top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Acoustic analyses using Matlab and Ansys / / Carl Q. Howard and Benjamin S. Cazzolato
Acoustic analyses using Matlab and Ansys / / Carl Q. Howard and Benjamin S. Cazzolato
Autore Howard Carl Q. <1970, >
Pubbl/distr/stampa Boca Raton : , : CRC Press, , [2015]
Descrizione fisica 1 online resource (705 p.)
Disciplina 620.20285/53
Soggetto topico Acoustical engineering - Mathematics
Finite element method - Data processing
ANSYS (Computer system)
ISBN 0-429-06964-2
1-4822-2327-9
Classificazione TEC001000TEC009070
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Contents; List of Figures; List of Tables; Foreword; Preface; Acknowledgments; Chapter 1 - Introduction; Chapter 2 - Background; Chapter 3 - Ducts; Chapter 4 - Sound Inside a Rigid-Walled Cavity; Chapter 5 - Introduction to Damped Acoustic Systems; Chapter 6 - Sound Absorption in a Lined Duct; Chapter 7 - Room Acoustics; Chapter 8 - Radiation and Scattering; Chapter 9 - Fluid-Structure Interaction; Appendix A - Files Included with This Book; Appendix B - Advice for Using ANSYS; Appendix C - MATLAB Functions for Modal Coupling; Appendix D - Errors
Appendix E - Export of Nodal Area from ANSYSReferences; Back Cover
Record Nr. UNINA-9910787841603321
Howard Carl Q. <1970, >  
Boca Raton : , : CRC Press, , [2015]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Acoustic analyses using Matlab and Ansys / / Carl Q. Howard and Benjamin S. Cazzolato
Acoustic analyses using Matlab and Ansys / / Carl Q. Howard and Benjamin S. Cazzolato
Autore Howard Carl Q. <1970, >
Pubbl/distr/stampa Boca Raton : , : CRC Press, , [2015]
Descrizione fisica 1 online resource (705 p.)
Disciplina 620.20285/53
Soggetto topico Acoustical engineering - Mathematics
Finite element method - Data processing
ANSYS (Computer system)
ISBN 0-429-06964-2
1-4822-2327-9
Classificazione TEC001000TEC009070
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Contents; List of Figures; List of Tables; Foreword; Preface; Acknowledgments; Chapter 1 - Introduction; Chapter 2 - Background; Chapter 3 - Ducts; Chapter 4 - Sound Inside a Rigid-Walled Cavity; Chapter 5 - Introduction to Damped Acoustic Systems; Chapter 6 - Sound Absorption in a Lined Duct; Chapter 7 - Room Acoustics; Chapter 8 - Radiation and Scattering; Chapter 9 - Fluid-Structure Interaction; Appendix A - Files Included with This Book; Appendix B - Advice for Using ANSYS; Appendix C - MATLAB Functions for Modal Coupling; Appendix D - Errors
Appendix E - Export of Nodal Area from ANSYSReferences; Back Cover
Record Nr. UNINA-9910800190003321
Howard Carl Q. <1970, >  
Boca Raton : , : CRC Press, , [2015]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Acoustic analyses using Matlab and Ansys / / Carl Q. Howard and Benjamin S. Cazzolato
Acoustic analyses using Matlab and Ansys / / Carl Q. Howard and Benjamin S. Cazzolato
Autore Howard Carl Q. <1970->
Edizione [1st ed.]
Pubbl/distr/stampa Boca Raton : , : CRC Press, , [2015]
Descrizione fisica 1 online resource (705 p.)
Disciplina 620.20285/53
Soggetto topico Acoustical engineering - Mathematics
Finite element method - Data processing
ANSYS (Computer system)
ISBN 1-04-005405-6
0-429-06964-2
1-4822-2327-9
Classificazione TEC001000TEC009070
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Contents; List of Figures; List of Tables; Foreword; Preface; Acknowledgments; Chapter 1 - Introduction; Chapter 2 - Background; Chapter 3 - Ducts; Chapter 4 - Sound Inside a Rigid-Walled Cavity; Chapter 5 - Introduction to Damped Acoustic Systems; Chapter 6 - Sound Absorption in a Lined Duct; Chapter 7 - Room Acoustics; Chapter 8 - Radiation and Scattering; Chapter 9 - Fluid-Structure Interaction; Appendix A - Files Included with This Book; Appendix B - Advice for Using ANSYS; Appendix C - MATLAB Functions for Modal Coupling; Appendix D - Errors
Appendix E - Export of Nodal Area from ANSYSReferences; Back Cover
Record Nr. UNINA-9910971631903321
Howard Carl Q. <1970->  
Boca Raton : , : CRC Press, , [2015]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Vibroacoustic simulation : an introduction to statistical energy analysis and hybrid methods / / Alexander Peiffer
Vibroacoustic simulation : an introduction to statistical energy analysis and hybrid methods / / Alexander Peiffer
Autore Peiffer Alexander
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2022]
Descrizione fisica 1 online resource (474 pages)
Disciplina 620.3
Soggetto topico Vibration - Mathematical models
Acoustical engineering - Mathematics
ISBN 1-119-84987-X
1-119-84985-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Vibroacoustic Simulation -- Contents -- Preface -- Acknowledgments -- Acronyms -- 1 Linear Systems, Random Process and Signals -- 1.1 The Damped Harmonic Oscillator -- 1.1.1 Homogeneous Solutions -- 1.1.2 The Overdamped Oscillator ( > -- 1) -- 1.1.3 The Underdamped Oscillator ( < -- 1) -- 1.1.4 The Critically Damped Oscillator ( = 1) -- 1.2 Forced Harmonic Oscillator -- 1.2.1 Frequency Response -- 1.2.2 Energy, Power and Impedance -- 1.2.3 Impedance and Response Functions -- 1.2.4 Damping -- 1.2.5 Damping in Real Systems -- 1.3 Two Degrees of Freedom Systems (2DOF) -- 1.3.1 Natural Frequencies of the 2DOF System -- 1.4 Multiple Degrees of Freedom Systems MDOF -- 1.4.1 Assembling the Mass Matrix -- 1.4.2 Assembling the Stiffness Matrix -- 1.4.3 Power Input into MDOF Systems -- 1.4.4 Normal Modes -- 1.5 Random Process -- 1.5.1 Probability Function -- 1.5.2 Correlation Coefficient -- 1.5.3 Correlation Functions for Random Time Signals -- 1.5.4 Fourier Analysis of Random Signals -- 1.5.5 Estimation of Power and Cross Spectra -- 1.6 Systems -- 1.6.1 SISO-System Response in Frequency Domain -- 1.6.2 System Response in Time Domain -- 1.6.3 Systems Excited by Random Signals -- 1.7 Multiple-input-multiple-output Systems -- 1.7.1 Multiple Random Inputs -- 1.7.2 Response of MIMO Systems to Random Load -- Bibliography -- 2 Waves in Fluids -- 2.1 Introduction -- 2.2 Wave Equation for Fluids -- 2.2.1 Conservation of Mass -- 2.2.2 Newton's law - Conservation of Momentum -- 2.2.3 Equation of State -- 2.2.4 Linearized Equations -- 2.2.5 Acoustic Wave Equation -- 2.3 Solutions of theWave Equation -- 2.3.1 Harmonic Waves -- 2.3.2 Helmholtz equation -- 2.3.3 Field Quantities: Sound Intensity, Energy Density and Sound Power -- 2.3.4 Damping in Waves -- 2.4 Fundamental Acoustic Sources -- 2.4.1 Monopoles - Spherical Sources.
2.5 Reflection of Plane Waves -- 2.6 Reflection and Transmission of Plane Waves -- 2.7 Inhomogeneous Wave Equation -- 2.7.1 Acoustic Green's Functions -- 2.7.2 Rayleigh integral -- 2.7.3 Piston in a Wall -- 2.7.4 Power Radiation -- 2.8 Units, Measures, and levels -- Bibliography -- 3 Wave Propagation in Structures -- 3.1 Introduction -- 3.2 Basic Equations and Definitions -- 3.2.1 Mechanical Strain -- 3.2.2 Mechanical Stress -- 3.2.3 Material Laws -- 3.3 Wave Equation -- 3.3.1 The One-dimensional Wave Equation -- 3.3.2 The Three-dimensional Wave Equation -- 3.4 Waves in Infinite Solids -- 3.4.1 Longitudinal Waves -- 3.4.2 Shear waves -- 3.5 Beams -- 3.5.1 Longitudinal Waves -- 3.5.2 Power, Energy, and Impedance -- 3.5.3 Bending Waves -- 3.5.4 Power, Energy, and Impedance -- 3.6 Membranes -- 3.7 Plates -- 3.7.1 Strain-displacement Relations -- 3.7.2 In-plane Wave Equation -- 3.7.3 Longitudinal Waves -- 3.7.4 Shear Waves -- 3.7.5 Combination of Longitudinal and Shear Waves -- 3.7.6 Bending Wave Equation -- 3.8 Propagation of Energy in Dispersive Waves -- 3.9 Findings -- Bibliography -- 4 Fluid Systems -- 4.1 One-dimensional Systems -- 4.1.1 System Response -- 4.1.2 Power Input -- 4.1.3 Pressure Field -- 4.1.4 Modes -- 4.2 Three-dimensional Systems -- 4.2.1 Modes -- 4.2.2 Modal Frequency Response -- 4.2.3 System Responses -- 4.3 Numerical Solutions -- 4.3.1 Acoustic Finite Element Methods -- 4.3.2 Deterministic Acoustic Elements -- 4.4 Reciprocity -- Bibliography -- 5 Structure Systems -- 5.1 Introduction -- 5.2 One-dimensional Systems -- 5.2.1 Longitudinal Waves in Finite Beams -- 5.2.2 Bending Wave in Finite Beams -- 5.3 Two-dimensional Systems -- 5.3.1 Bending Waves in Flat Plates -- 5.4 Reciprocity -- 5.5 Numerical Solutions -- 5.5.1 Normal Modes in Discrete Form -- Bibliography -- 6 Random Description of Systems -- 6.1 Diffuse Wave Field.
6.1.1 Wave-Energy Relationships -- 6.1.2 Diffuse Field Parameter of One-Dimensional Systems -- 6.1.3 Diffuse Field Parameter of Two-Dimensional Systems -- 6.1.4 Diffuse Field Parameter of Three-Dimensional Systems -- 6.1.5 Topology Conclusions -- 6.1.6 Auto Correlation and Boundary Effects -- 6.1.7 Sources in the Diffuse Acoustic Field - the Direct Field -- 6.1.8 Some Comments on the Diffuse Field Approach -- 6.2 Ensemble Averaging of Deterministic Systems -- 6.3 One-Dimensional Systems -- 6.3.1 Fluid Tubes -- 6.4 Two-Dimensional Systems -- 6.4.1 Plates -- 6.4.2 Monte Carlo Simulation -- 6.5 Three-Dimensional Systems - Cavities -- 6.5.1 Energy and Intensity -- 6.5.2 Power Input to the Reverberant Field -- 6.5.3 Dissipation -- 6.5.4 Power Balance -- 6.5.5 Monte Carlo Simulation -- 6.6 Surface Load of Diffuse Acoustic Fields -- 6.7 Mode Wave Duality -- 6.7.1 Diffuse Field Energy -- 6.7.2 Free Field Power Input -- 6.8 SEA System Description -- 6.8.1 Power Balance in Diffuse Fields -- 6.8.2 Reciprocity Relationships -- 6.8.3 Fluid Analogy -- 6.8.4 Power Input -- 6.8.5 Engineering Units -- 6.8.6 Multiple Wave Fields -- Bibliography -- 7 Coupled Systems -- 7.1 Deterministic Subsystems and their Degrees of Freedom -- 7.2 Coupling Deterministic Systems -- 7.2.1 Fluid Subsystems -- 7.2.2 Fluid Structure Coupling -- 7.2.3 Deterministic Systems Coupled to the Free Field -- 7.3 Coupling Random Systems -- 7.3.1 Power Input to System (m) from the nth Reverberant Field -- 7.3.2 Power Leaving the (m)th Subsystem -- 7.3.3 Some Remarks on SEA Modelling -- 7.4 Hybrid FEM/SEA Method -- 7.4.1 Combining SEA and FEM Subsystems -- 7.4.2 Work Flow of Hybrid Simulation -- 7.5 Hybrid Modelling in Modal Coordinates -- Bibliography -- 8 Coupling Loss Factors -- 8.1 Transmission Coefficients and Coupling Loss Factors -- 8.1.1 - Relationship from Diffuse Field Assumptions.
8.1.2 Angular Averaging -- 8.2 Radiation Stiffness and Coupling Loss Factors -- 8.2.1 Point Radiation Stiffness -- 8.2.2 Point Junctions -- 8.2.3 Area Radiation Stiffness -- 8.2.4 Area Junctions -- 8.2.5 Line Radiation Stiffness -- 8.2.6 Line Junctions -- 8.2.7 Summary -- Bibliography -- 9 Deterministic Applications -- 9.1 Acoustic One-Dimensional Elements -- 9.1.1 Transfer Matrix and Finite Element Convention -- 9.1.2 Acoustic One-Dimensional Networks -- 9.1.3 The Acoustic Pipe -- 9.1.4 Volumes and Closed Pipes -- 9.1.5 Limp Layer -- 9.1.6 Membranes -- 9.1.7 Perforated Sheets -- 9.1.8 Branch Lumped Elements -- 9.1.9 Boundary Conditions -- 9.1.10 Performance Indicators -- 9.2 Coupled One-Dimensional Systems -- 9.2.1 Change in Cross Section -- 9.2.2 Impedance Tube -- 9.2.3 Helmholtz Resonator -- 9.2.4 Quarter Wave Resonator -- 9.2.5 Muffler System -- 9.2.6 T-Joint -- 9.2.7 Conclusions of 1D-Systems -- 9.3 Infinite Layers -- 9.3.1 Plate Layer -- 9.3.2 Lumped Elements Layers -- 9.3.3 Fluid Layer -- 9.3.4 Equivalent Fluid - Fiber Material -- 9.3.5 Performance Indicators -- 9.3.6 Conclusions on Layer Formulation -- 9.4 Acoustic Absorber -- 9.4.1 Single Fiber Layer -- 9.4.2 Multiple Layer Absorbers -- 9.4.3 Absorber with Perforate -- 9.4.4 Single Degree of Freedom Liner -- 9.5 Acoustic Wall Constructions -- 9.5.1 Double Walls -- 9.5.2 Limp Double Walls with Fiber -- 9.5.3 Two Plates with Fiber -- 9.5.4 Conclusion on Double Walls -- Bibliography -- 10 Application of Random systems -- 10.1 Frequency Bands for SEA Simulation -- 10.2 Fluid Systems -- 10.2.1 Twin Chamber -- 10.3 Algorithms of SEA -- 10.4 Coupled Plate Systems -- 10.4.1 Two Coupled Plates -- 10.5 Fluid-Structure Coupled Systems -- 10.5.1 Twin Chamber -- 10.5.2 Noise Control Treatments -- 10.5.3 Transmission Loss of Trimmed Plate -- 10.5.4 Free Field Radiation into Half Space.
10.5.5 Isolating Box -- 10.5.6 Rules of Noise Control -- Bibliography -- 11 Hybrid Systems -- 11.1 Hybrid SEA Matrix -- 11.2 Twin Chamber -- 11.2.1 Step 1 - Setting up System Configurations -- 11.2.2 Step 2 - Setting up System Matrices and Coupling Loss Factors -- 11.2.3 Step 3 - External Loads -- 11.2.4 Step 4 - Solving System Matrices -- 11.2.5 Step 5 - Adding the Results -- 11.3 Trim in Hybrid Theory -- 11.3.1 The Trim Stiffness Matrix -- 11.3.2 Hybrid Modal Formulation of Trim and Plate -- 11.3.3 Modal Space -- 11.3.4 Plate Example with Trim -- Bibliography -- 12 Industrial Cases -- 12.1 Simulation Strategy -- 12.1.1 Motivation -- 12.1.2 Choice of Simulation Method -- 12.2 Aircraft -- 12.2.1 Excitation -- 12.2.2 Simulation Strategy -- 12.2.3 Fuselage Sidewall -- 12.2.4 SEA Model of a Fuselage Section -- 12.3 Automotive -- 12.3.1 Simulation Strategy -- 12.3.2 Excitation -- 12.3.3 Rear Carbody -- 12.3.4 Full Scale SEA Models -- 12.4 Trains -- 12.4.1 Structural Design -- 12.4.2 Interior Design -- 12.4.3 Excitation and Transmission Paths -- 12.4.4 Simulation Strategy -- 12.4.5 Applications to Rail Structures - Double Walls -- 12.4.6 Carbody Sections - High Speed Applications -- 12.5 Summary -- Bibliography -- 13 Conclusions and Outlook -- 13.1 Conclusions -- 13.2 What Comes Next? -- 13.3 Experimental Methods -- 13.3.1 Transfer Path Analysis -- 13.3.2 Experimental Modal Analysis -- 13.3.3 Correlation Between Test and Simulation -- 13.3.4 Experimental or Virtual SEA -- 13.4 Further Reading on Simulation -- 13.4.1 Advances in SEA and Hybrid FEM/SEA Methods -- 13.5 Energy Flow Method and Influence Coefficient -- 13.5.1 More Realistic Systems -- 13.5.2 Anisotropic Material -- 13.5.3 Porous Elastic Material -- 13.5.4 Composite Material -- 13.5.5 Sandwich -- 13.5.6 Shell Theory -- 13.5.7 Wave Finite Element Method (WFE) -- 13.5.8 The High Frequency Limit.
13.6 Vibroacoustics Simulation Software.
Record Nr. UNINA-9910830035403321
Peiffer Alexander  
Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui