classification: Venn Predictors -- 6.1 Introduction -- 6.2 Venn Predictors -- 6.2.1 Validity of One-Off Venn Predictors -- 6.2.2 Are There Other Ways to Achieve Perfect Calibration? -- 6.2.3 Venn Prediction with Binary Labels and No Objects -- 6.3 A Universal Venn Predictor -- 6.4 Venn-Abers Predictors -- 6.4.1 Full Venn-Abers Predictors -- 6.4.2 Inductive Venn-Abers Predictors -- 6.4.3 Probabilistic Predictors Derived from Venn Predictors -- 6.4.4 Cross Venn-Abers Predictors -- 6.4.5 Merging Multiprobability Predictions into a Probabilistic Prediction -- 6.5 Proofs -- 6.5.1 Proof of Theorem 6.4 -- 6.5.2 PAVA and the Proof of Lemma 6.6 -- 6.5.3 Proof of Proposition 6.7 -- 6.6 Context.
6.6.1 Risk and Uncertainty -- 6.6.2 John Venn, Frequentist Probability, and the Problem of the Reference Class -- 6.6.3 Online Venn Predictors Are Calibrated -- 6.6.4 Isotonic Regression -- 7 Probabilistic Regression: Conformal Predictive Systems -- 7.1 Introduction -- 7.2 Conformal Predictive Systems -- 7.2.1 Basic Definitions -- 7.2.2 Properties of Validity -- 7.2.3 Simplest Example: Monotonic Conformity Measures -- 7.2.4 Criterion of Being a CPS -- 7.3 Least Squares Prediction Machine -- 7.3.1 Three Kinds of LSPM -- 7.3.2 The Studentized LSPM in an Explicit Form -- 7.3.3 The Offline Version of the Studentized LSPM -- 7.3.4 The Ordinary LSPM -- 7.3.5 Asymptotic Efficiency of the LSPM -- 7.3.6 Illustrations -- 7.4 Kernel Ridge Regression Prediction Machine -- 7.4.1 Explicit Forms of the KRRPM -- 7.4.2 Limitation of the KRRPM -- 7.5 Nearest Neighbours Prediction Machine -- 7.6 Universal Conformal Predictive Systems -- 7.6.1 Definitions -- 7.6.2 Universal Conformal Predictive Systems -- 7.6.3 Universal Deterministic Predictive Systems -- 7.7 Applications to Decision Making -- 7.7.1 A Standard Problem of Decision Making -- 7.7.2 Examples -- 7.7.3 Asymptotically Efficient Decision Making -- 7.7.4 Dangers of Overfitting -- 7.8 Computationally Efficient Versions -- 7.8.1 Inductive Conformal Predictive Systems -- 7.8.2 Cross-Conformal Predictive Distributions -- 7.8.3 Practical Aspects -- 7.8.4 Beyond Randomness -- 7.9 Proofs and Calculations -- 7.9.1 Proofs for Sect.7.2 -- Proof of Lemma 7.1 -- Proof of Proposition 7.2 -- 7.9.2 Proofs for Sect.7.3 -- Proof of Proposition 7.4 -- Proof of Proposition 7.5 -- Proof of Proposition 7.6 -- Proof of Proposition 7.7 -- Proof of Proposition 7.8 -- Computations for the Studentized LSPM -- The Ordinary LSPM -- Proof of (7.22) -- 7.9.3 Proof of Theorem 7.16 -- 7.9.4 Proofs for Sect.7.8 -- Proof of Proposition 7.17.
Proof of Proposition 7.18.
Record Nr. UNISA-996503551103316
Vovk Vladimir <1960->  
Cham, Switzerland : , : Springer International Publishing, , [2022]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Algorithmic learning in a random world / / Vladimir Vovk, Alexander Gammerman, and Glenn Shafer
Algorithmic learning in a random world / / Vladimir Vovk, Alexander Gammerman, and Glenn Shafer
Autore Vovk Vladimir <1960->
Edizione [2nd ed.]
Pubbl/distr/stampa Cham, Switzerland : , : Springer International Publishing, , [2022]
Descrizione fisica 1 online resource (490 pages)
Disciplina 518.1
Soggetto topico Algorithms
Algorithms - Study and teaching
Teoria de la predicció
Algorismes
Processos estocàstics
Soggetto genere / forma Llibres electrònics
ISBN 3-031-06649-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Contents -- Preface to the Second Edition -- Preface to the First Edition -- Notation and Abbreviations -- Sets, Bags, and Sequences -- Stochastics -- Machine Learning -- Programming -- Confidence Prediction -- Other Notations -- Abbreviations -- 1 Introduction -- 1.1 Machine Learning -- 1.1.1 Learning Under Randomness -- 1.1.2 Learning Under Unconstrained Randomness -- 1.2 A Shortcoming of Statistical Learning Theory -- 1.2.1 The Hold-Out Estimate of Confidence -- 1.2.2 The Contribution of This Book -- 1.3 The Online Framework -- 1.3.1 Online Learning -- 1.3.2 Online/Offline Compromises -- 1.3.3 One-Off and Offline Learning -- 1.3.4 Induction, Transduction, and the Online Framework -- 1.4 Conformal Prediction -- 1.4.1 Nested Prediction Sets -- 1.4.2 Validity -- 1.4.3 Efficiency -- 1.4.4 Conditionality -- 1.4.5 Flexibility of Conformal Predictors -- 1.5 Probabilistic Prediction Under Unconstrained Randomness -- 1.5.1 Universally Consistent Probabilistic Predictor -- 1.5.2 Probabilistic Prediction Using a Finite Dataset -- 1.5.3 Venn Prediction -- 1.5.4 Conformal Predictive Distributions -- 1.6 Beyond Randomness -- 1.6.1 Testing Randomness -- 1.6.2 Online Compression Models -- 1.7 Context -- Part I Set Prediction -- 2 Conformal Prediction: General Case and Regression -- 2.1 Confidence Predictors -- 2.1.1 Assumptions -- 2.1.2 Simple Predictors and Confidence Predictors -- 2.1.3 Validity -- 2.1.4 Randomized Confidence Predictors -- 2.1.5 Confidence Predictors Over a Finite Horizon -- 2.1.6 One-Off and Offline Confidence Predictors -- 2.2 Conformal Predictors -- 2.2.1 Bags -- 2.2.2 Nonconformity and Conformity -- 2.2.3 p-Values -- 2.2.4 Definition of Conformal Predictors -- 2.2.5 Validity -- 2.2.6 Smoothed Conformal Predictors -- 2.2.7 Finite-Horizon Conformal Prediction -- 2.2.8 One-Off and Offline Conformal Predictors.
2.2.9 General Schemes for Defining Nonconformity -- Conformity to a Bag -- Conformity to a Property -- 2.2.10 Deleted Conformity Measures -- 2.3 Conformalized Ridge Regression -- 2.3.1 Least Squares and Ridge Regression -- 2.3.2 Basic CRR -- 2.3.3 Two Modifications -- 2.3.4 Dual Form Ridge Regression -- 2.4 Conformalized Nearest Neighbours Regression -- 2.5 Efficiency of Conformalized Ridge Regression -- 2.5.1 Hard and Soft Models -- 2.5.2 Bayesian Ridge Regression -- 2.5.3 Efficiency of CRR -- 2.6 Are There Other Ways to Achieve Validity? -- 2.7 Conformal Transducers -- 2.7.1 Definitions and Properties of Validity -- 2.7.2 Normalized Confidence Predictors and Confidence Transducers -- 2.8 Proofs -- 2.8.1 Proof of Theorem 2.2 -- 2.8.2 Proof of Theorem 2.7 -- Regularizing the Rays in Upper CRR -- Proof Proper -- 2.8.3 Proof of Theorem 2.10 -- 2.9 Context -- 2.9.1 Exchangeability vs Randomness -- 2.9.2 Conformal Prediction -- 2.9.3 Two Equivalent Definitions of Nonconformity Measures -- 2.9.4 The Two Meanings of Conformity in Conformal Prediction -- 2.9.5 Examples of Nonconformity Measures -- 2.9.6 Kernel Methods -- 2.9.7 Burnaev-Wasserman Programme -- 2.9.8 Completeness Results -- 3 Conformal Prediction: Classification and General Case -- 3.1 Criteria of Efficiency for Conformal Prediction -- 3.1.1 Basic Criteria -- 3.1.2 Other Prior Criteria -- 3.1.3 Observed Criteria -- 3.1.4 Idealised Setting -- 3.1.5 Conditionally Proper Criteria of Efficiency -- 3.1.6 Criteria of Efficiency that Are not Conditionally Proper -- 3.1.7 Discussion -- 3.2 More Ways of Computing Nonconformity Scores -- 3.2.1 Nonconformity Scores from Nearest Neighbours -- 3.2.2 Nonconformity Scores from Support Vector Machines -- 3.2.3 Reducing Classification Problems to the Binary Case -- 3.3 Weak Teachers -- 3.3.1 Imperfectly Taught Predictors -- 3.3.2 Weak Validity.
3.3.3 Strong Validity -- 3.3.4 Iterated Logarithm Validity -- 3.3.5 Efficiency -- 3.4 Proofs -- 3.4.1 Proofs for Sect.3.1 -- Proof of Theorem 3.1 -- Proof of Theorem 3.2 -- Proof of Theorem 3.3 -- Proof of Theorem 3.4 -- 3.4.2 Proofs for Sect.3.3 -- Proof of Theorem 3.7, Part I -- Proof of Theorem 3.7, Part II -- Proof of Theorem 3.9 -- Proof of Theorem 3.13 -- 3.5 Context -- 3.5.1 Criteria of Efficiency -- 3.5.2 Examples of Nonconformity Measures -- 3.5.3 Universal Predictors -- 3.5.4 Weak Teachers -- 4 Modifications of Conformal Predictors -- 4.1 The Topics of This Chapter -- 4.2 Inductive Conformal Predictors -- 4.2.1 Inductive Conformal Predictors in the Online Mode -- 4.2.2 Inductive Conformal Predictors in the Offline and Semi-Online Modes -- 4.2.3 The General Scheme for Defining Nonconformity -- 4.2.4 Normalization and Hyper-Parameter Selection -- 4.3 Further Ways of Computing Nonconformity Scores -- 4.3.1 Nonconformity Measures Considered Earlier -- 4.3.2 De-Bayesing -- 4.3.3 Neural Networks and Other Multiclass Scoring Classifiers -- 4.3.4 Decision Trees and Random Forests -- 4.3.5 Binary Scoring Classifiers -- 4.3.6 Logistic Regression -- 4.3.7 Regression and Bootstrap -- 4.3.8 Training Inductive Conformal Predictors -- 4.4 Cross-Conformal Prediction -- 4.4.1 Definition of Cross-Conformal Predictors -- 4.4.2 Computational Efficiency -- 4.4.3 Validity and Lack Thereof for Cross-Conformal Predictors -- 4.5 Transductive Conformal Predictors -- 4.5.1 Definition -- 4.5.2 Validity -- 4.6 Conditional Conformal Predictors -- 4.6.1 One-Off Conditional Conformal Predictors -- 4.6.2 Mondrian Conformal Predictors and Transducers -- 4.6.3 Using Mondrian Conformal Transducers for Prediction -- 4.6.4 Generality of Mondrian Taxonomies -- 4.6.5 Conformal Prediction -- 4.6.6 Inductive Conformal Prediction -- 4.6.7 Label-Conditional Conformal Prediction.
4.6.8 Object-Conditional Conformal Prediction -- 4.7 Training-Conditional Validity -- 4.7.1 Conditional Validity -- 4.7.2 Training-Conditional Validity of Inductive Conformal Predictors -- 4.8 Context -- 4.8.1 Computationally Efficient Hedged Prediction -- 4.8.2 Specific Learning Algorithms and Nonconformity Measures -- 4.8.3 Training Conformal Predictors -- 4.8.4 Cross-Conformal Predictors and Alternative Approaches -- 4.8.5 Transductive Conformal Predictors -- 4.8.6 Conditional Conformal Predictors -- Part II Probabilistic Prediction -- 5 Impossibility Results -- 5.1 Introduction -- 5.2 Diverse Datasets -- 5.3 Impossibility of Estimation of Probabilities -- 5.3.1 Binary Case -- 5.3.2 Multiclass Case -- 5.4 Proof of Theorem 5.2 -- 5.4.1 Probability Estimators and Statistical Tests -- 5.4.2 Complete Statistical Tests -- 5.4.3 Restatement of the Theorem in Terms of Statistical Tests -- 5.4.4 The Proof of the Theorem -- 5.5 Context -- 5.5.1 More Advanced Results -- 5.5.2 Density Estimation, Regression Estimation, and Regression with Deterministic Objects -- 5.5.3 Universal Probabilistic Predictors -- 5.5.4 Algorithmic Randomness Perspective -- 6 Probabilistic Classification: Venn Predictors -- 6.1 Introduction -- 6.2 Venn Predictors -- 6.2.1 Validity of One-Off Venn Predictors -- 6.2.2 Are There Other Ways to Achieve Perfect Calibration? -- 6.2.3 Venn Prediction with Binary Labels and No Objects -- 6.3 A Universal Venn Predictor -- 6.4 Venn-Abers Predictors -- 6.4.1 Full Venn-Abers Predictors -- 6.4.2 Inductive Venn-Abers Predictors -- 6.4.3 Probabilistic Predictors Derived from Venn Predictors -- 6.4.4 Cross Venn-Abers Predictors -- 6.4.5 Merging Multiprobability Predictions into a Probabilistic Prediction -- 6.5 Proofs -- 6.5.1 Proof of Theorem 6.4 -- 6.5.2 PAVA and the Proof of Lemma 6.6 -- 6.5.3 Proof of Proposition 6.7 -- 6.6 Context.
6.6.1 Risk and Uncertainty -- 6.6.2 John Venn, Frequentist Probability, and the Problem of the Reference Class -- 6.6.3 Online Venn Predictors Are Calibrated -- 6.6.4 Isotonic Regression -- 7 Probabilistic Regression: Conformal Predictive Systems -- 7.1 Introduction -- 7.2 Conformal Predictive Systems -- 7.2.1 Basic Definitions -- 7.2.2 Properties of Validity -- 7.2.3 Simplest Example: Monotonic Conformity Measures -- 7.2.4 Criterion of Being a CPS -- 7.3 Least Squares Prediction Machine -- 7.3.1 Three Kinds of LSPM -- 7.3.2 The Studentized LSPM in an Explicit Form -- 7.3.3 The Offline Version of the Studentized LSPM -- 7.3.4 The Ordinary LSPM -- 7.3.5 Asymptotic Efficiency of the LSPM -- 7.3.6 Illustrations -- 7.4 Kernel Ridge Regression Prediction Machine -- 7.4.1 Explicit Forms of the KRRPM -- 7.4.2 Limitation of the KRRPM -- 7.5 Nearest Neighbours Prediction Machine -- 7.6 Universal Conformal Predictive Systems -- 7.6.1 Definitions -- 7.6.2 Universal Conformal Predictive Systems -- 7.6.3 Universal Deterministic Predictive Systems -- 7.7 Applications to Decision Making -- 7.7.1 A Standard Problem of Decision Making -- 7.7.2 Examples -- 7.7.3 Asymptotically Efficient Decision Making -- 7.7.4 Dangers of Overfitting -- 7.8 Computationally Efficient Versions -- 7.8.1 Inductive Conformal Predictive Systems -- 7.8.2 Cross-Conformal Predictive Distributions -- 7.8.3 Practical Aspects -- 7.8.4 Beyond Randomness -- 7.9 Proofs and Calculations -- 7.9.1 Proofs for Sect.7.2 -- Proof of Lemma 7.1 -- Proof of Proposition 7.2 -- 7.9.2 Proofs for Sect.7.3 -- Proof of Proposition 7.4 -- Proof of Proposition 7.5 -- Proof of Proposition 7.6 -- Proof of Proposition 7.7 -- Proof of Proposition 7.8 -- Computations for the Studentized LSPM -- The Ordinary LSPM -- Proof of (7.22) -- 7.9.3 Proof of Theorem 7.16 -- 7.9.4 Proofs for Sect.7.8 -- Proof of Proposition 7.17.
Proof of Proposition 7.18.
Record Nr. UNINA-9910635392203321
Vovk Vladimir <1960->  
Cham, Switzerland : , : Springer International Publishing, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Algorithmic puzzles / / Anany Levitin and Maria Levitin
Algorithmic puzzles / / Anany Levitin and Maria Levitin
Autore Levitin Anany
Edizione [1st ed.]
Pubbl/distr/stampa Oxford ; ; New York, : Oxford University Press, c2011
Descrizione fisica 1 online resource (280 p.)
Disciplina 793.74
Altri autori (Persone) LevitinMaria
Collana Oxford scholarship online
Soggetto topico Mathematical recreations
Algorithms
Algorismes
Trencaclosques
Soggetto genere / forma Llibres electrònics
ISBN 9786613299895
9780197563021
0197563023
9780199911776
0199911770
9781283299893
1283299895
9780199876549
0199876541
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Contents; Preface; Acknowledgments; List of Puzzles; Tutorial Puzzles; Main Section Puzzles; The Epigraph Puzzle: Who said what?; 1. Tutorials; General Strategies for Algorithm Design; Analysis Techniques; 2. Puzzles; Easier Puzzles (#1 to #50); Puzzles of Medium Difficulty (#51 to #110); Harder Puzzles (#111 to #150); 3. Hints; 4. Solutions; References; Design Strategy and Analysis Index; Index of Terms and Names; A; B; C; D; E; F; G; H; I; J; K; L; M; N; O; P; Q; R; S; T; V; W
Record Nr. UNINA-9910960991503321
Levitin Anany  
Oxford ; ; New York, : Oxford University Press, c2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Algorithmica
Algorithmica
Pubbl/distr/stampa New York : , : Springer-Verlag, , 1986-
Disciplina 004
Soggetto topico Electronic data processing
Computer algorithms
Algorithmes
Informatique
Technologie de l'information
Algorithmus
Zeitschrift
Online-Ressource
Datenverarbeitung
Algorismes
Soggetto genere / forma Periodicals.
Zeitschrift
Online-Publikation
Revistes electròniques.
ISSN 1432-0541
Formato Materiale a stampa
Livello bibliografico Periodico
Lingua di pubblicazione eng
Record Nr. UNINA-9910146354403321
New York : , : Springer-Verlag, , 1986-
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui