top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Biophysics of computation [[electronic resource] ] : information processing in single neurons / / Christof Koch
Biophysics of computation [[electronic resource] ] : information processing in single neurons / / Christof Koch
Autore Koch Christof <1956->
Pubbl/distr/stampa New York, : Oxford University Press, 1999
Descrizione fisica 1 online resource (587 p.)
Disciplina 573.8/536
Collana Computational neuroscience
Soggetto topico Computational neuroscience
Neurons
Neural networks (Neurobiology)
Action potentials (Electrophysiology)
Neural conduction
Soggetto genere / forma Electronic books.
ISBN 0-19-756233-7
1-280-59509-4
9786613624925
0-19-976055-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Contents; Preface; List of Symbols; Introduction; 1 The Membrane Equation; 1.1 Structure of the Passive Neuronal Membrane; 1.1.1 Resting Potential; 1.1.2 Membrane Capacity; 1.1.3 Membrane Resistance; 1.2 A Simple RC Circuit; 1.3 RC Circuits as Linear Systems; 1.3.1 Filtering by RC Circuits; 1.4 Synaptic Input; 1.5 Synaptic Input Is Nonlinear; 1.5.1 Synaptic Input, Saturation, and the Membrane Time Constant; 1.5.2 Synaptic Interactions among Excitation and Shunting Inhibition; 1.5.3 Gain Normalization in Visual Cortex and Synaptic Input; 1.6 Recapitulation; 2 Linear Cable Theory
2.1 Basic Assumptions Underlying One-Dimensional Cable Theory2.1.1 Linear Cable Equation; 2.2 Steady-State Solutions; 2.2.1 Infinite Cable; 2.2.2 Finite Cable; 2.3 Time-Dependent Solutions; 2.3.1 Infinite Cable; 2.3.2 Finite Cable; 2.4 Neuronal Delays and Propagation Velocity; 2.5 Recapitulation; 3 Passive Dendritic Trees; 3.1 Branched Cables; 3.1.1 What Happens at Branch Points?; 3.2 Equivalent Cylinder; 3.3 Solving the Linear Cable Equation for Branched Structures; 3.3.1 Exact Methods; 3.3.2 Compartmental Modeling; 3.4 Transfer Resistances; 3.4.1 General Definition; 3.4.2 An Example
3.4.3 Properties of K[sub(ij)]3.4.4 Transfer Resistances in a Pyramidal Cell; 3.5 Measures of Synaptic Efficiency; 3.5.1 Electrotonic Distance; 3.5.2 Voltage Attenuation; 3.5.3 Charge Attenuation; 3.5.4 Graphical Morphoelectrotonic Transforms; 3.6 Signal Delays in Dendritic Trees; 3.6.1 Experimental Determination of T[sub(m)]; 3.6.2 Local and Propagation Delays in Dendritic Trees; 3.6.3 Dependence of Fast Synaptic Inputs on Cable Parameters; 3.7 Recapitulation; 4 Synaptic Input; 4.1 Neuronal and Synaptic Packing Densities; 4.2 Synaptic Transmission Is Stochastic
4.2.1 Probability of Synaptic Release p4.2.2 What Is the Synaptic Weight?; 4.3 Neurotransmitters; 4.4 Synaptic Receptors; 4.5 Synaptic Input as Conductance Change; 4.5.1 Synaptic Reversal Potential in Series with an Increase in Conductance; 4.5.2 Conductance Decreasing Synapses; 4.6 Excitatory NMDA and Non-NMDA Synaptic Input; 4.7 Inhibitory GABAergic Synaptic Input; 4.8 Postsynaptic Potential; 4.8.1 Stationary Synaptic Input; 4.8.2 Transient Synaptic Input; 4.8.3 Infinitely Fast Synaptic Input; 4.9 Visibility of Synaptic Inputs; 4.9.1 Input Impedance in the Presence of Synaptic Input
4.10 Electrical Gap Junctions4.11 Recapitulation; 5 Synaptic Interactions in a Passive Dendritic Tree; 5.1 Nonlinear Interaction among Excitation and Inhibition; 5.1.1 Absolute versus Relative Suppression; 5.1.2 General Analysis of Synaptic Interaction in a Passive Tree; 5.1.3 Location of the Inhibitory Synapse; 5.1.4 Shunting Inhibition Implements a ""Dirty"" Multiplication; 5.1.5 Hyperpolarizing Inhibition Acts Like a Linear Subtraction; 5.1.6 Functional Interpretation of the Synaptic Architecture and Dendritic Morphology: AND-NOT Gates
5.1.7 Retinal Directional Selectivity and Synaptic Logic
Record Nr. UNINA-9910457836903321
Koch Christof <1956->  
New York, : Oxford University Press, 1999
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Biophysics of computation [[electronic resource] ] : information processing in single neurons / / Christof Koch
Biophysics of computation [[electronic resource] ] : information processing in single neurons / / Christof Koch
Autore Koch Christof <1956->
Pubbl/distr/stampa New York, : Oxford University Press, 1999
Descrizione fisica 1 online resource (587 p.)
