Aberration-corrected analytical transmission electron microscopy [[electronic resource] /] / edited by Rik Brydson ; published in association with the Royal Microscopical Society ; series editor, Susan Brooks |
Pubbl/distr/stampa | Hoboken, N.J., : Wiley, 2011 |
Descrizione fisica | 1 online resource (306 p.) |
Disciplina |
502.8/25
502.825 |
Altri autori (Persone) |
BrydsonRik
BrooksSusan |
Collana | RMS - Royal Microscopical Society |
Soggetto topico |
Transmission electron microscopy
Aberration Achromatism |
ISBN |
1-119-97990-0
1-283-20457-6 9786613204578 1-119-97884-X 1-119-97885-8 |
Classificazione | SCI053000 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Aberration-Corrected Analytical Transmission Electron Microscopy; Contents; List of Contributors; Preface; 1 General Introduction to Transmission Electron Microscopy (TEM); 1.1 What TEM Offers; 1.2 Electron Scattering; 1.2.1 Elastic Scattering; 1.2.2 Inelastic Scattering; 1.3 Signals which could be Collected; 1.4 Image Computing; 1.4.1 Image Processing; 1.4.2 Image Simulation; 1.5 Requirements of a Specimen; 1.6 STEM Versus CTEM; 1.7 Two Dimensional and Three Dimensional Information; 2 Introduction to Electron Optics; 2.1 Revision of Microscopy with Visible Light and Electrons
2.2 Fresnel and Fraunhofer Diffraction2.3 Image Resolution; 2.4 Electron Lenses; 2.4.1 Electron Trajectories; 2.4.2 Aberrations; 2.5 Electron Sources; 2.6 Probe Forming Optics and Apertures; 2.7 SEM, TEM and STEM; 3 Development of STEM; 3.1 Introduction: Structural and Analytical Information in Electron Microscopy; 3.2 The Crewe Revolution: How STEM Solves the Information Problem; 3.3 Electron Optical Simplicity of STEM; 3.4 The Signal Freedom of STEM; 3.4.1 Bright-Field Detector (Phase Contrast, Diffraction Contrast); 3.4.2 ADF, HAADF; 3.4.3 Nanodiffraction; 3.4.4 EELS; 3.4.5 EDX 3.4.6 Other Techniques3.5 Beam Damage and Beam Writing; 3.6 Correction of Spherical Aberration; 3.7 What does the Future Hold?; 4 Lens Aberrations: Diagnosis and Correction; 4.1 Introduction; 4.2 Geometric Lens Aberrations and Their Classification; 4.3 Spherical Aberration-Correctors; 4.3.1 Quadrupole-Octupole Corrector; 4.3.2 Hexapole Corrector; 4.3.3 Parasitic Aberrations; 4.4 Getting Around Chromatic Aberrations; 4.5 Diagnosing Lens Aberrations; 4.5.1 Image-based Methods; 4.5.2 Ronchigram-based Methods; 4.5.3 Precision Needed; 4.6 Fifth Order Aberration-Correction; 4.7 Conclusions 5 Theory and Simulations of STEM Imaging5.1 Introduction; 5.2 Z-Contrast Imaging of Single Atoms; 5.3 STEM Imaging Of Crystalline Materials; 5.3.1 Bright-field Imaging and Phase Contrast; 5.3.2 Annular Dark-field Imaging; 5.4 Incoherent Imaging with Dynamical Scattering; 5.5 Thermal Diffuse Scattering; 5.5.1 Approximations for Phonon Scattering; 5.6 Methods of Simulation for ADF Imaging; 5.6.1 Absorptive Potentials; 5.6.2 Frozen Phonon Approach; 5.7 Conclusions; 6 Details of STEM; 6.1 Signal to Noise Ratio and Some of its Implications 6.2 The Relationships Between Probe Size, Probe Current and Probe Angle6.2.1 The Geometric Model Revisited; 6.2.2 The Minimum Probe Size, the Optimum Angle and the Probe Current; 6.2.3 The Probe Current; 6.2.4 A Simple Approximation to Wave Optical Probe Size; 6.2.5 The Effect of Chromatic Aberration; 6.2.6 Choosing aopt in Practice; 6.2.7 The Effect of Making a Small Error in the Choice of aopt; 6.2.8 The Effect of a On the Diffraction Pattern; 6.2.9 Probe Spreading and Depth of Field; 6.3 The Condenser System; 6.4 The Scanning System; 6.4.1 Principles of the Scanning System 6.4.2 Implementation of the Scanning System |
Record Nr. | UNINA-9910139612403321 |
Hoboken, N.J., : Wiley, 2011 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Aberration-corrected analytical transmission electron microscopy / / edited by Rik Brydson ; published in association with the Royal Microscopical Society ; series editor, Susan Brooks |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Hoboken, N.J., : Wiley, 2011 |
Descrizione fisica | 1 online resource (306 p.) |
Disciplina |
502.8/25
502.825 |
Altri autori (Persone) |
BrydsonRik
BrooksSusan |
Collana | RMS - Royal Microscopical Society |
Soggetto topico |
Transmission electron microscopy
Aberration Achromatism |
ISBN |
1-119-97990-0
1-283-20457-6 9786613204578 1-119-97884-X 1-119-97885-8 |
Classificazione | SCI053000 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Aberration-Corrected Analytical Transmission Electron Microscopy; Contents; List of Contributors; Preface; 1 General Introduction to Transmission Electron Microscopy (TEM); 1.1 What TEM Offers; 1.2 Electron Scattering; 1.2.1 Elastic Scattering; 1.2.2 Inelastic Scattering; 1.3 Signals which could be Collected; 1.4 Image Computing; 1.4.1 Image Processing; 1.4.2 Image Simulation; 1.5 Requirements of a Specimen; 1.6 STEM Versus CTEM; 1.7 Two Dimensional and Three Dimensional Information; 2 Introduction to Electron Optics; 2.1 Revision of Microscopy with Visible Light and Electrons
2.2 Fresnel and Fraunhofer Diffraction2.3 Image Resolution; 2.4 Electron Lenses; 2.4.1 Electron Trajectories; 2.4.2 Aberrations; 2.5 Electron Sources; 2.6 Probe Forming Optics and Apertures; 2.7 SEM, TEM and STEM; 3 Development of STEM; 3.1 Introduction: Structural and Analytical Information in Electron Microscopy; 3.2 The Crewe Revolution: How STEM Solves the Information Problem; 3.3 Electron Optical Simplicity of STEM; 3.4 The Signal Freedom of STEM; 3.4.1 Bright-Field Detector (Phase Contrast, Diffraction Contrast); 3.4.2 ADF, HAADF; 3.4.3 Nanodiffraction; 3.4.4 EELS; 3.4.5 EDX 3.4.6 Other Techniques3.5 Beam Damage and Beam Writing; 3.6 Correction of Spherical Aberration; 3.7 What does the Future Hold?; 4 Lens Aberrations: Diagnosis and Correction; 4.1 Introduction; 4.2 Geometric Lens Aberrations and Their Classification; 4.3 Spherical Aberration-Correctors; 4.3.1 Quadrupole-Octupole Corrector; 4.3.2 Hexapole Corrector; 4.3.3 Parasitic Aberrations; 4.4 Getting Around Chromatic Aberrations; 4.5 Diagnosing Lens Aberrations; 4.5.1 Image-based Methods; 4.5.2 Ronchigram-based Methods; 4.5.3 Precision Needed; 4.6 Fifth Order Aberration-Correction; 4.7 Conclusions 5 Theory and Simulations of STEM Imaging5.1 Introduction; 5.2 Z-Contrast Imaging of Single Atoms; 5.3 STEM Imaging Of Crystalline Materials; 5.3.1 Bright-field Imaging and Phase Contrast; 5.3.2 Annular Dark-field Imaging; 5.4 Incoherent Imaging with Dynamical Scattering; 5.5 Thermal Diffuse Scattering; 5.5.1 Approximations for Phonon Scattering; 5.6 Methods of Simulation for ADF Imaging; 5.6.1 Absorptive Potentials; 5.6.2 Frozen Phonon Approach; 5.7 Conclusions; 6 Details of STEM; 6.1 Signal to Noise Ratio and Some of its Implications 6.2 The Relationships Between Probe Size, Probe Current and Probe Angle6.2.1 The Geometric Model Revisited; 6.2.2 The Minimum Probe Size, the Optimum Angle and the Probe Current; 6.2.3 The Probe Current; 6.2.4 A Simple Approximation to Wave Optical Probe Size; 6.2.5 The Effect of Chromatic Aberration; 6.2.6 Choosing aopt in Practice; 6.2.7 The Effect of Making a Small Error in the Choice of aopt; 6.2.8 The Effect of a On the Diffraction Pattern; 6.2.9 Probe Spreading and Depth of Field; 6.3 The Condenser System; 6.4 The Scanning System; 6.4.1 Principles of the Scanning System 6.4.2 Implementation of the Scanning System |
Record Nr. | UNINA-9910822805803321 |
Hoboken, N.J., : Wiley, 2011 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|