Branched polymers for enhancing polymer gel strength and toughness (final report) / / Robert H. Lambeth [and four others]
| Branched polymers for enhancing polymer gel strength and toughness (final report) / / Robert H. Lambeth [and four others] |
| Autore | Lambeth Robert H. |
| Pubbl/distr/stampa | Aberdeen Proving Ground, MD : , : Army Research Laboratory, , 2013 |
| Descrizione fisica | 1 online resource (vi, 20 pages) : color illustrations |
| Collana | ARL-TR |
| Soggetto topico |
Polymer colloids
Polymer networks Addition polymerization |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Altri titoli varianti | Branched polymers for enhancing polymer gel strength and toughness |
| Record Nr. | UNINA-9910704424403321 |
Lambeth Robert H.
|
||
| Aberdeen Proving Ground, MD : , : Army Research Laboratory, , 2013 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Handbook of RAFT polymerization [[electronic resource] /] / edited by Christopher Barner-Kowollik
| Handbook of RAFT polymerization [[electronic resource] /] / edited by Christopher Barner-Kowollik |
| Pubbl/distr/stampa | Weinheim, : Wiley-VCH, c2008 |
| Descrizione fisica | 1 online resource (557 p.) |
| Disciplina |
547.28
547/.28 |
| Altri autori (Persone) | Barner-KowollikChristopher |
| Soggetto topico |
Addition polymerization
Polymerization |
| ISBN |
1-281-94700-8
9786611947002 3-527-62275-6 3-527-62276-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Handbook of RAFT Polymerization; Contents; List of Contributors; 1 Introduction; 2 Quantum-Chemical Studies of RAFT Polymerization: Methodology, Structure-Reactivity Correlations and Kinetic Implications; 2.1 Introduction; 2.2 Methodology; 2.3 Computational Modeling of RAFT Kinetics; 2.4 Structure-Reactivity Studies; 2.5 Abbreviations; 3 The Mechanism and Kinetics of the RAFT Process: Overview, Rates, Stabilities, Side Reactions, Product Spectrum and Outstanding Challenges; 3.1 History; 3.2 Preequilibrium Kinetics and Mechanism; 3.3 Main Equilibrium Kinetics and Mechanism
3.4 Mechanisms for Rate Retardation/Inhibition - Outstanding Questions3.5 RAFT Copolymerization: Block and Statistical Copolymers; 3.6 The Kinetics and Mechanism of Star and Graft Polymer Formation Processes; 3.7 Mechanism and Kinetics as a Guide for the Synthetic Polymer Chemist; 4 The RAFT Process as a Kinetic Tool: Accessing Fundamental Parameters of Free Radical Polymerization; 4.1 Introduction; 4.2 Chain-Length-Dependent Termination: A Brief Overview; 4.3 RAFT Chemistry as a Tool for Elucidating the Chain Length Dependence of k(t); 4.4 Chain-Length-Dependent Propagation Rate Coefficients 5 The Radical Chemistry of Thiocarbonylthio Compounds: An Overview5.1 Historical Overview and Early Chemistry; 5.2 The Barton-McCombie Deoxygenation; 5.3 A Minor Mechanistic Controversy; 5.4 A New Degenerative Radical Process; 5.5 Synthetic Routes to Thiocarbonylthio Derivatives; 5.6 Some Synthetic Applications of the Degenerative Radical Transfer to Small Molecules; 5.7 Applications to Controlled Radical Polymerizations; 5.8 Concluding Remarks; 6 RAFT Polymerization in Bulk Monomer or in (Organic) Solution; 6.1 Introduction; 6.2 RAFT Agents; 6.3 RAFT Polymerization 6.4 RAFT Polymerization Conditions6.5 Abbreviations; 7 RAFT Polymerization in Homogeneous Aqueous Media: Initiation Systems, RAFT Agent Stability, Monomers and Polymer Structures; 7.1 Introduction; 7.2 Initiation Systems; 7.3 RAFT Agent Stability; 7.4 Suitable Monomers; 7.5 Examples of Experimental Procedures; 8 RAFT-Mediated Polymerization in Heterogeneous Systems; 8.1 Introduction; 8.2 Effect of C(tr,RAFT) on M(n) and PDI in Homogeneous Systems; 8.3 Raft in Heterogeneous Systems; 8.4 Conclusion; 9 Complex Architecture Design via the RAFT Process: Scope, Strengths and Limitations 9.1 Complex Polymer Architectures9.2 Block Copolymers; 9.3 Star Polymers via RAFT Polymerization; 9.4 Comb Polymers; 9.5 Other Complex Architectures; 9.6 Conclusions; 10 Macromolecular Design by Interchange of Xanthates: Background, Design, Scope and Applications; 10.1 Introduction; 10.2 History of MADIX Polymerization; 10.3 Mechanism of MADIX Polymerization; 10.4 Kinetics of MADIX Polymerization; 10.5 Choice of MADIX Agents; 10.6 Synthesis of MADIX Agents; 10.7 Experimental Conditions in MADIX; 10.8 Monomers Polymerizable by MADIX; 10.9 MADIX Polymerization in Waterborne Dispersed Media 10.10 Macromolecular Engineering by MADIX |
| Record Nr. | UNINA-9910144095003321 |
| Weinheim, : Wiley-VCH, c2008 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Handbook of RAFT polymerization [[electronic resource] /] / edited by Christopher Barner-Kowollik
| Handbook of RAFT polymerization [[electronic resource] /] / edited by Christopher Barner-Kowollik |
| Pubbl/distr/stampa | Weinheim, : Wiley-VCH, c2008 |
| Descrizione fisica | 1 online resource (557 p.) |
| Disciplina |
547.28
547/.28 |
| Altri autori (Persone) | Barner-KowollikChristopher |
| Soggetto topico |
Addition polymerization
Polymerization |
| ISBN |
1-281-94700-8
9786611947002 3-527-62275-6 3-527-62276-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Handbook of RAFT Polymerization; Contents; List of Contributors; 1 Introduction; 2 Quantum-Chemical Studies of RAFT Polymerization: Methodology, Structure-Reactivity Correlations and Kinetic Implications; 2.1 Introduction; 2.2 Methodology; 2.3 Computational Modeling of RAFT Kinetics; 2.4 Structure-Reactivity Studies; 2.5 Abbreviations; 3 The Mechanism and Kinetics of the RAFT Process: Overview, Rates, Stabilities, Side Reactions, Product Spectrum and Outstanding Challenges; 3.1 History; 3.2 Preequilibrium Kinetics and Mechanism; 3.3 Main Equilibrium Kinetics and Mechanism
3.4 Mechanisms for Rate Retardation/Inhibition - Outstanding Questions3.5 RAFT Copolymerization: Block and Statistical Copolymers; 3.6 The Kinetics and Mechanism of Star and Graft Polymer Formation Processes; 3.7 Mechanism and Kinetics as a Guide for the Synthetic Polymer Chemist; 4 The RAFT Process as a Kinetic Tool: Accessing Fundamental Parameters of Free Radical Polymerization; 4.1 Introduction; 4.2 Chain-Length-Dependent Termination: A Brief Overview; 4.3 RAFT Chemistry as a Tool for Elucidating the Chain Length Dependence of k(t); 4.4 Chain-Length-Dependent Propagation Rate Coefficients 5 The Radical Chemistry of Thiocarbonylthio Compounds: An Overview5.1 Historical Overview and Early Chemistry; 5.2 The Barton-McCombie Deoxygenation; 5.3 A Minor Mechanistic Controversy; 5.4 A New Degenerative Radical Process; 5.5 Synthetic Routes to Thiocarbonylthio Derivatives; 5.6 Some Synthetic Applications of the Degenerative Radical Transfer to Small Molecules; 5.7 Applications to Controlled Radical Polymerizations; 5.8 Concluding Remarks; 6 RAFT Polymerization in Bulk Monomer or in (Organic) Solution; 6.1 Introduction; 6.2 RAFT Agents; 6.3 RAFT Polymerization 6.4 RAFT Polymerization Conditions6.5 Abbreviations; 7 RAFT Polymerization in Homogeneous Aqueous Media: Initiation Systems, RAFT Agent Stability, Monomers and Polymer Structures; 7.1 Introduction; 7.2 Initiation Systems; 7.3 RAFT Agent Stability; 7.4 Suitable Monomers; 7.5 Examples of Experimental Procedures; 8 RAFT-Mediated Polymerization in Heterogeneous Systems; 8.1 Introduction; 8.2 Effect of C(tr,RAFT) on M(n) and PDI in Homogeneous Systems; 8.3 Raft in Heterogeneous Systems; 8.4 Conclusion; 9 Complex Architecture Design via the RAFT Process: Scope, Strengths and Limitations 9.1 Complex Polymer Architectures9.2 Block Copolymers; 9.3 Star Polymers via RAFT Polymerization; 9.4 Comb Polymers; 9.5 Other Complex Architectures; 9.6 Conclusions; 10 Macromolecular Design by Interchange of Xanthates: Background, Design, Scope and Applications; 10.1 Introduction; 10.2 History of MADIX Polymerization; 10.3 Mechanism of MADIX Polymerization; 10.4 Kinetics of MADIX Polymerization; 10.5 Choice of MADIX Agents; 10.6 Synthesis of MADIX Agents; 10.7 Experimental Conditions in MADIX; 10.8 Monomers Polymerizable by MADIX; 10.9 MADIX Polymerization in Waterborne Dispersed Media 10.10 Macromolecular Engineering by MADIX |
| Record Nr. | UNINA-9910829925303321 |
| Weinheim, : Wiley-VCH, c2008 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Handbook of RAFT polymerization / / edited by Christopher Barner-Kowollik
| Handbook of RAFT polymerization / / edited by Christopher Barner-Kowollik |
| Pubbl/distr/stampa | Weinheim, : Wiley-VCH, c2008 |
| Descrizione fisica | 1 online resource (557 p.) |
| Disciplina |
547.28
547/.28 |
| Altri autori (Persone) | Barner-KowollikChristopher |
| Soggetto topico |
Addition polymerization
Polymerization |
| ISBN |
9786611947002
9781281947000 1281947008 9783527622757 3527622756 9783527622764 3527622764 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Handbook of RAFT Polymerization; Contents; List of Contributors; 1 Introduction; 2 Quantum-Chemical Studies of RAFT Polymerization: Methodology, Structure-Reactivity Correlations and Kinetic Implications; 2.1 Introduction; 2.2 Methodology; 2.3 Computational Modeling of RAFT Kinetics; 2.4 Structure-Reactivity Studies; 2.5 Abbreviations; 3 The Mechanism and Kinetics of the RAFT Process: Overview, Rates, Stabilities, Side Reactions, Product Spectrum and Outstanding Challenges; 3.1 History; 3.2 Preequilibrium Kinetics and Mechanism; 3.3 Main Equilibrium Kinetics and Mechanism
3.4 Mechanisms for Rate Retardation/Inhibition - Outstanding Questions3.5 RAFT Copolymerization: Block and Statistical Copolymers; 3.6 The Kinetics and Mechanism of Star and Graft Polymer Formation Processes; 3.7 Mechanism and Kinetics as a Guide for the Synthetic Polymer Chemist; 4 The RAFT Process as a Kinetic Tool: Accessing Fundamental Parameters of Free Radical Polymerization; 4.1 Introduction; 4.2 Chain-Length-Dependent Termination: A Brief Overview; 4.3 RAFT Chemistry as a Tool for Elucidating the Chain Length Dependence of k(t); 4.4 Chain-Length-Dependent Propagation Rate Coefficients 5 The Radical Chemistry of Thiocarbonylthio Compounds: An Overview5.1 Historical Overview and Early Chemistry; 5.2 The Barton-McCombie Deoxygenation; 5.3 A Minor Mechanistic Controversy; 5.4 A New Degenerative Radical Process; 5.5 Synthetic Routes to Thiocarbonylthio Derivatives; 5.6 Some Synthetic Applications of the Degenerative Radical Transfer to Small Molecules; 5.7 Applications to Controlled Radical Polymerizations; 5.8 Concluding Remarks; 6 RAFT Polymerization in Bulk Monomer or in (Organic) Solution; 6.1 Introduction; 6.2 RAFT Agents; 6.3 RAFT Polymerization 6.4 RAFT Polymerization Conditions6.5 Abbreviations; 7 RAFT Polymerization in Homogeneous Aqueous Media: Initiation Systems, RAFT Agent Stability, Monomers and Polymer Structures; 7.1 Introduction; 7.2 Initiation Systems; 7.3 RAFT Agent Stability; 7.4 Suitable Monomers; 7.5 Examples of Experimental Procedures; 8 RAFT-Mediated Polymerization in Heterogeneous Systems; 8.1 Introduction; 8.2 Effect of C(tr,RAFT) on M(n) and PDI in Homogeneous Systems; 8.3 Raft in Heterogeneous Systems; 8.4 Conclusion; 9 Complex Architecture Design via the RAFT Process: Scope, Strengths and Limitations 9.1 Complex Polymer Architectures9.2 Block Copolymers; 9.3 Star Polymers via RAFT Polymerization; 9.4 Comb Polymers; 9.5 Other Complex Architectures; 9.6 Conclusions; 10 Macromolecular Design by Interchange of Xanthates: Background, Design, Scope and Applications; 10.1 Introduction; 10.2 History of MADIX Polymerization; 10.3 Mechanism of MADIX Polymerization; 10.4 Kinetics of MADIX Polymerization; 10.5 Choice of MADIX Agents; 10.6 Synthesis of MADIX Agents; 10.7 Experimental Conditions in MADIX; 10.8 Monomers Polymerizable by MADIX; 10.9 MADIX Polymerization in Waterborne Dispersed Media 10.10 Macromolecular Engineering by MADIX |
| Altri titoli varianti | Handbook of Reversible Addition-Fragmentation chain Transfer polymerization |
| Record Nr. | UNINA-9911019146603321 |
| Weinheim, : Wiley-VCH, c2008 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
How free cationic polymer chains promote gene transfection / / Yue Yanan
| How free cationic polymer chains promote gene transfection / / Yue Yanan |
| Autore | Yanan Yue |
| Edizione | [1st ed. 2013.] |
| Pubbl/distr/stampa | New York, : Springer, 2013 |
| Descrizione fisica | 1 online resource (108 p.) |
| Disciplina | 572.33 |
| Collana | Springer theses : recognizing outstanding Ph.D. research |
| Soggetto topico | Addition polymerization |
| ISBN | 3-319-00336-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Introduction and background -- Revisiting complexation between DNA and polyethylenimine: the effect of uncomplexed chains free in the solution mixture on gene transfection -- Revisiting complexation between DNA and polyethylenimine: the effect of length of free polycationic chains on gene transfection -- Quantitative comparison of endocytosis and intracellular trafficking of DNA/polymer complexes in the absence/presence of free polycationic chains. |
| Record Nr. | UNINA-9910741174403321 |
Yanan Yue
|
||
| New York, : Springer, 2013 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Infrared Spectroscopy [[electronic resource] ] : Fundamentals and Applications
| Infrared Spectroscopy [[electronic resource] ] : Fundamentals and Applications |
| Autore | Stuart Barbara H |
| Pubbl/distr/stampa | Chichester, : Wiley, 2004 |
| Descrizione fisica | 1 online resource (244 p.) |
| Disciplina | 543.57 |
| Collana | Analytical Techniques in the Sciences (AnTs) |
| Soggetto topico |
Addition polymerization
Infrared spectroscopy Polymers Total internal reflection (Optics) |
| Soggetto genere / forma | Electronic books. |
| ISBN |
1-280-27448-4
0-470-01113-0 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
INFRARED SPECTROSCOPY: FUNDAMENTALS AND APPLICATIONS; Contents; Series Preface; Preface; Acronyms, Abbreviations and Symbols; About the Author; 1 Introduction; 1.1 Electromagnetic Radiation; 1.2 Infrared Absorptions; 1.3 Normal Modes of Vibration; 1.4 Complicating Factors; 1.4.1 Overtone and Combination Bands; 1.4.2 Fermi Resonance; 1.4.3 Coupling; 1.4.4 Vibration-Rotation Bands; References; 2 Experimental Methods; 2.1 Introduction; 2.2 Dispersive Infrared Spectrometers; 2.3 Fourier-Transform Infrared Spectrometers; 2.3.1 Michelson Interferometers; 2.3.2 Sources and Detectors
2.3.3 Fourier-Transformation 2.3.4 Moving Mirrors; 2.3.5 Signal-Averaging; 2.3.6 Advantages; 2.3.7 Computers; 2.3.8 Spectra; 2.4 Transmission Methods; 2.4.1 Liquids and Solutions; 2.4.2 Solids; 2.4.3 Gases; 2.4.4 Path length Calibration; 2.5 Reflectance Methods; 2.5.1 Attenuated Total Reflectance Spectroscopy; 2.5.2 Specular Reflectance Spectroscopy; 2.5.3 Diffuse Reflectance Spectroscopy; 2.5.4 Photoacoustic Spectroscopy; 2.6 Microsampling Methods; 2.7 Chromatography-Infrared Spectroscopy; 2.8 Thermal Analysis-Infrared Spectroscopy; 2.9 Other Techniques; References; 3 Spectral Analysis 3.1 Introduction 3.2 Group Frequencies; 3.2.1 Mid-Infrared Region; 3.2.2 Near-Infrared Region; 3.2.3 Far-Infrared Region; 3.3 Identification; 3.4 Hydrogen Bonding; 3.5 Spectrum Manipulation; 3.5.1 Baseline Correction; 3.5.2 Smoothing; 3.5.3 Difference Spectra; 3.5.4 Derivatives; 3.5.5 Deconvolution; 3.5.6 Curve-Fitting; 3.6 Concentration; 3.7 Simple Quantitative Analysis; 3.7.1 Analysis of Liquid Samples; 3.7.2 Analysis of Solid Samples; 3.8 Multi-Component Analysis; 3.9 Calibration Methods; References; 4 Organic Molecules; 4.1 Introduction; 4.2 Aliphatic Hydrocarbons; 4.3 Aromatic Compounds 4.4 Oxygen-Containing Compounds 4.4.1 Alcohols and Phenols; 4.4.2 Ethers; 4.4.3 Aldehydes and Ketones; 4.4.4 Esters; 4.4.5 Carboxylic Acids and Anhydrides; 4.5 Nitrogen-Containing Compounds; 4.5.1 Amines; 4.5.2 Amides; 4.6 Halogen-Containing Compounds; 4.7 Heterocyclic Compounds; 4.8 Boron Compounds; 4.9 Silicon Compounds; 4.10 Phosphorus Compounds; 4.11 Sulfur Compounds; 4.12 Near-Infrared Spectra; 4.13 Identification; References; 5 Inorganic Molecules; 5.1 Introduction; 5.2 General Considerations; 5.3 Normal Modes of Vibration; 5.4 Coordination Compounds; 5.5 Isomerism; 5.6 Metal Carbonyls 5.7 Organometallic Compounds 5.8 Minerals; References; 6 Polymers; 6.1 Introduction; 6.2 Identification; 6.3 Polymerization; 6.4 Structure; 6.5 Surfaces; 6.6 Degradation; References; 7 Biological Applications; 7.1 Introduction; 7.2 Lipids; 7.3 Proteins and Peptides; 7.4 Nucleic Acids; 7.5 Disease Diagnosis; 7.6 Microbial Cells; 7.7 Plants; 7.8 Clinical Chemistry; References; 8 Industrial and Environmental Applications; 8.1 Introduction; 8.2 Pharmaceutical Applications; 8.3 Food Science; 8.4 Agricultural Applications; 8.5 Pulp and Paper Industries; 8.6 Paint Industry 8.7 Environmental Applications |
| Record Nr. | UNINA-9910449765903321 |
Stuart Barbara H
|
||
| Chichester, : Wiley, 2004 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Infrared Spectroscopy [[electronic resource] ] : Fundamentals and Applications
| Infrared Spectroscopy [[electronic resource] ] : Fundamentals and Applications |
| Autore | Stuart Barbara H |
| Pubbl/distr/stampa | Chichester, : Wiley, 2004 |
| Descrizione fisica | 1 online resource (244 p.) |
| Disciplina | 543.57 |
| Collana | Analytical Techniques in the Sciences (AnTs) |
| Soggetto topico |
Addition polymerization
Infrared spectroscopy Polymers Total internal reflection (Optics) |
| ISBN |
1-280-27448-4
0-470-01113-0 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
INFRARED SPECTROSCOPY: FUNDAMENTALS AND APPLICATIONS; Contents; Series Preface; Preface; Acronyms, Abbreviations and Symbols; About the Author; 1 Introduction; 1.1 Electromagnetic Radiation; 1.2 Infrared Absorptions; 1.3 Normal Modes of Vibration; 1.4 Complicating Factors; 1.4.1 Overtone and Combination Bands; 1.4.2 Fermi Resonance; 1.4.3 Coupling; 1.4.4 Vibration-Rotation Bands; References; 2 Experimental Methods; 2.1 Introduction; 2.2 Dispersive Infrared Spectrometers; 2.3 Fourier-Transform Infrared Spectrometers; 2.3.1 Michelson Interferometers; 2.3.2 Sources and Detectors
2.3.3 Fourier-Transformation 2.3.4 Moving Mirrors; 2.3.5 Signal-Averaging; 2.3.6 Advantages; 2.3.7 Computers; 2.3.8 Spectra; 2.4 Transmission Methods; 2.4.1 Liquids and Solutions; 2.4.2 Solids; 2.4.3 Gases; 2.4.4 Path length Calibration; 2.5 Reflectance Methods; 2.5.1 Attenuated Total Reflectance Spectroscopy; 2.5.2 Specular Reflectance Spectroscopy; 2.5.3 Diffuse Reflectance Spectroscopy; 2.5.4 Photoacoustic Spectroscopy; 2.6 Microsampling Methods; 2.7 Chromatography-Infrared Spectroscopy; 2.8 Thermal Analysis-Infrared Spectroscopy; 2.9 Other Techniques; References; 3 Spectral Analysis 3.1 Introduction 3.2 Group Frequencies; 3.2.1 Mid-Infrared Region; 3.2.2 Near-Infrared Region; 3.2.3 Far-Infrared Region; 3.3 Identification; 3.4 Hydrogen Bonding; 3.5 Spectrum Manipulation; 3.5.1 Baseline Correction; 3.5.2 Smoothing; 3.5.3 Difference Spectra; 3.5.4 Derivatives; 3.5.5 Deconvolution; 3.5.6 Curve-Fitting; 3.6 Concentration; 3.7 Simple Quantitative Analysis; 3.7.1 Analysis of Liquid Samples; 3.7.2 Analysis of Solid Samples; 3.8 Multi-Component Analysis; 3.9 Calibration Methods; References; 4 Organic Molecules; 4.1 Introduction; 4.2 Aliphatic Hydrocarbons; 4.3 Aromatic Compounds 4.4 Oxygen-Containing Compounds 4.4.1 Alcohols and Phenols; 4.4.2 Ethers; 4.4.3 Aldehydes and Ketones; 4.4.4 Esters; 4.4.5 Carboxylic Acids and Anhydrides; 4.5 Nitrogen-Containing Compounds; 4.5.1 Amines; 4.5.2 Amides; 4.6 Halogen-Containing Compounds; 4.7 Heterocyclic Compounds; 4.8 Boron Compounds; 4.9 Silicon Compounds; 4.10 Phosphorus Compounds; 4.11 Sulfur Compounds; 4.12 Near-Infrared Spectra; 4.13 Identification; References; 5 Inorganic Molecules; 5.1 Introduction; 5.2 General Considerations; 5.3 Normal Modes of Vibration; 5.4 Coordination Compounds; 5.5 Isomerism; 5.6 Metal Carbonyls 5.7 Organometallic Compounds 5.8 Minerals; References; 6 Polymers; 6.1 Introduction; 6.2 Identification; 6.3 Polymerization; 6.4 Structure; 6.5 Surfaces; 6.6 Degradation; References; 7 Biological Applications; 7.1 Introduction; 7.2 Lipids; 7.3 Proteins and Peptides; 7.4 Nucleic Acids; 7.5 Disease Diagnosis; 7.6 Microbial Cells; 7.7 Plants; 7.8 Clinical Chemistry; References; 8 Industrial and Environmental Applications; 8.1 Introduction; 8.2 Pharmaceutical Applications; 8.3 Food Science; 8.4 Agricultural Applications; 8.5 Pulp and Paper Industries; 8.6 Paint Industry 8.7 Environmental Applications |
| Record Nr. | UNINA-9910783519303321 |
Stuart Barbara H
|
||
| Chichester, : Wiley, 2004 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
RAFT polymerization : methods, synthesis, and applications / / edited by Graeme Moad, Ezio Rizzardo
| RAFT polymerization : methods, synthesis, and applications / / edited by Graeme Moad, Ezio Rizzardo |
| Pubbl/distr/stampa | Weinheim, Germany : , : Wiley-VCH GmbH, , [2022] |
| Descrizione fisica | 1 online resource (1280 pages) |
| Disciplina | 547.28 |
| Soggetto topico | Addition polymerization |
| ISBN |
3-527-82136-8
3-527-82135-X 3-527-82134-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Title Page -- Copyright -- Contents -- Preface -- Acknowledgements -- Chapter 1 Overview of RAFT Polymerization -- References -- Chapter 2 Terminology in Reversible Deactivation Radical Polymerization (RDRP) and Reversible Addition-Fragmentation Chain Transfer (RAFT) Polymerization -- 2.1 Terminology for Reversible Deactivation Radical Polymerization (RDRP) -- 2.2 Terminology in Reversible Addition-Fragmentation Chain Transfer (RAFT) Polymerization -- 2.3 Terminology That Is Not Ratified by IUPAC -- References -- Chapter 3 How to Do a RAFT Polymerization -- 3.1 Introduction -- 3.2 IP Landscape -- 3.3 General Experimental Conditions -- 3.3.1 Initiator -- 3.3.2 Solvent -- 3.3.3 Temperature -- 3.3.4 Pressure -- 3.4 RAFT Polymerization of Styrene -- 3.4.1 Experimental Procedures for the RAFT Polymerization of Styrene -- 3.5 RAFT Polymerization of Methacrylates and Acrylates -- 3.5.1 Methacrylates -- 3.5.2 Acrylates -- 3.5.3 Experimental Procedures for the RAFT Polymerization of Methacrylates -- 3.5.4 Experimental Procedures for the RAFT Polymerization of Acrylates -- 3.6 RAFT Polymerization of Acrylamides and Methacrylamides -- 3.6.1 Methacrylamides -- 3.6.2 Acrylamides -- 3.6.3 Experimental Procedures for the RAFT Polymerization of Acrylamides and Methacrylamides -- 3.7 RAFT Polymerization of Vinyl Esters and Vinyl Amides -- 3.7.1 Experimental Procedures for the RAFT Polymerization of Vinyl Esters and Vinyl Amides -- 3.8 Copolymers -- 3.8.1 Experimental Procedures for RAFT Copolymers -- 3.9 Block Copolymers -- 3.9.1 Experimental Procedures for RAFT Block Copolymers -- 3.10 Conclusion -- References -- Chapter 4 Kinetics and Mechanism of RAFT Polymerizations -- 4.1 Introduction -- 4.2 Ideal RAFT Polymerization Kinetics -- 4.3 Pulsed Laser Experiments in Conjunction with EPR Detection.
4.4 Quantum Chemical Calculations of the RAFT Equilibrium -- 4.5 Xanthate‐, Trithiocarbonate‐ and Dithiobenzoate‐Mediated Polymerizations -- 4.5.1 General Aspects of Actual RAFT Polymerizations -- 4.5.2 Xanthates -- 4.5.3 Trithiocarbonates -- 4.5.4 Dithiobenzoates -- 4.5.5 The 'Missing Step' Reaction -- 4.5.6 Kinetic Analysis of Dithiobenzoate‐Mediated BA Polymerizations -- 4.5.7 Quantum Chemical Calculations for the CIP* - CPDB Model System -- 4.5.8 Dithiobenzoate‐Mediated MMA Polymerizations and Model Systems -- 4.6 Summary of Results and Concluding Remarks -- References -- Chapter 5 RAFT Polymerization: Mechanistic Considerations -- 5.1 Introduction -- 5.2 Role of the R Group -- 5.2.1 Chain Transfer and Leaving Group Ability -- 5.2.2 Measurement of the Chain Transfer Constant -- 5.2.3 Mechanistic Implications for Block Copolymer Synthesis -- 5.2.4 Re‐Initiation and Initialization -- 5.2.5 R Group Stability and Implications for Chain Transfer Kinetics -- 5.2.6 Differential Leaving Group Ability and Mechanistic Discrimination -- 5.3 Role of the Z Group -- 5.3.1 The Z Group and Radical Addition to the Thiocarbonyl -- 5.3.2 The Z‐Group and Side Reactions -- 5.3.3 Manipulating Z to Dictate Reactivity: 'Switchable' RAFT Agents -- 5.3.4 The Z‐Group and Reaction Kinetics -- 5.3.5 Intermediate Radical Termination -- 5.3.6 Slow Fragmentation of the Intermediate Radical -- 5.3.7 Stability of the Z Group During Reaction -- 5.4 Light Effects on the Rate of Polymerization -- 5.5 Conclusion -- References -- Chapter 6 Quantum Chemical Studies of RAFT Polymerization -- 6.1 Introduction -- 6.2 Methodology -- 6.2.1 Electronic Structure Calculations -- 6.2.2 Kinetics and Thermodynamics -- 6.2.3 Solvent Effects -- 6.2.4 Accuracy and Outstanding Challenges -- 6.3 Computational Modelling of RAFT Kinetics -- 6.3.1 Simplified Models for Theory and Experiment. 6.3.2 Side Reactions -- 6.3.3 Computational Model Predictions -- 6.3.4 Ab initio Kinetic Modelling -- 6.4 Structure-Reactivity Studies -- 6.4.1 Fundamental Aspects -- 6.4.2 Structure-Reactivity in Practical RAFT Systems -- 6.4.3 RAFT Agent Design -- 6.5 Outlook -- References -- Chapter 7 Mathematical Modelling of RAFT Polymerization -- 7.1 Introduction -- 7.2 Deterministic Modelling Techniques (DMTs) -- 7.2.1 Method of Moments (MM) -- 7.2.1.1 Homogeneous Systems -- 7.2.1.2 Heterogeneous Systems -- 7.2.2 Diffusion‐Controlled or CL‐Dependent Coefficients -- 7.2.3 Calculation of Full Molecular Weight Distributions -- 7.2.3.1 Explicit Integration Methods -- 7.2.3.2 Probability‐Generating Function -- 7.2.3.3 Calculations Using the Predici® Software -- 7.3 Stochastic Modelling Techniques (SMTs) -- 7.3.1 Monte Carlo -- 7.3.1.1 Homogeneous Systems -- 7.3.1.2 Heterogeneous Systems -- 7.4 Hybrid Methods -- 7.5 Specific or Novel Polymerization Processes -- 7.5.1 Semibatch Polymerization -- 7.5.2 Polymerizations in CSTRs/PFR -- 7.5.3 Branched Copolymerizations -- 7.5.4 Microwave‐Assisted (MA) RAFT Polymerization -- 7.6 Closing Remarks -- Acknowledgments -- References -- Chapter 8 Dithioesters in RAFT Polymerization -- 8.1 Introduction -- 8.2 Mechanism of RAFT Polymerization with Dithioester Mediators -- 8.2.1 Transfer Coefficients of Dithioesters -- 8.2.2 RAFT Equilibrium Coefficients with Dithioesters -- 8.3 Choice of RAFT Agents -- 8.3.1 Aromatic Dithioesters (Z & -- equals -- Aryl or Heteroaryl) -- 8.3.2 Functional Aromatic Dithioesters (Z & -- equals -- Aryl or Heteroaryl) -- 8.3.3 Bis‐aromatic Dithioesters (Z & -- equals -- Aryl or Heteroaryl) -- 8.3.4 Aliphatic Dithioesters (Z & -- equals -- Alkyl or Aralkyl) -- 8.3.5 Bis‐aliphatic Dithioesters (Z & -- equals -- Alkyl or Aralkyl) -- 8.4 Synthesis of Dithioester RAFT Agents. 8.5 Monomers for Dithioester‐Mediated RAFT Polymerization -- 8.5.1 1,1‐Disubsituted Monomers -- 8.5.1.1 Methacrylates -- 8.5.1.2 Methacrylamides -- 8.5.1.3 Other 1,1‐Disubsituted Monomers -- 8.5.2 Monosubstituted MAMs -- 8.5.2.1 Acrylates -- 8.5.2.2 Acrylamides -- 8.5.2.3 Styrenics -- 8.5.2.4 Diene Monomers -- 8.5.3 1,2‐Disubstituted MAMs -- 8.5.4 Monosubstituted IAMs and LAMs -- 8.5.5 Monomers with Reactive Functionality -- 8.5.6 Macromonomers -- 8.6 Cyclopolymerization -- 8.7 Ring‐Opening Polymerization -- 8.8 RAFT Crosslinking Polymerization -- 8.9 RAFT Self‐condensing Vinyl Polymerization -- 8.10 RAFT‐Single‐Unit Monomer Insertion (RAFT‐SUMI) into Dithioesters -- 8.11 Dithioesters in Mechanism‐Transformation Processes -- 8.11.1 Ring‐Opening Polymerization (ROP) -- 8.11.2 Ring‐Opening Metathesis Polymerization (ROMP) -- 8.11.3 Atom Transfer Radical Polymerization (ATRP) -- 8.11.4 Nitroxide‐Mediated Polymerization (NMP) -- 8.12 Thermally Initiated RAFT Polymerization with Dithioesters -- 8.13 Photoinitiated RAFT with Dithioesters -- 8.14 Redox‐Initiated RAFT with Dithioesters -- 8.15 Reaction Conditions and Side Reactions of Dithioesters -- 8.16 RAFT Emulsion/Miniemulsion Polymerization Mediated by Dithioesters -- 8.17 Dithioester Group Removal/Transformation -- 8.17.1 Dithioester Group Removal by Reaction with Nucleophiles -- 8.17.2 Dithioester Group Removal by Radical‐Induced Reactions -- 8.17.2.1 Radical‐Induced Coupling/Disproportionation -- 8.17.2.2 Radical‐Induced Reduction -- 8.17.3 Dithioester Group Removal by Oxidation -- 8.17.4 Dithioester Group Removal by Thermolysis -- 8.17.5 Electrocyclic Reactions of Dithioesters -- 8.17.6 Boronic Acid Cross‐Coupling -- 8.17.7 Conclusions and Outlook -- Abbreviations -- References -- Chapter 9 Trithiocarbonates in RAFT Polymerization -- 9.1 Introduction. 9.2 Mechanism of RAFT Polymerization with Trithiocarbonate Mediators -- 9.2.1 Transfer Coefficients for Trithiocarbonates in RAFT Polymerization -- 9.2.2 RAFT Equilibrium Coefficients for Trithiocarbonates -- 9.3 Choice of Homolytic Leaving Group R for Trithiocarbonate RAFT Agents -- 9.3.1 Homolytic Leaving Group 'R' for 1,1‐Disubsituted MAMs -- 9.3.2 Homolytic Leaving Group 'R' for Monosubstituted MAMs -- 9.3.3 Homolytic Leaving Group 'R' for IAMs and LAMs -- 9.3.4 Macro‐leaving Group 'R' for Block Copolymer Synthesis -- 9.4 Choice of Activating Group 'Z' for Trithiocarbonate RAFT Agents -- 9.5 Symmetric Trithiocarbonates -- 9.5.1 Bis‐trithiocarbonates -- 9.6 Non‐symmetric Trithiocarbonates -- 9.7 Functional Trithiocarbonates -- 9.8 Synthesis of Trithiocarbonates -- 9.9 Polymer Syntheses with Trithiocarbonates -- 9.9.1 Methacrylates -- 9.9.2 Methacrylamides -- 9.9.3 Other 1,1‐Disubstituted Monomers -- 9.9.4 Acrylates -- 9.9.5 Acrylamides -- 9.9.6 Styrenics -- 9.9.7 Diene Monomers -- 9.9.8 Other Monosubstituted Monomers (MAMs, IAMs, LAMs), Vinyl Monomers -- 9.9.9 Monomers with Reactive Functionality -- 9.10 Macromonomers -- 9.11 Cyclopolymerization -- 9.12 Radical Ring‐Opening Polymerization -- 9.13 RAFT Crosslinking Polymerization -- 9.14 RAFT Self‐condensing Vinyl Polymerization -- 9.15 RAFT‐Single‐Unit Monomer Insertion (RAFT‐SUMI) into Trithiocarbonates -- 9.16 Trithiocarbonates in Mechanism Transformation Processes -- 9.16.1 Ring‐Opening Polymerization (ROP) -- 9.16.2 Ring‐Opening Metathesis Polymerization (ROMP) -- 9.16.3 Ring‐Opening Opening Alkyne Metathesis Polymerization (ROAMP) -- 9.16.4 Cationic Polymerization -- 9.16.5 Anionic Polymerization -- 9.16.6 Nitroxide Mediated Polymerization (NMP) -- 9.16.7 Atom Transfer Radical Polymerization (ATRP) -- 9.17 Photoinitiated RAFT with Trithiocarbonates. 9.18 Redox‐Initiated RAFT with Trithiocarbonates. |
| Record Nr. | UNINA-9910554877903321 |
| Weinheim, Germany : , : Wiley-VCH GmbH, , [2022] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
RAFT polymerization : methods, synthesis, and applications / / edited by Graeme Moad, Ezio Rizzardo
| RAFT polymerization : methods, synthesis, and applications / / edited by Graeme Moad, Ezio Rizzardo |
| Pubbl/distr/stampa | Weinheim, Germany : , : Wiley-VCH GmbH, , [2022] |
| Descrizione fisica | 1 online resource (1280 pages) |
| Disciplina | 547.28 |
| Soggetto topico | Addition polymerization |
| ISBN |
3-527-82136-8
3-527-82135-X 3-527-82134-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Title Page -- Copyright -- Contents -- Preface -- Acknowledgements -- Chapter 1 Overview of RAFT Polymerization -- References -- Chapter 2 Terminology in Reversible Deactivation Radical Polymerization (RDRP) and Reversible Addition-Fragmentation Chain Transfer (RAFT) Polymerization -- 2.1 Terminology for Reversible Deactivation Radical Polymerization (RDRP) -- 2.2 Terminology in Reversible Addition-Fragmentation Chain Transfer (RAFT) Polymerization -- 2.3 Terminology That Is Not Ratified by IUPAC -- References -- Chapter 3 How to Do a RAFT Polymerization -- 3.1 Introduction -- 3.2 IP Landscape -- 3.3 General Experimental Conditions -- 3.3.1 Initiator -- 3.3.2 Solvent -- 3.3.3 Temperature -- 3.3.4 Pressure -- 3.4 RAFT Polymerization of Styrene -- 3.4.1 Experimental Procedures for the RAFT Polymerization of Styrene -- 3.5 RAFT Polymerization of Methacrylates and Acrylates -- 3.5.1 Methacrylates -- 3.5.2 Acrylates -- 3.5.3 Experimental Procedures for the RAFT Polymerization of Methacrylates -- 3.5.4 Experimental Procedures for the RAFT Polymerization of Acrylates -- 3.6 RAFT Polymerization of Acrylamides and Methacrylamides -- 3.6.1 Methacrylamides -- 3.6.2 Acrylamides -- 3.6.3 Experimental Procedures for the RAFT Polymerization of Acrylamides and Methacrylamides -- 3.7 RAFT Polymerization of Vinyl Esters and Vinyl Amides -- 3.7.1 Experimental Procedures for the RAFT Polymerization of Vinyl Esters and Vinyl Amides -- 3.8 Copolymers -- 3.8.1 Experimental Procedures for RAFT Copolymers -- 3.9 Block Copolymers -- 3.9.1 Experimental Procedures for RAFT Block Copolymers -- 3.10 Conclusion -- References -- Chapter 4 Kinetics and Mechanism of RAFT Polymerizations -- 4.1 Introduction -- 4.2 Ideal RAFT Polymerization Kinetics -- 4.3 Pulsed Laser Experiments in Conjunction with EPR Detection.
4.4 Quantum Chemical Calculations of the RAFT Equilibrium -- 4.5 Xanthate‐, Trithiocarbonate‐ and Dithiobenzoate‐Mediated Polymerizations -- 4.5.1 General Aspects of Actual RAFT Polymerizations -- 4.5.2 Xanthates -- 4.5.3 Trithiocarbonates -- 4.5.4 Dithiobenzoates -- 4.5.5 The 'Missing Step' Reaction -- 4.5.6 Kinetic Analysis of Dithiobenzoate‐Mediated BA Polymerizations -- 4.5.7 Quantum Chemical Calculations for the CIP* - CPDB Model System -- 4.5.8 Dithiobenzoate‐Mediated MMA Polymerizations and Model Systems -- 4.6 Summary of Results and Concluding Remarks -- References -- Chapter 5 RAFT Polymerization: Mechanistic Considerations -- 5.1 Introduction -- 5.2 Role of the R Group -- 5.2.1 Chain Transfer and Leaving Group Ability -- 5.2.2 Measurement of the Chain Transfer Constant -- 5.2.3 Mechanistic Implications for Block Copolymer Synthesis -- 5.2.4 Re‐Initiation and Initialization -- 5.2.5 R Group Stability and Implications for Chain Transfer Kinetics -- 5.2.6 Differential Leaving Group Ability and Mechanistic Discrimination -- 5.3 Role of the Z Group -- 5.3.1 The Z Group and Radical Addition to the Thiocarbonyl -- 5.3.2 The Z‐Group and Side Reactions -- 5.3.3 Manipulating Z to Dictate Reactivity: 'Switchable' RAFT Agents -- 5.3.4 The Z‐Group and Reaction Kinetics -- 5.3.5 Intermediate Radical Termination -- 5.3.6 Slow Fragmentation of the Intermediate Radical -- 5.3.7 Stability of the Z Group During Reaction -- 5.4 Light Effects on the Rate of Polymerization -- 5.5 Conclusion -- References -- Chapter 6 Quantum Chemical Studies of RAFT Polymerization -- 6.1 Introduction -- 6.2 Methodology -- 6.2.1 Electronic Structure Calculations -- 6.2.2 Kinetics and Thermodynamics -- 6.2.3 Solvent Effects -- 6.2.4 Accuracy and Outstanding Challenges -- 6.3 Computational Modelling of RAFT Kinetics -- 6.3.1 Simplified Models for Theory and Experiment. 6.3.2 Side Reactions -- 6.3.3 Computational Model Predictions -- 6.3.4 Ab initio Kinetic Modelling -- 6.4 Structure-Reactivity Studies -- 6.4.1 Fundamental Aspects -- 6.4.2 Structure-Reactivity in Practical RAFT Systems -- 6.4.3 RAFT Agent Design -- 6.5 Outlook -- References -- Chapter 7 Mathematical Modelling of RAFT Polymerization -- 7.1 Introduction -- 7.2 Deterministic Modelling Techniques (DMTs) -- 7.2.1 Method of Moments (MM) -- 7.2.1.1 Homogeneous Systems -- 7.2.1.2 Heterogeneous Systems -- 7.2.2 Diffusion‐Controlled or CL‐Dependent Coefficients -- 7.2.3 Calculation of Full Molecular Weight Distributions -- 7.2.3.1 Explicit Integration Methods -- 7.2.3.2 Probability‐Generating Function -- 7.2.3.3 Calculations Using the Predici® Software -- 7.3 Stochastic Modelling Techniques (SMTs) -- 7.3.1 Monte Carlo -- 7.3.1.1 Homogeneous Systems -- 7.3.1.2 Heterogeneous Systems -- 7.4 Hybrid Methods -- 7.5 Specific or Novel Polymerization Processes -- 7.5.1 Semibatch Polymerization -- 7.5.2 Polymerizations in CSTRs/PFR -- 7.5.3 Branched Copolymerizations -- 7.5.4 Microwave‐Assisted (MA) RAFT Polymerization -- 7.6 Closing Remarks -- Acknowledgments -- References -- Chapter 8 Dithioesters in RAFT Polymerization -- 8.1 Introduction -- 8.2 Mechanism of RAFT Polymerization with Dithioester Mediators -- 8.2.1 Transfer Coefficients of Dithioesters -- 8.2.2 RAFT Equilibrium Coefficients with Dithioesters -- 8.3 Choice of RAFT Agents -- 8.3.1 Aromatic Dithioesters (Z & -- equals -- Aryl or Heteroaryl) -- 8.3.2 Functional Aromatic Dithioesters (Z & -- equals -- Aryl or Heteroaryl) -- 8.3.3 Bis‐aromatic Dithioesters (Z & -- equals -- Aryl or Heteroaryl) -- 8.3.4 Aliphatic Dithioesters (Z & -- equals -- Alkyl or Aralkyl) -- 8.3.5 Bis‐aliphatic Dithioesters (Z & -- equals -- Alkyl or Aralkyl) -- 8.4 Synthesis of Dithioester RAFT Agents. 8.5 Monomers for Dithioester‐Mediated RAFT Polymerization -- 8.5.1 1,1‐Disubsituted Monomers -- 8.5.1.1 Methacrylates -- 8.5.1.2 Methacrylamides -- 8.5.1.3 Other 1,1‐Disubsituted Monomers -- 8.5.2 Monosubstituted MAMs -- 8.5.2.1 Acrylates -- 8.5.2.2 Acrylamides -- 8.5.2.3 Styrenics -- 8.5.2.4 Diene Monomers -- 8.5.3 1,2‐Disubstituted MAMs -- 8.5.4 Monosubstituted IAMs and LAMs -- 8.5.5 Monomers with Reactive Functionality -- 8.5.6 Macromonomers -- 8.6 Cyclopolymerization -- 8.7 Ring‐Opening Polymerization -- 8.8 RAFT Crosslinking Polymerization -- 8.9 RAFT Self‐condensing Vinyl Polymerization -- 8.10 RAFT‐Single‐Unit Monomer Insertion (RAFT‐SUMI) into Dithioesters -- 8.11 Dithioesters in Mechanism‐Transformation Processes -- 8.11.1 Ring‐Opening Polymerization (ROP) -- 8.11.2 Ring‐Opening Metathesis Polymerization (ROMP) -- 8.11.3 Atom Transfer Radical Polymerization (ATRP) -- 8.11.4 Nitroxide‐Mediated Polymerization (NMP) -- 8.12 Thermally Initiated RAFT Polymerization with Dithioesters -- 8.13 Photoinitiated RAFT with Dithioesters -- 8.14 Redox‐Initiated RAFT with Dithioesters -- 8.15 Reaction Conditions and Side Reactions of Dithioesters -- 8.16 RAFT Emulsion/Miniemulsion Polymerization Mediated by Dithioesters -- 8.17 Dithioester Group Removal/Transformation -- 8.17.1 Dithioester Group Removal by Reaction with Nucleophiles -- 8.17.2 Dithioester Group Removal by Radical‐Induced Reactions -- 8.17.2.1 Radical‐Induced Coupling/Disproportionation -- 8.17.2.2 Radical‐Induced Reduction -- 8.17.3 Dithioester Group Removal by Oxidation -- 8.17.4 Dithioester Group Removal by Thermolysis -- 8.17.5 Electrocyclic Reactions of Dithioesters -- 8.17.6 Boronic Acid Cross‐Coupling -- 8.17.7 Conclusions and Outlook -- Abbreviations -- References -- Chapter 9 Trithiocarbonates in RAFT Polymerization -- 9.1 Introduction. 9.2 Mechanism of RAFT Polymerization with Trithiocarbonate Mediators -- 9.2.1 Transfer Coefficients for Trithiocarbonates in RAFT Polymerization -- 9.2.2 RAFT Equilibrium Coefficients for Trithiocarbonates -- 9.3 Choice of Homolytic Leaving Group R for Trithiocarbonate RAFT Agents -- 9.3.1 Homolytic Leaving Group 'R' for 1,1‐Disubsituted MAMs -- 9.3.2 Homolytic Leaving Group 'R' for Monosubstituted MAMs -- 9.3.3 Homolytic Leaving Group 'R' for IAMs and LAMs -- 9.3.4 Macro‐leaving Group 'R' for Block Copolymer Synthesis -- 9.4 Choice of Activating Group 'Z' for Trithiocarbonate RAFT Agents -- 9.5 Symmetric Trithiocarbonates -- 9.5.1 Bis‐trithiocarbonates -- 9.6 Non‐symmetric Trithiocarbonates -- 9.7 Functional Trithiocarbonates -- 9.8 Synthesis of Trithiocarbonates -- 9.9 Polymer Syntheses with Trithiocarbonates -- 9.9.1 Methacrylates -- 9.9.2 Methacrylamides -- 9.9.3 Other 1,1‐Disubstituted Monomers -- 9.9.4 Acrylates -- 9.9.5 Acrylamides -- 9.9.6 Styrenics -- 9.9.7 Diene Monomers -- 9.9.8 Other Monosubstituted Monomers (MAMs, IAMs, LAMs), Vinyl Monomers -- 9.9.9 Monomers with Reactive Functionality -- 9.10 Macromonomers -- 9.11 Cyclopolymerization -- 9.12 Radical Ring‐Opening Polymerization -- 9.13 RAFT Crosslinking Polymerization -- 9.14 RAFT Self‐condensing Vinyl Polymerization -- 9.15 RAFT‐Single‐Unit Monomer Insertion (RAFT‐SUMI) into Trithiocarbonates -- 9.16 Trithiocarbonates in Mechanism Transformation Processes -- 9.16.1 Ring‐Opening Polymerization (ROP) -- 9.16.2 Ring‐Opening Metathesis Polymerization (ROMP) -- 9.16.3 Ring‐Opening Opening Alkyne Metathesis Polymerization (ROAMP) -- 9.16.4 Cationic Polymerization -- 9.16.5 Anionic Polymerization -- 9.16.6 Nitroxide Mediated Polymerization (NMP) -- 9.16.7 Atom Transfer Radical Polymerization (ATRP) -- 9.17 Photoinitiated RAFT with Trithiocarbonates. 9.18 Redox‐Initiated RAFT with Trithiocarbonates. |
| Record Nr. | UNINA-9910829998803321 |
| Weinheim, Germany : , : Wiley-VCH GmbH, , [2022] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||