Disciplina 573.8/536
Collana Computational neuroscience
Soggetto topico Computational neuroscience
Neurons
Neural networks (Neurobiology)
Action potentials (Electrophysiology)
Neural conduction
ISBN 0-19-029285-7
0-19-756233-7
1-280-59509-4
9786613624925
0-19-976055-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Contents; Preface; List of Symbols; Introduction; 1 The Membrane Equation; 1.1 Structure of the Passive Neuronal Membrane; 1.1.1 Resting Potential; 1.1.2 Membrane Capacity; 1.1.3 Membrane Resistance; 1.2 A Simple RC Circuit; 1.3 RC Circuits as Linear Systems; 1.3.1 Filtering by RC Circuits; 1.4 Synaptic Input; 1.5 Synaptic Input Is Nonlinear; 1.5.1 Synaptic Input, Saturation, and the Membrane Time Constant; 1.5.2 Synaptic Interactions among Excitation and Shunting Inhibition; 1.5.3 Gain Normalization in Visual Cortex and Synaptic Input; 1.6 Recapitulation; 2 Linear Cable Theory
2.1 Basic Assumptions Underlying One-Dimensional Cable Theory2.1.1 Linear Cable Equation; 2.2 Steady-State Solutions; 2.2.1 Infinite Cable; 2.2.2 Finite Cable; 2.3 Time-Dependent Solutions; 2.3.1 Infinite Cable; 2.3.2 Finite Cable; 2.4 Neuronal Delays and Propagation Velocity; 2.5 Recapitulation; 3 Passive Dendritic Trees; 3.1 Branched Cables; 3.1.1 What Happens at Branch Points?; 3.2 Equivalent Cylinder; 3.3 Solving the Linear Cable Equation for Branched Structures; 3.3.1 Exact Methods; 3.3.2 Compartmental Modeling; 3.4 Transfer Resistances; 3.4.1 General Definition; 3.4.2 An Example
3.4.3 Properties of K[sub(ij)]3.4.4 Transfer Resistances in a Pyramidal Cell; 3.5 Measures of Synaptic Efficiency; 3.5.1 Electrotonic Distance; 3.5.2 Voltage Attenuation; 3.5.3 Charge Attenuation; 3.5.4 Graphical Morphoelectrotonic Transforms; 3.6 Signal Delays in Dendritic Trees; 3.6.1 Experimental Determination of T[sub(m)]; 3.6.2 Local and Propagation Delays in Dendritic Trees; 3.6.3 Dependence of Fast Synaptic Inputs on Cable Parameters; 3.7 Recapitulation; 4 Synaptic Input; 4.1 Neuronal and Synaptic Packing Densities; 4.2 Synaptic Transmission Is Stochastic
4.2.1 Probability of Synaptic Release p4.2.2 What Is the Synaptic Weight?; 4.3 Neurotransmitters; 4.4 Synaptic Receptors; 4.5 Synaptic Input as Conductance Change; 4.5.1 Synaptic Reversal Potential in Series with an Increase in Conductance; 4.5.2 Conductance Decreasing Synapses; 4.6 Excitatory NMDA and Non-NMDA Synaptic Input; 4.7 Inhibitory GABAergic Synaptic Input; 4.8 Postsynaptic Potential; 4.8.1 Stationary Synaptic Input; 4.8.2 Transient Synaptic Input; 4.8.3 Infinitely Fast Synaptic Input; 4.9 Visibility of Synaptic Inputs; 4.9.1 Input Impedance in the Presence of Synaptic Input
4.10 Electrical Gap Junctions4.11 Recapitulation; 5 Synaptic Interactions in a Passive Dendritic Tree; 5.1 Nonlinear Interaction among Excitation and Inhibition; 5.1.1 Absolute versus Relative Suppression; 5.1.2 General Analysis of Synaptic Interaction in a Passive Tree; 5.1.3 Location of the Inhibitory Synapse; 5.1.4 Shunting Inhibition Implements a ""Dirty"" Multiplication; 5.1.5 Hyperpolarizing Inhibition Acts Like a Linear Subtraction; 5.1.6 Functional Interpretation of the Synaptic Architecture and Dendritic Morphology: AND-NOT Gates
5.1.7 Retinal Directional Selectivity and Synaptic Logic
Record Nr. UNINA-9910779059703321
Koch Christof <1956->  
New York, : Oxford University Press, 1999
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Biophysics of computation : information processing in single neurons / / Christof Koch
Biophysics of computation : information processing in single neurons / / Christof Koch
Autore Koch Christof <1956->
Edizione [1st ed.]
Pubbl/distr/stampa New York, : Oxford University Press, 1999
Descrizione fisica 1 online resource (587 p.)
Disciplina 573.8/536
573.8536
Collana Computational neuroscience
Soggetto topico Computational neuroscience
Neurons
Neural networks (Neurobiology)
Action potentials (Electrophysiology)
Neural conduction
ISBN 0-19-029285-7
0-19-756233-7
1-280-59509-4
9786613624925
0-19-976055-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Contents; Preface; List of Symbols; Introduction; 1 The Membrane Equation; 1.1 Structure of the Passive Neuronal Membrane; 1.1.1 Resting Potential; 1.1.2 Membrane Capacity; 1.1.3 Membrane Resistance; 1.2 A Simple RC Circuit; 1.3 RC Circuits as Linear Systems; 1.3.1 Filtering by RC Circuits; 1.4 Synaptic Input; 1.5 Synaptic Input Is Nonlinear; 1.5.1 Synaptic Input, Saturation, and the Membrane Time Constant; 1.5.2 Synaptic Interactions among Excitation and Shunting Inhibition; 1.5.3 Gain Normalization in Visual Cortex and Synaptic Input; 1.6 Recapitulation; 2 Linear Cable Theory
2.1 Basic Assumptions Underlying One-Dimensional Cable Theory2.1.1 Linear Cable Equation; 2.2 Steady-State Solutions; 2.2.1 Infinite Cable; 2.2.2 Finite Cable; 2.3 Time-Dependent Solutions; 2.3.1 Infinite Cable; 2.3.2 Finite Cable; 2.4 Neuronal Delays and Propagation Velocity; 2.5 Recapitulation; 3 Passive Dendritic Trees; 3.1 Branched Cables; 3.1.1 What Happens at Branch Points?; 3.2 Equivalent Cylinder; 3.3 Solving the Linear Cable Equation for Branched Structures; 3.3.1 Exact Methods; 3.3.2 Compartmental Modeling; 3.4 Transfer Resistances; 3.4.1 General Definition; 3.4.2 An Example
3.4.3 Properties of K[sub(ij)]3.4.4 Transfer Resistances in a Pyramidal Cell; 3.5 Measures of Synaptic Efficiency; 3.5.1 Electrotonic Distance; 3.5.2 Voltage Attenuation; 3.5.3 Charge Attenuation; 3.5.4 Graphical Morphoelectrotonic Transforms; 3.6 Signal Delays in Dendritic Trees; 3.6.1 Experimental Determination of T[sub(m)]; 3.6.2 Local and Propagation Delays in Dendritic Trees; 3.6.3 Dependence of Fast Synaptic Inputs on Cable Parameters; 3.7 Recapitulation; 4 Synaptic Input; 4.1 Neuronal and Synaptic Packing Densities; 4.2 Synaptic Transmission Is Stochastic
4.2.1 Probability of Synaptic Release p4.2.2 What Is the Synaptic Weight?; 4.3 Neurotransmitters; 4.4 Synaptic Receptors; 4.5 Synaptic Input as Conductance Change; 4.5.1 Synaptic Reversal Potential in Series with an Increase in Conductance; 4.5.2 Conductance Decreasing Synapses; 4.6 Excitatory NMDA and Non-NMDA Synaptic Input; 4.7 Inhibitory GABAergic Synaptic Input; 4.8 Postsynaptic Potential; 4.8.1 Stationary Synaptic Input; 4.8.2 Transient Synaptic Input; 4.8.3 Infinitely Fast Synaptic Input; 4.9 Visibility of Synaptic Inputs; 4.9.1 Input Impedance in the Presence of Synaptic Input
4.10 Electrical Gap Junctions4.11 Recapitulation; 5 Synaptic Interactions in a Passive Dendritic Tree; 5.1 Nonlinear Interaction among Excitation and Inhibition; 5.1.1 Absolute versus Relative Suppression; 5.1.2 General Analysis of Synaptic Interaction in a Passive Tree; 5.1.3 Location of the Inhibitory Synapse; 5.1.4 Shunting Inhibition Implements a ""Dirty"" Multiplication; 5.1.5 Hyperpolarizing Inhibition Acts Like a Linear Subtraction; 5.1.6 Functional Interpretation of the Synaptic Architecture and Dendritic Morphology: AND-NOT Gates
5.1.7 Retinal Directional Selectivity and Synaptic Logic
Record Nr. UNINA-9910825116003321
Koch Christof <1956->  
New York, : Oxford University Press, 1999
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui